Phytoremediation of Nutrients and Organic Carbon from Sago Mill Effluent using Water Hyacinth (Eichhornia crassipes)

Daniah Ali Hassoon Nash, Siti Rozaimah Sheikh Abdullah, Hassimi Abu Hasan, Idris Mushrifah, Nurul Fadhilah Muhammad, Israa Abdulwahab Al-Baldawi, Nur ‘Izzati Ismail

Abstract


The aim of this study was to investigate the ability of floating water hyacinth (Eichhornia crassipes) to survive under selected concentrations of sago mill effluent (SME) and determine the nutrient uptake by the plant. Phytoremediation at 10, 15, and 20% (VSME/Vwater) SME concentrations by water hyacinth was conducted under greenhouse conditions for 30 d in a batch type experiment. After 30 d of phytoremediation, the removal efficiency of chemical oxygen demand, ammonia and phosphorus from SME wastewater were (86.4% to 97.2%), (91.4% to 97.3%) and (80.4 to 97.2%), respectively. The results proved the efficiency of water hyacinth to polish SME wastewater.

Keywords


ammonia; COD; nutrient uptake; phosphorus; phytoremediation; sago mill effluent; water hyacinth

Full Text:

PDF

References


Zuraida, A., Yusliza, Y., Anuar, H. & Muhaimin, R.M.K., The Effect of Water and Citric Acid on Sago Starch Bio-Plastics, Int. Food. Res. J., 19, pp. 715-719, 2012.

Yunus, N., Jahim, J.M., Anuar, N., Abdullah, S.R.S. & Kofli, N.T., Batch Fermentative Hydrogen Production Utilising Sago (Metroxylon Sp.) Starch Processing Effluent by Enriched Sago Sludge Consortia, Int. J. Hydrogen Energy, 39, pp. 19937-19946, 2014.

Darajeh, N., Idris, A., Truong, P., Aziz, A.A., Abdul Aziz, A. & Abu Bakar, R., Phytoremediation Potential of Vetiver System Technology for Improving the Quality of Palm Oil Mill Effluent, Adv. Mater. Sci. Eng., 2014, pp. 1-10, 2014.

Kutty, S.R.M., Ngatenah, S.N.I., Isa, M.H. & Malakahmad, A., Nutrients Removal from Municipal Wastewater Treatment Plant Effluent Using Eichhornia Crassipes, World Acad. Sci. Eng. Technol., 36, pp. 828-833, 2009.

Purwanti, I.F., Abdullah, S.R.S., Basri H., Mukhlisin M., Idris, M. & Latif, M.T., Identification of Diesel-tolerant Rhizobacteria of Scirpus mucronatus, African J. Microbiol. Res., 6, pp. 2395-2402, 2012.

Al-Baldawi, I.A., Abdullah, S.R.S., Anuar, N., Suja, F. & Idris, M., A Phytotoxicity Test of Bulrush (Scirpus grossus) Grown with Diesel Contamination in a Free-flow Reed Bed System, J. Hazard Mater., 252–253, pp. 64-69, 2013.

Tangahu, B.V., Abdullah, S.R.S., Hassan, B., Idris, M., Anuar, N. & Mukhlisin, M., Isolation and Screening of Rhizobacteria from Scirpus Grossus Plant after Lead (Pb) Exposure, J. Civ. Eng. Archit., 5, pp. 484-493, 2012.

Al-Baldawi, I.A., Abdullah, S.R.S., Suja’, F., Anuar, N. & Idris, M., Phytotoxicity Test of Scirpus grossus on Diesel-contaminated Water using a Subsurface Flow System, Ecol. Eng., 54, pp. 49-56, 2013.

Ismail, N.I., Abdullah, S.R.S., Idris, M., Hasan, H.A., Sbani, N.H.A.L. & Jehawi, O.H., Tolerance and Survival of Scirpus grossus and Lepironia articulata in Synthetic Mining Wastewater, J. Environ. Sci. Technol., 8, pp. 232-237, 2015.

Al-Sbani, N.H.A.L., Abdullah. S.R.S., Idris, M., Hasan, H.A., Jehawi, O.H. & Ismail N., Sub-surface Flow System for PAHs Removal in Water Using Lepironia Articulate under Greenhouse Conditions, Ecol. Eng., 87, pp. 1-8, 2016.

Titah H.S., Abdullah S. R. S., Mushrifah I., Anuar N., Basri H. & Mukhlisin M., Effect of Applying Rhizobacteria and Fertilizer on the Growth of Ludwigia octovalvis for Arsenic Uptake and Accumulation in Phytoremediation, Ecol. Eng., 58, pp.303-13, 2013.

Al-Mansoory, A.F., Idris, M., Abdullah, S.R.S. & Anuar, N., Phytoremediation of Contaminated Soils Containing Gasoline Using Ludwigia octovalvis (Jacq.) in Greenhouse Pots, Environ. Sci. Pollut. Res., 24, pp. 11998-12008, 2017.

Xia, H. & Ma, X., Phytoremediation of Ethion by Water Hyacinth (Eichhornia crassipes) from Water, Bioresour. Technol., 97, pp. 1050-1054, 2006.

Jayaweera, M. & Kasturiarachchi, J.C., Removal of Nitrogen and Phosphorus from Industrial Wastewaters by Phytoremediation Using Water Hyacinth (Eichhornia crassipes (Mart.) Solms)., Water Sci. Technol., 50(6), pp. 217-225, 2004.

Reddy, K.R. & Tucker, J.C., Productivity and Nutrient Uptake of Water Hyacinth, Eichhornia crassipes I. Effect of Nitrogen Source, Econ. Bot., 37, pp. 237-247, 1983.

Kadlec, R.H., Comparison of Free Water and Horizontal Subsurface Treatment Wetlands, Ecol. Eng., 35, pp. 159-174, 2009.

Zeng, Z., Zhang, S.D., Li, T.Q., Zhao, F.L., He, Z.L. & Zhao, H.P., Sorption of Ammonium and Phosphate from Aqueous Solution by Biochar Derived from Phytoremediation Plants, J. Zhejiang Univ. Sci. B, 14, pp. 1152-1161, 2013.

Boyer, E.W. & Ingle, M.B., Extracellular Alkaline Amylase from a Bacillus Species, J. Bacteriol, 110, pp. 992-1000, 1972.

Orhan, E., Esitken, A., Ercisli, S., Turan, M. & Sahin, F., Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Yield, Growth and Nutrient Contents in Organically Growing Raspberry, Sci. Hortic. (Amsterdam), 111, pp. 38-43, 2006.

Abdulqader, E., Almaamary, S., Rozaimah, S., Abdullah, S., Hasan, H.A. & Adne, R., Treatment of Methylene Blue in Wastewater using Scirpus grossus, Malaysian J. Anal. Sci., 21, pp. 182-187, 2017.

Fan, J., Liang, S., Zhang, B. & Zhang, J., Enhanced Organics and Nitrogen Removal in Batch-operated Vertical Flow Constructed Wetlands by Combination of Intermittent Aeration and Step Feeding Strategy, Environ. Sci. Pollut. Res., 20, pp. 2448-2455, 2013.

Anderson, J.J.B., Calcium, Phosphorus and Human Bone Development, J. Nutr., 126, pp. 1153S-1158S, 1996.




DOI: http://dx.doi.org/10.5614%2Fj.eng.technol.sci.2019.51.4.8

Refbacks

  • There are currently no refbacks.