Siloxane based Organic-Inorganic Hybrid Polymers and their Applications for Nanostructured Optical/Photonic Components

Rahmat Hidayat, Widiyanta Gomulya, Pina Pitriana, Ryan Irmansyah, Rany Miranti, Herman Herman, Sahrul Hidayat, Fitrilawati Fitrilawati, Akihiko Fujii, Masanori Ozaki


We have studied the preparation of organic-inorganic hybrid polymer precursors  by  sol-gel  technique  and  their  utilization  for  nanostructured  optical components for photonic applications. The gel polymer precursors were prepared from  siloxane  modified  by  polymerizable  acrylate  groups,  which  can  be processed  further  by  photopolymerization  process.  Molecular  structure characterizations by means of the FTIR measurements indicate the conversion of C=C  bonds  into  C-C  bonds  after  photopolymerization.  This  bond  co nversion produces  high  cross-linking  between  the  organic  and  inorganic  moieties, resulting  in  thermally  stable and chemically resistant thin polymer layer which provide  unique  advantages  of  this  material  for  particular  optical/photonic applications.  By  employing  laser  interference  technique,  gratings  with periodicity between 400-1000 nm have been successfully fabricated. Application of  those  sub-micron  periodicity  of  grating  structure  as  active  elements  in optically  pumped  polymer  laser  system  and  Surface Plasmon Resonance  (SPR) based  measurement  system  have  been  also  explored.  The  experimental  results therefore  also  show  the  potential  applications  of  this  hybrid  polymer  as  a building material for micro/nano-photonics components. 

Full Text:



Kuzyk, Mark G., Polymer Fiber Optics: Materials, Physics, and Applications (Optical Science and Engineering; 117), CRC Press, Taylor & Francis Group, New York, 2007.

Kuriki, K., Koike, Y. & Okamoto, Y., Plastic Optical Fiber Lasers and Amplifiers Containing Lanthanide Complexes, Chem. Rev., 102, pp. 2347-2356, 2002.

Edrington, A.C., Urbas, A.M., DeRege, P., Chen, C.X., Swager, T.M., Hadjichristidis, N., Xenidou, M., Fetters, L.J., Joannopoulos, J.D., Fink, Y. & Thomas, E.L., Adv. Mater., 13, Polymer-Based Photonic Crystals, pp. 421-425, 2001.

Psaltis, D., Quake, S.R. & Yang, C., Developing Optofluidic Technology Through The Fusion of Microfluidics and Optics, Nature, 442, pp. 381-386, 2006.(doi:10.1038/nature05060)

Leeds, A.R., Van Keuren, E.R., Durst, M.E., Schneider, T.W., Currie, J.F. & Paranjape, M., Integration of Microfluidic and Microoptical Elements Using A Single-Mask Photolithographic Step, Sensors and Actuators A, 115, pp. 571–580, 2004.

Biswas, A., Friend, C.S. & Prasad, P.N., Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., 2000.

Sorek, Y. & Reisfeld, R., Sol-Gel Glass Wave Guides Prepared at Low Temperature, Appl. Phys. Lett., 63, p. 3256, 1993.

Kobayashi, T., Nakatsuka, S., Iwafuji, T., Kuriki, K., Imai, N.,Nakamoto, T., Claude, C.D., Sasaki, K., Koike, Y. & Okamoto, Y., Fabrication and Superfluorescence of Rare-Earth Chelate-Doped Graded Index Polymer Optical Fibers, Appl. Phys. Lett. 71, p. 2421, 1997; Slooff, L.H., van Blaaderen, A., Polman, A., Hebbink, G.A., Klink, S.I., van Veggel, F.C.J.M., Reinhoudt, D.N., & Hofstraat, J.W., Rareearth Doped Polymers for Planar Optical Amplifiers, J. Appl. Phys., 91,p. 3955, 2002.

Hidayat, R., Sugihara, O.,Tsuchimori, M., Kagami, M., Nishikubo, T. & Kaino, T., Binding of Europium Complex to Polymerizable Macrocyclic Molecules and its Optical Properties, Opt. Mat, 29, p. 1367-1374, 2007.

Sanchez, C., Julian, B., Belleville, P. & Popall, M., Applications of Hybrid Organic-Inorganic Nanocomposites, J. Mater. Chem., 15, pp. 3559–3592, 2005.

Novak, B.M., Hybrid Nanocomposite Materials between Inorganic Glasses and Organic Polymers, Adv. Mater., 5, pp. 422-433, 1993.

Schottner, G., Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials, Chem. Mater., 13, pp. 3422-3435, 2001.

Buestrich, R., Kahlenberg, F., Popall, M., Dannberg, P., Muller-Fiedler, R. & Rosch, O., ORMOCER®s for Optical Interconnect Technology, J. Sol-Gel Sci. Technol., 20, pp. 181–186, 2001.

Haas, K. & Wolter, H., Hybrid Inorganic/Organic Polymers with Nanoscale Building Blocks: Precursors, Processing, Properties and Applications, Rev. Adv. Mater. Sci., 5, pp. 47-52, 2003.

Wen, J. & Wilkes, G.L., Organic/Inorganic Hybrid Network Materials by The Sol-Gel Approach, Chem. Mater., 8, pp. 1667-1681, 1996.

Kirkbir, F., Murata, H., Mayer, D., Chaudhari, S.R., & Sarkar, A., Drying and Sintering of Sol-Gel Derived Large SiO2 Monoliths, J. Sol-Gel Sci. Technol., 6, pp. 203-217, 1996; Nogues, J.L.R. & Moreshead, W.V., Porous Gel-Silica, A Matrix for Optically-Active Components, J. NonCryst. Solids., 121, pp. 136-142,1990.

Burzynski, R. & Prasad, P.N., Photonics and Nonlinear Optics with SolGel Processed Inorganic Glass: Organic Polymer Composite, Klein L.C.(ed.), Kluwer, Boston, Chapter 19, 1994.

Croutxé-Barghorn, C., Soppera, O. & Chevallier, M., Diffraction Gratings in Hybrid Sol-Gel Films: on The Understanding of The Relief Generation Process, Macromol. Mater. Eng., 288, pp. 219-227, 2003.

Blanc, D., Pélissier, S., Jurine, P.Y., Soppera, O., Croutxé-Barghorn, C.& Carré, C., Photo-Induced Swelling of Hybrid Sol-Gel Thin Films: Application to Surface Micro-Patterning, J. Sol-Gel Sci. Tech., 27, pp. 215-220, 2003.

Fan, X., Wua, X., Wanga, M., Qiub, J. & Kawamoto, Y., Luminescence Behaviors of Eu3+ β-Diketonate Complexes in Sol–Gel-Derived Host Materials, Mater. Lett., 58, p. 2217, 2004; Fan, X., Lia, W., Wang & F. Wang, M., Luminescence Behavior of the Europium (III) Complexes with Hexafluoracetylacetonate in the ORMOSIL Matrices, Mat. Sci. & Eng. B,100, p. 147, 2003.

Homola, J., Surface Plasmon Resonance Based Sensors, Springer: New York, 2006.

Maier, S.A., Plasmonics: Fundamentals and Applications, Springer: United Kingdom, 2007. (accessed in Sept. 3rd, 2010)

Loudon, R., Theory of the Radiation Pressure on Dielectric Surfaces, J. Mod. Opt., 49, pp. 821-838, 2002.

Mansuripur, M., Radiation Pressure and the Linear Momentum of the Electromagnetic Field, Opt. Expr., 12, p. 5375, 2004.

Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chem. Rev., 108, pp. 462-493, 2008; Dostalek, J. & Homola, J., Surface Plasmon Resonance Sensor Based on an Array of Diffraction Gratings for Highly-Parallelized Observation of Biomolecular Interactions, Sens. and Act. B, 129, pp. 303–310, 2008.

Roh, S., Chung, T. & Lee, B., Overview of the Characteristics of Microand Nano-Structured Surface Plasmon Resonance Sensor, Sensors, 11, pp. 1565-1588, 2011.

Yu, F., Tian, S., Yao, D. & Knoll, W., Surface Plasmon Enhanced Diffraction for Label-Free Biosensing, Anal. Chem., 76, pp. 3530-3535,2004.

Sakoda, K., Optical Properties of Photonic Crystal, Springer: Berlin, 2004.



  • There are currently no refbacks.