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1 Introduction 

Sensor networks are defined as a collection of sensors that have their own 
functionality and can be 
environmental [1] and disaster monitoring 
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Integrating sensor networks into the Internet brings many advantages. 
For example, users can monitor or control the state of the sensors remotely 

the field. Some researchers have proposed methods using a 
based web service or HTTP to establish communication between sensors 

Internet. Unfortunately, as we know, HTTP is a best-effort 
service. In some cases this means that if the number of sensors increases the end-

end Quality of Service will decrease. The end-to-end network delay increases, 
as well as the failure rate of data sending caused by HTTP timeouts. In this 
paper, we propose Finite Time Response (FTR) HTTP as a communication 
protocol suitable for integrating sensor networks into the Internet. We have 

yer approach that coordinates between the application layer and 
the physical layer to control not only performance but also energy efficiency. 

response delay measured at the application layer is used as 
the decision factor at the physical layer to control the active and sleep periods. 
We also propose a forced-sleep period as a control mechanism to guarantee 
average performance for all nodes. The experimental results have shown that 
FTR has the ability to maintain better performance, indicated by a lower average 
response time and a lower average timeout experience. Optimization is still 
needed to gain better performance and better energy efficiency while also 

ing the average value of the update time. 
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sensors needs to be monitored or controlled remotely. In these cases, the sensor 
network must report its state or the states of the sensors to the data center or 
server. For this purpose the sensor network needs to be integrated into an 
external network such as the Internet. Sensor networks based on TCP/IP have 
been proposed to accommodate this.  

Sensor networks based on TCP/IP have the advantage of being able to 
communicate directly with an existing infrastructure either of a wired IP 
network or of IP-based wireless technology such as GPRS [1]-[3]. Using 
TCP/IP partially or fully for sensor networks has many advantages over 
interconnecting through a separate IP device. The ubiquity of TCP/IP and the 
Internet is the reason they are commonly used as a basis for networking. 

Many researchers have proposed communication protocols to integrate sensor 
networks into the Internet with HTTP or a web service using REST. Some have 
focused on REST protocols, such as Tiny-REST [3] and Constrained 
Application Protocol (CoAP) [4],[5]. REST architectures allow implementing 
IoT (Internet of Things) and Machine-to-Machine (M2M) applications to be 
developed on top of the web service, which can be shared and reused [5]. The 
states of the sensors become abstract resources identified by Unique Resource 
Identifiers (URIs), represented with arbitrary formats, and can be manipulated 
with HTTP methods such as GET, PUT, POST and DELETE [5]. As a 
consequence REST architecture for sensor networks drastically reduces the 
application development complexity [5].  

The main problem that has to be addressed when integrating wireless sensors 
into the Internet is decreasing performance caused by the increased number of 
nodes. Integration into the Internet or a public network is challenging because 
you have to deal with a network that mostly is not under your own 
administrative control. Also, Internet protocol communication using HTTP 
running on TCP/IP is categorized as best-effort service. This means that all 
nodes compete to send data. In a previous work we have already shown that 
increasing the number of nodes or users sending data to the server (cloud 
server) can decrease the average performance of all users [6].  

In this paper, we propose the Finite Time Response (FTR) protocol to overcome 
this problem. Our approach tries to integrate network sensors into a server via 
Internet communication using HTTP. Our approach also considers energy-
efficiency, which is the biggest concern in sensor network deployment. We will 
compare FTR with conventional methods using REST, such as Tiny-REST [3]. 
We will also compare it with a simple approach using energy efficiency only 
(energy efficiency-aware).  
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We have developed a new communication protocol mechanism that is aware of 
both energy and performance. Our approach is a cross-layer approach because it 
has a mechanism to coordinate between the application layer and the physical 
layer. 

This paper is structured as follows. Section 2 describes some previous work 
related to research about the integration of sensor networks into the Internet. 
Section 3 presents the Finite Time Response (FTR) protocol and a simple 
verification test. Section 4 describes our experimental setup for validation of our 
method. Section 5 describes the simulation results and a discussion of these 
results. Section 6 contains our conclusions.  

2 Related Work 

Research related to the integration of sensor networks into the Internet has been 
done using different approaches [1]-[5]. Some authors have proposed to 
integrate sensor networks into cloud computing [7]-[10]. The purposes for 
deploying sensor networks are various, such as environmental monitoring [1], 
disaster monitoring [2],[11], patient monitoring [9], and supply-chain 
management [9]. Some researches related to sensor networks focus on energy-
efficiency [12],[13]. They propose active and sleep periods at idle state. The 
duration of the active and sleep periods can be adjusted adaptively based on 
external conditions [13]. Some have also considered reliability or traffic 
conditions [14]-[16]. Almost all of them modified the system on the MAC layer 
and the physical layer based on the OSI layer [12],[13]. There is also one cross-
layer approach, which uses coordination between the application, the network 
and the MAC layer [15].  

Transport protocol has been proposed as a real-time communication protocol. 
Transport protocol in IP-based sensor networks is commonly employed using 
the two main protocols in the TCP/IP stack: best-effort UDP and reliable byte-
stream protocol TCP [14]. The main problem of TCP is that it exhibits poor 
performance in wireless environments, both in terms of throughput and energy 
efficiency [14]. Dunkels, et al. have proposed TCP Segment Caching to 
improve TCP performance significantly [14]. UDP can be used for sensor data 
that do not use unicast reliable byte-stream transmission [14]. TCP should be 
used for administrative tasks that require reliability and compatibility with 
existing application protocols, for example HTTP or REST. 

REST has been employed as a communication protocol between wireless sensor 
networks and the Internet [3],[4]. This has some advantages because it applies 
uniform interfaces, self-descriptive data, stateless communication, cache 
components, and code-on-demand constraints on a simple client server 
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architecture [3]. Its architectural style is suitable for distributed network 
applications and emphasizes scalability, generality of interfaces, 
independent/self-organized deployment of components and intermediary 
components [3]. Thomas, et al. have employed Tiny-REST as a simple 
communication protocol between sensor objects and the Internet using the 
HTTP methods GET and POST [3]. Tiny-REST operates at the application 
layer but it can also be applied at the sensor-based on TCP/IP.  

3 The FTR Protocol 

In this section we describe the FTR protocol as a novel protocol for integrating 
sensor networks into the Internet.  

3.1 Basic Foundation 

There are three basic mechanisms for sending data from the sensors to the 
server (data center): push-based, pull-based and hybrid [17]. In this research we 
have focused on a push-based system where the sensors must periodically report 
their state to the server. The sample of usage of this kind of system can be used 
for environment monitoring or disaster monitoring, which need periodical data 
reading and reporting from the sensors [11]. The user needs to receive periodic 
data collections concerning environmental conditions such as air pollution and 
temperature in order to have information about the state of the environment at 
all times. In other cases the user needs periodical information such as the river 
water level to predict or anticipate floods [11].  

Our push-based system with periodical data sending is depicted in Figure 1. We 
define the duty-cycle period (T∆ ) as the interval time for periodically sending 
data from node to server. In practical implementation the duty-cycle period can 
be adjusted depending on the need. If the state of the sensors needs to be 
monitored more precisely a shorter duty-cycle period can be used.  

 
Figure 1  Push-based system with periodic data sending. 
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The communication between the nodes as client and the server is depicted in 

Figure 2. We define the response time (ir∆ ) as the time delay measured from 

the sender starting to send a message to the server (request) until the sender 
receiving a reply (response) from the server. Here, we know that the response 
time consists of the delay from client to server: the processing delay at the 
server and the response delay from the server to the client related to the 
requested message. 

 

Figure 2  Communications from client to server. 

In HTTP communication the delay can vary depending on circumstances such 
as network traffic congestion, server performance, and many more. In some 
cases the client can have a good response time (short response time), in other 
cases the client can have a bad response time (long response time). In some 
cases the client has to wait too long for a response from the server, in which 
case the conversation will be terminated. This is called an HTTP timeout. 
Timeout is defined by the maximum time the client has to wait until he receives 
a response. If the defined period expires, the last conversation will be suspended 
or stopped.  

3.2 Energy-Efficient Method 

In this section we propose a simple method to maintain energy efficiency. We 
propose using an active period and a sleep period. The basis of this method was 
introduced with the S-MAC protocol [12]. The S-MAC protocol proposes a low 
duty cycle (short active period) to decrease power consumption especially 
during the node’s idle state [12]. However, we propose a different mechanism to 
tell each node when to enter the active state or the sleep state.  
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Figure 3   Basic mechanisms for controlling active and sleep period. 

The basic mechanism for the sleep period and the active period is based on the 
length of the current response time, as depicted in Figure 3. The response time 
may vary depending on many things, as mentioned before. The period of 
waiting for data response is defined as active period and the rest as sleep period. 
Based on this approach, we can formulate a simple model to calculate the 
energy efficiency, as follows: 
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E  = Energy efficiency (%) 

at  = Active period (in seconds) 

st  = Sleep period (in seconds) 

T∆  = Duty cycle period / (in seconds) 

From this formulation we can see that a low percentage value means better 
energy efficiency and, conversely, that a high percentage value means worse 
energy efficiency. Of course, 100% is the maximal value and 0% is the minimal 
value. We don’t recommend a value of 0% for the system because this means 
that the nodes do not send any data to the server all of the time. In the next 
section we will discuss what the optimal value is for energy efficiency.  

From a hardware perspective, when the node enters the active state it will use 
this period to read data from the sensor and use radio communication to 



88 Sinung Suakanto, et al. 

transmit and wait for a response. Conversely, in the sleep state the node can 
enter standby mode and turn off radio communication and/or turn off data 
reading from the sensors. During a sleep period we expect the node to have 
reduced power consumption.  

In some cases, an active period based on the waiting period for response can 
create a new problem. During a busy period, the node not receiving a response 
until the next duty cycle will cause an HTTP timeout. This can create a very 
long active period and decrease energy efficiency drastically. To anticipate this 
problem we propose the Finite Time Response (FTR) mechanism, which will be 
discussed in the next section. 

3.3 QoS-Aware Method 

As mentioned in the previous section, our basic energy-efficient method has 
problems dealing with busy periods. To overcome this issue, we propose a 
mechanism to control average performance: the Finite Time Response (FTR) 
method. Basically, FTR means forcing the node to sleep when it detects poor 
performance indicated by a long response time for the last session. To indicate 
that the last session has poor performance, we use a finite parameter defined by 
the maximum response time allowed (MaxTR). Our method introduces a 
mechanism that limits the response time allowed by the system. We can 
formulate this as follows:  
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1

MaxTRrif

MaxTRrif
P

i
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i  (2) 

1iP+  = Next mode at next duty cycle period (i+1) 
It has only 2 values: 0 or 1. 

• 0 indicates that during the next duty cycle 
period the node must enter sleep mode (forced 
sleep). This means that the node isn’t allowed to 
send data for some period of time. 

• 1 indicates that during the next duty cycle 
period the node is allowed to transmit data to 
the server. 

ir∆  = Response time during duty cycle period-i (seconds) 

MaxTR = Parameter of maximum response time allowed 
(seconds) 

The duration of forced sleep is defined as: 

 .FST K T= ∆  (3) 
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FST  = Duration of forced-sleep period (%) 

K  = Constant multiplier to indicate duration of forced sleep 

T∆  = Duration for single duty cycle time (in seconds) 

In the previous mechanism (energy-efficient method) there are only two node 
states: active and sleep. FTR proposes a new state, called forced sleep. Forced 
sleep is a condition similar to the sleep state but it is driven by a decision from 
equation (2). For K=1 it is full sleep during one single duty cycle period, if we 
set K=2 it is full sleep for twice one duty cycle, and so on. Our three states and 
their transitions are depicted in Figure 4. The sleep state is condition after the 
node receives a response from the server. The duration of the sleep period is 
until the next duty cycle period only.  

 
Figure 4   Finite-state model for QoS-aware method. 

 
This method can be described with an algorithm that is implemented at each 
node, as shown in Figure 5.  

 Decision Making Algorithm at Next Duty Cycle 
 

1. 
2. 
3. 
4. 
5. 

procedure decision_next_step (last_response_time) 
if (last_response_time >= maxTr) then 
 force_sleep 
else 
 read_and_send_data 
end if 

Figure 5   Algorithm for next step decision using Finite Time Response. 

Our approach is a cross-layer approach because it uses coordination between the 
application layer and the physical layer at the OSI layer, as shown in Figure 6. 
At the application layer we can measure or retrieve the response time (last 
performance) and make a decision to control the transmission of the next data. 
On the basis of the last performance, the node will decide to send data or not at 
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the next duty cycle. This method is called controlled message passing, which 
means that the node can control message passing at the next duty cycle. Events 
occurring at the application layer will stimulate coordination with the duty cycle 
manager at the physical layer to control active, sleep or forced-sleep state. 
Events occurring at the application layer include data transmission events and 
response receiving events.  

 

Figure 6   Cross-layer approach between application layer and physical layer. 
 
Note that the average response time at each node is defined as follows: 
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mR  = Average response time for node-m (in seconds) 

ir∆  = Actual response time at duty cycle-I (in seconds) 

N  = Number of duty cycle periods reflecting frequency of data 
sending to server 

Furthermore, we may formulate the average energy efficiency at each node as 
follows: 
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E  = Average energy efficiency for node-m (%) 
A

nT  = Duration of active period during duty cycle-n (in seconds) 

S
nT  = Duration of sleep period (including forced sleep) during 

duty cycle-n (in seconds) 

T∆  = Duration for single duty cycle time (in seconds) 

N  = Number of duty cycle periods reflecting frequency of data 
sending to server 

3.4 Verification of System Performance 

Before carrying out our experiment we executed a verification to check how our 
new method performs. This verification will be described briefly in this section. 
We describe the system’s performance at a single node for several duty cycles. 
For verification we focused on how our proposed method succeeds in resolving 
the energy-efficiency problem. For traffic conditions we distinguished two 
classes of traffic: 

1. Busy traffic: Indicated by a long response time but not resulting in HTTP 
timeout 

2. Very-busy traffic: Indicated by a long response time and even leading to 
HTTP timeout.  

First, we present how the system works under busy traffic conditions for six 
duty cycle samples, as depicted in Figure 7. We compare three scenarios: (i) 
Energy-Efficient Only Method, (iia) FTR with K=1, and (iib) FTR with K=2.  

From Figure 7, we can summarize the active and sleep periods (including forced 
sleep) as depicted at Figure 8. We can also calculate the average energy 
efficiency, as summarized in Table 1.  

Table 1 shows that our proposed method can maintain energy efficiency better 
than the Energy Efficient Method Only. We believe that increasing parameter K 
results in better energy efficiency. Therefore, if we want good energy efficiency 
we can set a very high value for K. However, the system must actually make a 
trade-off with other aspects, such as average response time and average update 
time. 

Now, we define UT∆ as the average update time. This is reflected in the speed 

of data updating from the sensor to the server. If the average update time is a 
low value it means that the resolution for data capturing is very high and has a 
very high precision. If it is set at a high value it means that the data resolution 
has a low rate and doesn’t have a high precision. Actually, users can set the 
tolerance of the average update time based on their own needs. 
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Figure 7  Comparing system performance for busy traffic conditions in three 
different scenarios: (i) Energy-Efficient Method Only, (iia) FTR with K=1, and 
(iib) FTR with K=2.  
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Figure 8  Summaries of active and sleep periods for busy traffic conditions. 

Table 1  Result of comparing three scenarios for busy traffic conditions. 

No Case Average Energy 
Efficiency (%) 

(i) Energy-Efficient Only Method 77,1 
(iia) FTR with K=1 64,6 
(iib) FTR with K=2 52,1 

From Figure 1 we can calculate the average update time as follows: 

 For K=1:   T
TTTTT

TU ∆=∆+∆+∆+∆+∆=∆ 2,1
5

.2
 

 For K=2:  T
TTTT

TU ∆=∆+∆+∆+∆=∆ 5,1
4

.3
 

 For Energy-Efficient Method Only: TTU ∆=∆  

Furthermore, we can compare the three scenarios in terms of average energy 
efficiency and average update time, as summarized in Table 2. We can see from 
Table 2 that when is K increased, the average energy efficiency improves. But 
we can also see that if K is increased, the average update time also increases. 
However, sometimes a higher value of the average update time is not acceptable 
for the user. In such cases we must carefully select an appropriate value for 
parameter K in order to get the optimal value between average energy efficiency 
and average update time.  

Table 2   Result of comparing three scenarios with average energy efficiency 
and average update time for busy traffic conditions. 

No Case Average Energy 
Efficiency (%) 

Average Update 
Time 

(i) Energy-Efficient Method Only  77,1 T∆  
(iia) FTR with K=1 64,6 T∆2,1  

(iib) FTR with K=2 52,1 T∆5,1  
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Figure 9 Comparing how the system works at very busy traffic conditions in 
three different scenarios: (i) Energy-Efficient Method Only, (iia) FTR with K=1, 
and (iib) FTR with K=2.  
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We can also see how the system performs under very busy traffic conditions for 
six duty cycle samples, as depicted in Figure 9. Note again that very busy traffic 
is indicated by a long response time even leading to HTTP timeout. Again, we 
compare the three scenarios: (i) Energy-Efficient Method Only, (iia) FTR with 
K=1, and (iib) FTR with K=2.  

From Figure 9 we can compare the active and sleep periods for the three 
scenarios, as shown in Figure 10. From Figure 10 we can calculate the average 
energy efficiency and the average update time for all three scenarios, as 
summarized in Table 3.  

 
Figure 10 Summaries of active and sleep periods for very busy traffic 
conditions. 

Table 3   Result of comparing three scenarios with average energy efficiency 
and average update time for very busy traffic conditions 

No Case 
Average Energy 
Efficiency (%) 

Average Update 
Time 

(i) Energy-Efficient Method Only 93,8 T∆  
(iia) FTR with K=1 45,8 T∆.5,1  

(iib) FTR with K=2 31,3 T∆.3  

From Table 3 we can see that our proposed method maintains the energy 
efficiency better than Energy-Efficient Method Only. Increasing K reduces the 
energy efficiency but also increases the average update time.  

To validate our method we have conducted an experiment to get real 
measurement results from the network, which will be treated in the next section. 

4 Experimental Setup 

In this section we report the experiment we have conducted in order to validate 
our approach. The ideal network topology for this kind of research is depicted in 
Figure 11. In practice, it’s very difficult to set up and measure many nodes 
because we are limited by the number of nodes we actually have. Therefore, we 
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have used a semi-real situation by combining simulation and experiment. We 
have simulated a number of nodes with an emulator. We created an application 
that could emulate node capabilities with our proposed method. It connected 
directly to the server via the Internet (public network) and emulated active, 
sleep and forced-sleep phases.  

 
Figure 11  Ideal topology for experimental setup. 

First, we set the number of emulated nodes to be used. All of them were 
designed to connect to the server via the Internet simultaneously for several 
times. The duration of measurement was 1800 seconds for each measurement in 
each scenario. The node emulator generated a log that recorded performance, 
including response time, HTTP timeout, number of active-sleep-forced sleep 
periods, etc. From this log we could retrieve information about average 
response time, average energy efficiency, average timeout experience and also 
average update time. We have carried out this simulation with different numbers 
of nodes (10 to 150). 

Table 4  Experimental setup parameters for REST and EEM scenarios. 

Parameter Value 
Transmission duty cycle  Periodical with T∆ = 5 seconds 
HTTP timeout Same with T∆ = 5 seconds 
Time observation 1800 seconds (30 minutes) 

Table 5   Experimental setup parameters for FTR scenario. 

Parameter Value 
Transmission duty cycle  Periodical with T∆ = 5 seconds 
HTTP timeout Same with T∆ = 5 seconds 
Time observation 1800 second (30 minutes) 
MaxTR 2.5 seconds 
K 3 
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With this simulation we compared three methods: REST
(REST), Energy-Efficient Method O
(FTR). Note that we also employed a REST
method GET for both EEM and FTR. Howe
Efficiency Method while FTR used both the Energy Efficiency Method and the 
performance-aware method. The experimental setup parameters for REST, 
EEM and FTR are given in 

5 Simulation Results

In this section we summarize and discuss the simulation resul
shows the impact of the number of nodes on the average response time. The 
graphic shows that increasing the number of nodes was followed 
of the average response time. For a large number of nodes, our proposed 
method (FTR) had a better performance than the conventional REST
application. For example, when the number of nodes was higher than 100, FTR 
had a better average response time than REST/EEM. 

Figure 12  Impact of increasing number of nodes on average response time

The increasing average response time was caused by the characteristic of HTTP
as a best-effort service. The higher number of nodes concurrently sending data 
to the same destination may create more traffic. More traffic can create 
congestion in the network, which can actually be handled by TCP flow control. 
But TCP flow control has a mechanism
whenever it detects congestion indicated by packet loss. So, when the number of 
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With this simulation we compared three methods: REST-based application only 
Efficient Method Only (EEM), and Finite Time Response 

(FTR). Note that we also employed a REST-based application using the HTTP 
GET for both EEM and FTR. However, EEM only used the Energy 

Efficiency Method while FTR used both the Energy Efficiency Method and the 
aware method. The experimental setup parameters for REST, 

EEM and FTR are given in Table 4 and Table 5. 

Simulation Results 

In this section we summarize and discuss the simulation results. Figure 12
shows the impact of the number of nodes on the average response time. The 
graphic shows that increasing the number of nodes was followed by an increase 
of the average response time. For a large number of nodes, our proposed 
method (FTR) had a better performance than the conventional REST-based 
application. For example, when the number of nodes was higher than 100, FTR 

esponse time than REST/EEM.  
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nodes becomes higher it also increases the average response time. Our proposed 
method (FTR) has a better performance because flow control is
handled at TCP level but also at the application layer. We propose a system that 
is designed to decide to send a message or pend it at the application layer. The 
decision is simple because it only use
information about traffic condition
the conventional REST-only method, especially for larger numbers of nodes.

The average response time is actually related to the average timeout experience 
in most cases. We know that when the
HTTP timeout, because we have set HTTP timeout at a certain value (for this 
experiment: 5 seconds). Figure 
for the conventional REST
increased. However, our proposed method (FTR) reduced 
experience to a lower value. Both 
maintained better average performance
better performance parameters 
timeout experience. 

Figure 13  Impact of increasing number of nodes on average timeout experience

Figure 14 shows the impact of the number of nodes on energy efficiency. The 
graphic shows that EEM and FTR had better energy efficiency management 
than the REST-based application. EEM has a mechanism to regulate the active 
and sleep states, so it performed better
was lower. However, a large number of nodes 
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nodes becomes higher it also increases the average response time. Our proposed 
method (FTR) has a better performance because flow control is not only 
handled at TCP level but also at the application layer. We propose a system that 
is designed to decide to send a message or pend it at the application layer. The 

simple because it only uses the last response time as brief 
about traffic conditions. FTR maintained better performance than 

only method, especially for larger numbers of nodes. 

The average response time is actually related to the average timeout experience 
in most cases. We know that when the response time is very long it can cause an 
HTTP timeout, because we have set HTTP timeout at a certain value (for this 

Figure 13 shows that the average timeout experience 
for the conventional REST-only method increased when the number of nodes 

wever, our proposed method (FTR) reduced the average timeout 
experience to a lower value. Both Figure 12 and Figure 13 show that FTR 

average performance. Our method contributed to maintaining 
performance parameters for both average response time and average 

Impact of increasing number of nodes on average timeout experience. 
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deteriorate. This occurs 
average response time also increase
increases the duration of the active period, which results in a decrease of energy 
efficiency. 

FTR better maintains energy efficiency because it 
states, but it is more balanced 
Forced sleep occurs whenever a long duration of active sleep 
during the previous duty cycle. Therefore, our proposed method not onl
maintains better performance but also 

The conventional REST method always has a value of 100% regardless of the 
number of nodes. This happens because of the energy
was proposed in Eq. (1). The REST
efficiency mechanism because it doesn’t have any coordination 
physical layer and so it is 
always in the active state, regardless 

Figure 14   Impact of increasing number of nodes on average energy efficiency

Even though FTR offers a better solution in view of performance and energy 
efficiency, it has a trade-off with another aspect: the average update time to the 
server, as depicted in Figure 
EEM) have a consistent update time
to the duty cycle ( T∆ ). From the figure, we can see that 
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 because when the number of nodes increases, the 
average response time also increases. An increase in the average response time 
increases the duration of the active period, which results in a decrease of energy 

FTR better maintains energy efficiency because it not only has active and sleep 
balanced through the introduction of a forced sleep state

Forced sleep occurs whenever a long duration of active sleep has occurred 
during the previous duty cycle. Therefore, our proposed method not onl

performance but also better energy efficiency. 

The conventional REST method always has a value of 100% regardless of the 
number of nodes. This happens because of the energy-efficiency calculation that 

(1). The REST-based application has the worst energy
efficiency mechanism because it doesn’t have any coordination with the 
physical layer and so it is always defined as active. Based on our equation, it 

, regardless if the session is active or idle. 

Impact of increasing number of nodes on average energy efficiency. 

Even though FTR offers a better solution in view of performance and energy 
off with another aspect: the average update time to the 

Figure 15. The conventional REST services (REST and 
EEM) have a consistent update time, i.e. a fixed period that is always identical 

). From the figure, we can see that the update time for 
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the average response time 

increases the duration of the active period, which results in a decrease of energy 

not only has active and sleep 
state. 
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ulation that 
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REST and EEM always ha
( T∆ ). FTR, on the other hand
number of nodes increases. For example, if the number of nod
an update time of twice the 

Figure 15   Impact of increasing number of nodes on average update time

A higher value for the average update time means that the resolution 
sent from the nodes to the 
captures data from river water level sensors once every minute, it 
once every 2 minutes. Even though the resolution 
user preference, we must still be aware how much it 
previously set value. We can find the optimum value between better 
performance and better energy efficiency, but still have to consider 
value for the update time as well. In other words,
better performance and energy efficiency, we may have to sacrifice 
resolution in terms of a higher

6 Conclusions 

In this paper we have proposed a new method for communication between 
sensor networks into server via
of HTTP and a cross-layer approach to coordinate with the physical layer. At 
the physical layer the active 
proposed a forced-sleep 
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REST and EEM always had value 1, meaning that it is equal to 1 x duty cycle 
on the other hand, can increase the update time, especially if the 

number of nodes increases. For example, if the number of nodes is 150, it has 
the duty cycle (2 x T∆ ).  

Impact of increasing number of nodes on average update time. 

A higher value for the average update time means that the resolution of the data 
the server becomes lower. For example, if the system 

captures data from river water level sensors once every minute, it can change to 
once every 2 minutes. Even though the resolution can be set based on need 

rence, we must still be aware how much it deviates from the 
previously set value. We can find the optimum value between better 
performance and better energy efficiency, but still have to consider a maximum 

the update time as well. In other words, if we need a system with 
better performance and energy efficiency, we may have to sacrifice data 

in terms of a higher average update time.  

In this paper we have proposed a new method for communication between 
erver via the Internet. We have proposed a modification 
layer approach to coordinate with the physical layer. At 

the physical layer the active state or sleep state will be set. We have also 
sleep state that is triggered by the last performance 

1 x duty cycle   
the 

es is 150, it has 

 

of the data 
. For example, if the system 

change to 
 or 

es from the 
previously set value. We can find the optimum value between better 

maximum 
if we need a system with 

data 

In this paper we have proposed a new method for communication between 
. We have proposed a modification 

layer approach to coordinate with the physical layer. At 
We have also 

that is triggered by the last performance 
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measurement at the application layer. If the previous performance response time 
has a value larger than a certain acceptance range, then the node enters forced 
sleep mode during the next duty cycle. Our proposed method is called Finite 
Time Response (FTR). 

We use a push-based system for network system updating. A push-based system 
is suitable for capturing data periodically, for example for environment or 
disaster monitoring. However, when the number of nodes becomes larger there 
could be new problems in terms of performance degradation, such as increased 
delay or response time, increased timeout messages and more power 
consumption. FTR is proposed as a communication protocol that can maintain 
better performance and better energy efficiency.  

We have compared FTR with a conventional REST-based application and a 
method using energy-efficiency control only. The results of our experiments 
have shown that FTR maintains better performance, indicated by a lower 
average response time and a lower average timeout experience. But FTR has to 
be traded off with the average update time. Even though FTR has successfully 
maintained performance with a better response time, the average update time 
also increased. Optimization is still needed to gain better performance, better 
energy efficiency while also considering a maximum value for the average 
update time. 
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