

82

J. ICT Res. Appl., Vol. 7, No. 1, 2013, 82

Received February 26th, 2013, Revised August 5
Copyright © 2013 Published by ITB Journal Publisher, ISSN: 2337

FTR: Performance
Communication Protocol for Integrating Sensor Networks

Sinung Suakanto1, Suhono H

1School of Electrical Engineering and Informatics, Institut Teknologi Bandung
Jalan Ganesa 10, Bandung 40132, Indonesia

2Information Technology Research Group, S
Informatics, Institut Teknologi Bandung

3Industrial and Financial Mathematics Research Group,
Faculty of Mathematics & Natural Sciences, Institut Teknologi Bandung

Jalan Ganesa 10, Bandung 40132, Indonesia
Email: mr.sinung.suakanto@gmail.com

Abstract. Integrating sen
For example, users can monitor or control the state of the sensors remotely
without visiting the field. Some researchers have proposed methods using a
REST-based web service or HTTP to
and server via the Internet
service. In some cases this means that if the number of sensors
to-end Quality of Service will decrease. The end
as well as the failure rate of data sending caused by HTTP timeout
paper, we propose Finite Time Response (FTR) HTTP as a communication
protocol suitable for integrating sensor networks into the
defined a cross-layer approach that coordinates between the application layer and
the physical layer to control not only performance but also energy efficiency.
The HTTP request-response delay
the decision factor at the physical
We also propose a forced
average performance for all nodes. The experimental results
FTR has the ability to maintain better performance, indicat
response time and a lower average timeout experience. Optimization is still
needed to gain better performance and better energy efficiency
considering the average value of the

Keywords: communication protocol
sensor network.

1 Introduction

Sensor networks are defined as a collection of sensors that have their own
functionality and can be
environmental [1] and disaster monitoring

J. ICT Res. Appl., Vol. 7, No. 1, 2013, 82-102

Revised August 5th, 2013, Accepted for publication August 29th, 2013.
Copyright © 2013 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2013.7.1.5

FTR: Performance-Aware and Energy-Efficient
Communication Protocol for Integrating Sensor Networks

into the Internet

, Suhono H. Supangkat2, Suhardi2 & Roberd Saragih3

chool of Electrical Engineering and Informatics, Institut Teknologi Bandung,
Jalan Ganesa 10, Bandung 40132, Indonesia

Information Technology Research Group, School of Electrical Engineering and
Informatics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Industrial and Financial Mathematics Research Group,
aculty of Mathematics & Natural Sciences, Institut Teknologi Bandung,

Jalan Ganesa 10, Bandung 40132, Indonesia
Email: mr.sinung.suakanto@gmail.com

Integrating sensor networks into the Internet brings many advantages.
For example, users can monitor or control the state of the sensors remotely

the field. Some researchers have proposed methods using a
based web service or HTTP to establish communication between sensors

Internet. Unfortunately, as we know, HTTP is a best-effort
service. In some cases this means that if the number of sensors increases the end-

end Quality of Service will decrease. The end-to-end network delay increases,
as well as the failure rate of data sending caused by HTTP timeouts. In this
paper, we propose Finite Time Response (FTR) HTTP as a communication
protocol suitable for integrating sensor networks into the Internet. We have

yer approach that coordinates between the application layer and
the physical layer to control not only performance but also energy efficiency.

response delay measured at the application layer is used as
the decision factor at the physical layer to control the active and sleep periods.
We also propose a forced-sleep period as a control mechanism to guarantee
average performance for all nodes. The experimental results have shown that
FTR has the ability to maintain better performance, indicated by a lower average
response time and a lower average timeout experience. Optimization is still
needed to gain better performance and better energy efficiency while also

ing the average value of the update time.

communication protocol; energy efficiency; internet; quality of service

Sensor networks are defined as a collection of sensors that have their own
be coordinated to perform certain tasks, such as

disaster monitoring [2]. For certain tasks the state of the

14/itbj.ict.res.appl.2013.7.1.5

Communication Protocol for Integrating Sensor Networks

andung 40132, Indonesia

ervice;

Sensor networks are defined as a collection of sensors that have their own
such as

of the

FTR: Communication Protocol for Integrating Network Sensor 83

sensors needs to be monitored or controlled remotely. In these cases, the sensor
network must report its state or the states of the sensors to the data center or
server. For this purpose the sensor network needs to be integrated into an
external network such as the Internet. Sensor networks based on TCP/IP have
been proposed to accommodate this.

Sensor networks based on TCP/IP have the advantage of being able to
communicate directly with an existing infrastructure either of a wired IP
network or of IP-based wireless technology such as GPRS [1]-[3]. Using
TCP/IP partially or fully for sensor networks has many advantages over
interconnecting through a separate IP device. The ubiquity of TCP/IP and the
Internet is the reason they are commonly used as a basis for networking.

Many researchers have proposed communication protocols to integrate sensor
networks into the Internet with HTTP or a web service using REST. Some have
focused on REST protocols, such as Tiny-REST [3] and Constrained
Application Protocol (CoAP) [4],[5]. REST architectures allow implementing
IoT (Internet of Things) and Machine-to-Machine (M2M) applications to be
developed on top of the web service, which can be shared and reused [5]. The
states of the sensors become abstract resources identified by Unique Resource
Identifiers (URIs), represented with arbitrary formats, and can be manipulated
with HTTP methods such as GET, PUT, POST and DELETE [5]. As a
consequence REST architecture for sensor networks drastically reduces the
application development complexity [5].

The main problem that has to be addressed when integrating wireless sensors
into the Internet is decreasing performance caused by the increased number of
nodes. Integration into the Internet or a public network is challenging because
you have to deal with a network that mostly is not under your own
administrative control. Also, Internet protocol communication using HTTP
running on TCP/IP is categorized as best-effort service. This means that all
nodes compete to send data. In a previous work we have already shown that
increasing the number of nodes or users sending data to the server (cloud
server) can decrease the average performance of all users [6].

In this paper, we propose the Finite Time Response (FTR) protocol to overcome
this problem. Our approach tries to integrate network sensors into a server via
Internet communication using HTTP. Our approach also considers energy-
efficiency, which is the biggest concern in sensor network deployment. We will
compare FTR with conventional methods using REST, such as Tiny-REST [3].
We will also compare it with a simple approach using energy efficiency only
(energy efficiency-aware).

84 Sinung Suakanto, et al.

We have developed a new communication protocol mechanism that is aware of
both energy and performance. Our approach is a cross-layer approach because it
has a mechanism to coordinate between the application layer and the physical
layer.

This paper is structured as follows. Section 2 describes some previous work
related to research about the integration of sensor networks into the Internet.
Section 3 presents the Finite Time Response (FTR) protocol and a simple
verification test. Section 4 describes our experimental setup for validation of our
method. Section 5 describes the simulation results and a discussion of these
results. Section 6 contains our conclusions.

2 Related Work

Research related to the integration of sensor networks into the Internet has been
done using different approaches [1]-[5]. Some authors have proposed to
integrate sensor networks into cloud computing [7]-[10]. The purposes for
deploying sensor networks are various, such as environmental monitoring [1],
disaster monitoring [2],[11], patient monitoring [9], and supply-chain
management [9]. Some researches related to sensor networks focus on energy-
efficiency [12],[13]. They propose active and sleep periods at idle state. The
duration of the active and sleep periods can be adjusted adaptively based on
external conditions [13]. Some have also considered reliability or traffic
conditions [14]-[16]. Almost all of them modified the system on the MAC layer
and the physical layer based on the OSI layer [12],[13]. There is also one cross-
layer approach, which uses coordination between the application, the network
and the MAC layer [15].

Transport protocol has been proposed as a real-time communication protocol.
Transport protocol in IP-based sensor networks is commonly employed using
the two main protocols in the TCP/IP stack: best-effort UDP and reliable byte-
stream protocol TCP [14]. The main problem of TCP is that it exhibits poor
performance in wireless environments, both in terms of throughput and energy
efficiency [14]. Dunkels, et al. have proposed TCP Segment Caching to
improve TCP performance significantly [14]. UDP can be used for sensor data
that do not use unicast reliable byte-stream transmission [14]. TCP should be
used for administrative tasks that require reliability and compatibility with
existing application protocols, for example HTTP or REST.

REST has been employed as a communication protocol between wireless sensor
networks and the Internet [3],[4]. This has some advantages because it applies
uniform interfaces, self-descriptive data, stateless communication, cache
components, and code-on-demand constraints on a simple client server

FTR: Communication Protocol for Integrating Network Sensor 85

architecture [3]. Its architectural style is suitable for distributed network
applications and emphasizes scalability, generality of interfaces,
independent/self-organized deployment of components and intermediary
components [3]. Thomas, et al. have employed Tiny-REST as a simple
communication protocol between sensor objects and the Internet using the
HTTP methods GET and POST [3]. Tiny-REST operates at the application
layer but it can also be applied at the sensor-based on TCP/IP.

3 The FTR Protocol

In this section we describe the FTR protocol as a novel protocol for integrating
sensor networks into the Internet.

3.1 Basic Foundation

There are three basic mechanisms for sending data from the sensors to the
server (data center): push-based, pull-based and hybrid [17]. In this research we
have focused on a push-based system where the sensors must periodically report
their state to the server. The sample of usage of this kind of system can be used
for environment monitoring or disaster monitoring, which need periodical data
reading and reporting from the sensors [11]. The user needs to receive periodic
data collections concerning environmental conditions such as air pollution and
temperature in order to have information about the state of the environment at
all times. In other cases the user needs periodical information such as the river
water level to predict or anticipate floods [11].

Our push-based system with periodical data sending is depicted in Figure 1. We
define the duty-cycle period (T∆) as the interval time for periodically sending
data from node to server. In practical implementation the duty-cycle period can
be adjusted depending on the need. If the state of the sensors needs to be
monitored more precisely a shorter duty-cycle period can be used.

Figure 1 Push-based system with periodic data sending.

86 Sinung Suakanto, et al.

The communication between the nodes as client and the server is depicted in

Figure 2. We define the response time (ir∆) as the time delay measured from

the sender starting to send a message to the server (request) until the sender
receiving a reply (response) from the server. Here, we know that the response
time consists of the delay from client to server: the processing delay at the
server and the response delay from the server to the client related to the
requested message.

Figure 2 Communications from client to server.

In HTTP communication the delay can vary depending on circumstances such
as network traffic congestion, server performance, and many more. In some
cases the client can have a good response time (short response time), in other
cases the client can have a bad response time (long response time). In some
cases the client has to wait too long for a response from the server, in which
case the conversation will be terminated. This is called an HTTP timeout.
Timeout is defined by the maximum time the client has to wait until he receives
a response. If the defined period expires, the last conversation will be suspended
or stopped.

3.2 Energy-Efficient Method

In this section we propose a simple method to maintain energy efficiency. We
propose using an active period and a sleep period. The basis of this method was
introduced with the S-MAC protocol [12]. The S-MAC protocol proposes a low
duty cycle (short active period) to decrease power consumption especially
during the node’s idle state [12]. However, we propose a different mechanism to
tell each node when to enter the active state or the sleep state.

FTR: Communication Protocol for Integrating Network Sensor 87

Figure 3 Basic mechanisms for controlling active and sleep period.

The basic mechanism for the sleep period and the active period is based on the
length of the current response time, as depicted in Figure 3. The response time
may vary depending on many things, as mentioned before. The period of
waiting for data response is defined as active period and the rest as sleep period.
Based on this approach, we can formulate a simple model to calculate the
energy efficiency, as follows:

 T

t

tt

t
E

sa

a

∆
=

+
= (1)

E = Energy efficiency (%)

at = Active period (in seconds)

st = Sleep period (in seconds)

T∆ = Duty cycle period / (in seconds)

From this formulation we can see that a low percentage value means better
energy efficiency and, conversely, that a high percentage value means worse
energy efficiency. Of course, 100% is the maximal value and 0% is the minimal
value. We don’t recommend a value of 0% for the system because this means
that the nodes do not send any data to the server all of the time. In the next
section we will discuss what the optimal value is for energy efficiency.

From a hardware perspective, when the node enters the active state it will use
this period to read data from the sensor and use radio communication to

88 Sinung Suakanto, et al.

transmit and wait for a response. Conversely, in the sleep state the node can
enter standby mode and turn off radio communication and/or turn off data
reading from the sensors. During a sleep period we expect the node to have
reduced power consumption.

In some cases, an active period based on the waiting period for response can
create a new problem. During a busy period, the node not receiving a response
until the next duty cycle will cause an HTTP timeout. This can create a very
long active period and decrease energy efficiency drastically. To anticipate this
problem we propose the Finite Time Response (FTR) mechanism, which will be
discussed in the next section.

3.3 QoS-Aware Method

As mentioned in the previous section, our basic energy-efficient method has
problems dealing with busy periods. To overcome this issue, we propose a
mechanism to control average performance: the Finite Time Response (FTR)
method. Basically, FTR means forcing the node to sleep when it detects poor
performance indicated by a long response time for the last session. To indicate
that the last session has poor performance, we use a finite parameter defined by
the maximum response time allowed (MaxTR). Our method introduces a
mechanism that limits the response time allowed by the system. We can
formulate this as follows:

≥∆
<∆

=+
)(0

)(1
1

MaxTRrif

MaxTRrif
P

i

i
i (2)

1iP+ = Next mode at next duty cycle period (i+1)
It has only 2 values: 0 or 1.

• 0 indicates that during the next duty cycle
period the node must enter sleep mode (forced
sleep). This means that the node isn’t allowed to
send data for some period of time.

• 1 indicates that during the next duty cycle
period the node is allowed to transmit data to
the server.

ir∆ = Response time during duty cycle period-i (seconds)

MaxTR = Parameter of maximum response time allowed
(seconds)

The duration of forced sleep is defined as:

 .FST K T= ∆ (3)

FTR: Communication Protocol for Integrating Network Sensor 89

FST = Duration of forced-sleep period (%)

K = Constant multiplier to indicate duration of forced sleep

T∆ = Duration for single duty cycle time (in seconds)

In the previous mechanism (energy-efficient method) there are only two node
states: active and sleep. FTR proposes a new state, called forced sleep. Forced
sleep is a condition similar to the sleep state but it is driven by a decision from
equation (2). For K=1 it is full sleep during one single duty cycle period, if we
set K=2 it is full sleep for twice one duty cycle, and so on. Our three states and
their transitions are depicted in Figure 4. The sleep state is condition after the
node receives a response from the server. The duration of the sleep period is
until the next duty cycle period only.

Figure 4 Finite-state model for QoS-aware method.

This method can be described with an algorithm that is implemented at each
node, as shown in Figure 5.

 Decision Making Algorithm at Next Duty Cycle

1.
2.
3.
4.
5.

procedure decision_next_step (last_response_time)
if (last_response_time >= maxTr) then
 force_sleep
else
 read_and_send_data
end if

Figure 5 Algorithm for next step decision using Finite Time Response.

Our approach is a cross-layer approach because it uses coordination between the
application layer and the physical layer at the OSI layer, as shown in Figure 6.
At the application layer we can measure or retrieve the response time (last
performance) and make a decision to control the transmission of the next data.
On the basis of the last performance, the node will decide to send data or not at

90 Sinung Suakanto, et al.

the next duty cycle. This method is called controlled message passing, which
means that the node can control message passing at the next duty cycle. Events
occurring at the application layer will stimulate coordination with the duty cycle
manager at the physical layer to control active, sleep or forced-sleep state.
Events occurring at the application layer include data transmission events and
response receiving events.

Figure 6 Cross-layer approach between application layer and physical layer.

Note that the average response time at each node is defined as follows:

 N

r
R

N

i
i

m

∑
=

∆
= 1 (4)

mR = Average response time for node-m (in seconds)

ir∆ = Actual response time at duty cycle-I (in seconds)

N = Number of duty cycle periods reflecting frequency of data
sending to server

Furthermore, we may formulate the average energy efficiency at each node as
follows:

1 1

AN AN
n n

A S
n n n n

m

T T
T T T

E
N N

= =+ ∆= =
∑ ∑

 (5)

FTR: Communication Protocol for Integrating Network Sensor 91

E = Average energy efficiency for node-m (%)
A

nT = Duration of active period during duty cycle-n (in seconds)

S
nT = Duration of sleep period (including forced sleep) during

duty cycle-n (in seconds)

T∆ = Duration for single duty cycle time (in seconds)

N = Number of duty cycle periods reflecting frequency of data
sending to server

3.4 Verification of System Performance

Before carrying out our experiment we executed a verification to check how our
new method performs. This verification will be described briefly in this section.
We describe the system’s performance at a single node for several duty cycles.
For verification we focused on how our proposed method succeeds in resolving
the energy-efficiency problem. For traffic conditions we distinguished two
classes of traffic:

1. Busy traffic: Indicated by a long response time but not resulting in HTTP
timeout

2. Very-busy traffic: Indicated by a long response time and even leading to
HTTP timeout.

First, we present how the system works under busy traffic conditions for six
duty cycle samples, as depicted in Figure 7. We compare three scenarios: (i)
Energy-Efficient Only Method, (iia) FTR with K=1, and (iib) FTR with K=2.

From Figure 7, we can summarize the active and sleep periods (including forced
sleep) as depicted at Figure 8. We can also calculate the average energy
efficiency, as summarized in Table 1.

Table 1 shows that our proposed method can maintain energy efficiency better
than the Energy Efficient Method Only. We believe that increasing parameter K
results in better energy efficiency. Therefore, if we want good energy efficiency
we can set a very high value for K. However, the system must actually make a
trade-off with other aspects, such as average response time and average update
time.

Now, we define UT∆ as the average update time. This is reflected in the speed

of data updating from the sensor to the server. If the average update time is a
low value it means that the resolution for data capturing is very high and has a
very high precision. If it is set at a high value it means that the data resolution
has a low rate and doesn’t have a high precision. Actually, users can set the
tolerance of the average update time based on their own needs.

92 Sinung Suakanto, et al.

Figure 7 Comparing system performance for busy traffic conditions in three
different scenarios: (i) Energy-Efficient Method Only, (iia) FTR with K=1, and
(iib) FTR with K=2.

FTR: Communication Protocol for Integrating Network Sensor 93

Figure 8 Summaries of active and sleep periods for busy traffic conditions.

Table 1 Result of comparing three scenarios for busy traffic conditions.

No Case Average Energy
Efficiency (%)

(i) Energy-Efficient Only Method 77,1
(iia) FTR with K=1 64,6
(iib) FTR with K=2 52,1

From Figure 1 we can calculate the average update time as follows:

 For K=1: T
TTTTT

TU ∆=∆+∆+∆+∆+∆=∆ 2,1
5

.2

 For K=2: T
TTTT

TU ∆=∆+∆+∆+∆=∆ 5,1
4

.3

 For Energy-Efficient Method Only: TTU ∆=∆

Furthermore, we can compare the three scenarios in terms of average energy
efficiency and average update time, as summarized in Table 2. We can see from
Table 2 that when is K increased, the average energy efficiency improves. But
we can also see that if K is increased, the average update time also increases.
However, sometimes a higher value of the average update time is not acceptable
for the user. In such cases we must carefully select an appropriate value for
parameter K in order to get the optimal value between average energy efficiency
and average update time.

Table 2 Result of comparing three scenarios with average energy efficiency
and average update time for busy traffic conditions.

No Case Average Energy
Efficiency (%)

Average Update
Time

(i) Energy-Efficient Method Only 77,1 T∆
(iia) FTR with K=1 64,6 T∆2,1

(iib) FTR with K=2 52,1 T∆5,1

94 Sinung Suakanto, et al.

Figure 9 Comparing how the system works at very busy traffic conditions in
three different scenarios: (i) Energy-Efficient Method Only, (iia) FTR with K=1,
and (iib) FTR with K=2.

FTR: Communication Protocol for Integrating Network Sensor 95

We can also see how the system performs under very busy traffic conditions for
six duty cycle samples, as depicted in Figure 9. Note again that very busy traffic
is indicated by a long response time even leading to HTTP timeout. Again, we
compare the three scenarios: (i) Energy-Efficient Method Only, (iia) FTR with
K=1, and (iib) FTR with K=2.

From Figure 9 we can compare the active and sleep periods for the three
scenarios, as shown in Figure 10. From Figure 10 we can calculate the average
energy efficiency and the average update time for all three scenarios, as
summarized in Table 3.

Figure 10 Summaries of active and sleep periods for very busy traffic
conditions.

Table 3 Result of comparing three scenarios with average energy efficiency
and average update time for very busy traffic conditions

No Case
Average Energy
Efficiency (%)

Average Update
Time

(i) Energy-Efficient Method Only 93,8 T∆
(iia) FTR with K=1 45,8 T∆.5,1

(iib) FTR with K=2 31,3 T∆.3

From Table 3 we can see that our proposed method maintains the energy
efficiency better than Energy-Efficient Method Only. Increasing K reduces the
energy efficiency but also increases the average update time.

To validate our method we have conducted an experiment to get real
measurement results from the network, which will be treated in the next section.

4 Experimental Setup

In this section we report the experiment we have conducted in order to validate
our approach. The ideal network topology for this kind of research is depicted in
Figure 11. In practice, it’s very difficult to set up and measure many nodes
because we are limited by the number of nodes we actually have. Therefore, we

96 Sinung Suakanto, et al.

have used a semi-real situation by combining simulation and experiment. We
have simulated a number of nodes with an emulator. We created an application
that could emulate node capabilities with our proposed method. It connected
directly to the server via the Internet (public network) and emulated active,
sleep and forced-sleep phases.

Figure 11 Ideal topology for experimental setup.

First, we set the number of emulated nodes to be used. All of them were
designed to connect to the server via the Internet simultaneously for several
times. The duration of measurement was 1800 seconds for each measurement in
each scenario. The node emulator generated a log that recorded performance,
including response time, HTTP timeout, number of active-sleep-forced sleep
periods, etc. From this log we could retrieve information about average
response time, average energy efficiency, average timeout experience and also
average update time. We have carried out this simulation with different numbers
of nodes (10 to 150).

Table 4 Experimental setup parameters for REST and EEM scenarios.

Parameter Value
Transmission duty cycle Periodical with T∆ = 5 seconds
HTTP timeout Same with T∆ = 5 seconds
Time observation 1800 seconds (30 minutes)

Table 5 Experimental setup parameters for FTR scenario.

Parameter Value
Transmission duty cycle Periodical with T∆ = 5 seconds
HTTP timeout Same with T∆ = 5 seconds
Time observation 1800 second (30 minutes)
MaxTR 2.5 seconds
K 3

FTR: Communication Protocol for Integrating Network Sensor

With this simulation we compared three methods: REST
(REST), Energy-Efficient Method O
(FTR). Note that we also employed a REST
method GET for both EEM and FTR. Howe
Efficiency Method while FTR used both the Energy Efficiency Method and the
performance-aware method. The experimental setup parameters for REST,
EEM and FTR are given in

5 Simulation Results

In this section we summarize and discuss the simulation resul
shows the impact of the number of nodes on the average response time. The
graphic shows that increasing the number of nodes was followed
of the average response time. For a large number of nodes, our proposed
method (FTR) had a better performance than the conventional REST
application. For example, when the number of nodes was higher than 100, FTR
had a better average response time than REST/EEM.

Figure 12 Impact of increasing number of nodes on average response time

The increasing average response time was caused by the characteristic of HTTP
as a best-effort service. The higher number of nodes concurrently sending data
to the same destination may create more traffic. More traffic can create
congestion in the network, which can actually be handled by TCP flow control.
But TCP flow control has a mechanism
whenever it detects congestion indicated by packet loss. So, when the number of

FTR: Communication Protocol for Integrating Network Sensor 97

With this simulation we compared three methods: REST-based application only
Efficient Method Only (EEM), and Finite Time Response

(FTR). Note that we also employed a REST-based application using the HTTP
GET for both EEM and FTR. However, EEM only used the Energy

Efficiency Method while FTR used both the Energy Efficiency Method and the
aware method. The experimental setup parameters for REST,

EEM and FTR are given in Table 4 and Table 5.

Simulation Results

In this section we summarize and discuss the simulation results. Figure 12
shows the impact of the number of nodes on the average response time. The
graphic shows that increasing the number of nodes was followed by an increase
of the average response time. For a large number of nodes, our proposed
method (FTR) had a better performance than the conventional REST-based
application. For example, when the number of nodes was higher than 100, FTR

esponse time than REST/EEM.

Impact of increasing number of nodes on average response time.

The increasing average response time was caused by the characteristic of HTTP
effort service. The higher number of nodes concurrently sending data

to the same destination may create more traffic. More traffic can create
congestion in the network, which can actually be handled by TCP flow control.
But TCP flow control has a mechanism to reduce packet data transmission
whenever it detects congestion indicated by packet loss. So, when the number of

97

based application only
(EEM), and Finite Time Response

HTTP
ver, EEM only used the Energy

Efficiency Method while FTR used both the Energy Efficiency Method and the
aware method. The experimental setup parameters for REST,

12
shows the impact of the number of nodes on the average response time. The

by an increase
of the average response time. For a large number of nodes, our proposed

based
application. For example, when the number of nodes was higher than 100, FTR

The increasing average response time was caused by the characteristic of HTTP
effort service. The higher number of nodes concurrently sending data

to the same destination may create more traffic. More traffic can create
congestion in the network, which can actually be handled by TCP flow control.

to reduce packet data transmission
whenever it detects congestion indicated by packet loss. So, when the number of

98

nodes becomes higher it also increases the average response time. Our proposed
method (FTR) has a better performance because flow control is
handled at TCP level but also at the application layer. We propose a system that
is designed to decide to send a message or pend it at the application layer. The
decision is simple because it only use
information about traffic condition
the conventional REST-only method, especially for larger numbers of nodes.

The average response time is actually related to the average timeout experience
in most cases. We know that when the
HTTP timeout, because we have set HTTP timeout at a certain value (for this
experiment: 5 seconds). Figure
for the conventional REST
increased. However, our proposed method (FTR) reduced
experience to a lower value. Both
maintained better average performance
better performance parameters
timeout experience.

Figure 13 Impact of increasing number of nodes on average timeout experience

Figure 14 shows the impact of the number of nodes on energy efficiency. The
graphic shows that EEM and FTR had better energy efficiency management
than the REST-based application. EEM has a mechanism to regulate the active
and sleep states, so it performed better
was lower. However, a large number of nodes

Sinung Suakanto, et al.

nodes becomes higher it also increases the average response time. Our proposed
method (FTR) has a better performance because flow control is not only
handled at TCP level but also at the application layer. We propose a system that
is designed to decide to send a message or pend it at the application layer. The

simple because it only uses the last response time as brief
about traffic conditions. FTR maintained better performance than

only method, especially for larger numbers of nodes.

The average response time is actually related to the average timeout experience
in most cases. We know that when the response time is very long it can cause an
HTTP timeout, because we have set HTTP timeout at a certain value (for this

Figure 13 shows that the average timeout experience
for the conventional REST-only method increased when the number of nodes

wever, our proposed method (FTR) reduced the average timeout
experience to a lower value. Both Figure 12 and Figure 13 show that FTR

average performance. Our method contributed to maintaining
performance parameters for both average response time and average

Impact of increasing number of nodes on average timeout experience.

shows the impact of the number of nodes on energy efficiency. The
graphic shows that EEM and FTR had better energy efficiency management

based application. EEM has a mechanism to regulate the active
performed better, especially when the number of nodes

was lower. However, a large number of nodes made energy efficiency

nodes becomes higher it also increases the average response time. Our proposed
not only

handled at TCP level but also at the application layer. We propose a system that
is designed to decide to send a message or pend it at the application layer. The

brief
better performance than

The average response time is actually related to the average timeout experience
response time is very long it can cause an

HTTP timeout, because we have set HTTP timeout at a certain value (for this
shows that the average timeout experience

e number of nodes
average timeout
show that FTR

. Our method contributed to maintaining
average response time and average

shows the impact of the number of nodes on energy efficiency. The
graphic shows that EEM and FTR had better energy efficiency management

based application. EEM has a mechanism to regulate the active
especially when the number of nodes

made energy efficiency

FTR: Communication Protocol for Integrating Network Sensor

deteriorate. This occurs
average response time also increase
increases the duration of the active period, which results in a decrease of energy
efficiency.

FTR better maintains energy efficiency because it
states, but it is more balanced
Forced sleep occurs whenever a long duration of active sleep
during the previous duty cycle. Therefore, our proposed method not onl
maintains better performance but also

The conventional REST method always has a value of 100% regardless of the
number of nodes. This happens because of the energy
was proposed in Eq. (1). The REST
efficiency mechanism because it doesn’t have any coordination
physical layer and so it is
always in the active state, regardless

Figure 14 Impact of increasing number of nodes on average energy efficiency

Even though FTR offers a better solution in view of performance and energy
efficiency, it has a trade-off with another aspect: the average update time to the
server, as depicted in Figure
EEM) have a consistent update time
to the duty cycle (T∆). From the figure, we can see that

FTR: Communication Protocol for Integrating Network Sensor 99

 because when the number of nodes increases, the
average response time also increases. An increase in the average response time
increases the duration of the active period, which results in a decrease of energy

FTR better maintains energy efficiency because it not only has active and sleep
balanced through the introduction of a forced sleep state

Forced sleep occurs whenever a long duration of active sleep has occurred
during the previous duty cycle. Therefore, our proposed method not onl

performance but also better energy efficiency.

The conventional REST method always has a value of 100% regardless of the
number of nodes. This happens because of the energy-efficiency calculation that

(1). The REST-based application has the worst energy
efficiency mechanism because it doesn’t have any coordination with the
physical layer and so it is always defined as active. Based on our equation, it

, regardless if the session is active or idle.

Impact of increasing number of nodes on average energy efficiency.

Even though FTR offers a better solution in view of performance and energy
off with another aspect: the average update time to the

Figure 15. The conventional REST services (REST and
EEM) have a consistent update time, i.e. a fixed period that is always identical

). From the figure, we can see that the update time for

99

, the
the average response time

increases the duration of the active period, which results in a decrease of energy

not only has active and sleep
state.

red
during the previous duty cycle. Therefore, our proposed method not only

The conventional REST method always has a value of 100% regardless of the
ulation that

based application has the worst energy-
the

defined as active. Based on our equation, it is

Even though FTR offers a better solution in view of performance and energy
off with another aspect: the average update time to the

. The conventional REST services (REST and
identical

the update time for

100

REST and EEM always ha
(T∆). FTR, on the other hand
number of nodes increases. For example, if the number of nod
an update time of twice the

Figure 15 Impact of increasing number of nodes on average update time

A higher value for the average update time means that the resolution
sent from the nodes to the
captures data from river water level sensors once every minute, it
once every 2 minutes. Even though the resolution
user preference, we must still be aware how much it
previously set value. We can find the optimum value between better
performance and better energy efficiency, but still have to consider
value for the update time as well. In other words,
better performance and energy efficiency, we may have to sacrifice
resolution in terms of a higher

6 Conclusions

In this paper we have proposed a new method for communication between
sensor networks into server via
of HTTP and a cross-layer approach to coordinate with the physical layer. At
the physical layer the active
proposed a forced-sleep

Sinung Suakanto, et al.

REST and EEM always had value 1, meaning that it is equal to 1 x duty cycle
on the other hand, can increase the update time, especially if the

number of nodes increases. For example, if the number of nodes is 150, it has
the duty cycle (2 x T∆).

Impact of increasing number of nodes on average update time.

A higher value for the average update time means that the resolution of the data
the server becomes lower. For example, if the system

captures data from river water level sensors once every minute, it can change to
once every 2 minutes. Even though the resolution can be set based on need

rence, we must still be aware how much it deviates from the
previously set value. We can find the optimum value between better
performance and better energy efficiency, but still have to consider a maximum

the update time as well. In other words, if we need a system with
better performance and energy efficiency, we may have to sacrifice data

in terms of a higher average update time.

In this paper we have proposed a new method for communication between
erver via the Internet. We have proposed a modification
layer approach to coordinate with the physical layer. At

the physical layer the active state or sleep state will be set. We have also
sleep state that is triggered by the last performance

1 x duty cycle
the

es is 150, it has

of the data
. For example, if the system

change to
 or

es from the
previously set value. We can find the optimum value between better

maximum
if we need a system with

data

In this paper we have proposed a new method for communication between
. We have proposed a modification

layer approach to coordinate with the physical layer. At
We have also

that is triggered by the last performance

FTR: Communication Protocol for Integrating Network Sensor 101

measurement at the application layer. If the previous performance response time
has a value larger than a certain acceptance range, then the node enters forced
sleep mode during the next duty cycle. Our proposed method is called Finite
Time Response (FTR).

We use a push-based system for network system updating. A push-based system
is suitable for capturing data periodically, for example for environment or
disaster monitoring. However, when the number of nodes becomes larger there
could be new problems in terms of performance degradation, such as increased
delay or response time, increased timeout messages and more power
consumption. FTR is proposed as a communication protocol that can maintain
better performance and better energy efficiency.

We have compared FTR with a conventional REST-based application and a
method using energy-efficiency control only. The results of our experiments
have shown that FTR maintains better performance, indicated by a lower
average response time and a lower average timeout experience. But FTR has to
be traded off with the average update time. Even though FTR has successfully
maintained performance with a better response time, the average update time
also increased. Optimization is still needed to gain better performance, better
energy efficiency while also considering a maximum value for the average
update time.

References

[1] Al-Ali, A.R., Zualkernan, I. & Aloul, F., A Mobile GPRS-Sensors Array
for Air Pollution Monitoring, IEEE Sensors Journal, 10(10), pp. 1666-
1671, 2010.

[2] Keoduangsine, S. & Goodwin, R., A GPRS-Based Data Collection and
Transmission for Flood Warning System: The Case of the Lower Mekong
River Basin, International Journal of Innovation, Management and
Technology, 3(3), pp. 217-220, 2012.

[3] Luckenbach, T., Gober, P. & Arbanowski, S., TinyREST – a Protocol for
Integrating Sensor Networks into the Internet, in Proc. of REALWSN,
pp. 101-105, 2005.

[4] Shelby, Z., Frank, B. & Sturek, D., Constrained Application Protocol
(CoAP), Internet-Draft, available at: http://tools.ietf.org/html/draft-ietf-
core-coap-04, 2010 (February 17, 2013).

[5] Colitti, W., Steenhaut, K. & De Caro, N., Integrating Wireless Sensor
Networks with the Web, In IP+SN, 2011.

[6] Suakanto, S., Supangkat, S.H., Suhardi & Saragih, R., Performance
Measurement of Cloud Computing Services, International Journal on

102 Sinung Suakanto, et al.

Cloud Computing: Services and Architecture (IJCCSA), 2(2), pp. 9-20
2012.

[7] Vemuri, S.R., Satyanarayana, N. & Prasanna, V.L., Generic Integrated
Secured WSN- Cloud Computing U-life care, International Journal of
Engineering Science & Advanced Technology [IJESAT], 2(4), pp. 897-
907, 2012.

[8] Dash, S.K., Mohapatra, S. & Pattnaik, P.K., A Survey on Applications of
Wireless Sensor Network Using Cloud Computing, International Journal
of Computer Science & Emerging Technologies, 1(4), pp. 50-55, 2010.

[9] Gaynor, M., Moulton, S.L., Welsh, M., LaCombe, E., Rowan, A. &
Wynne, J., Integrating Wireless Sensor Networks with the Grid, IEEE
Internet Computing Magazine July - August 2004.

[10] Wang, W., Lee, K. & Murray, D., Integrating Sensors with the Cloud
Using Dynamic Proxies, IEEE 23rd International Symposium on Personal
Indoor and Mobile Radio Communications (PIMRC), 2012.

[11] Suakanto, S., Supangkat, S.H., Suhardi, Saragih, R., Nugroho, T.A. &
Nugraha, I.G.B.B., Environmental and Disaster Sensing Using Cloud
Computing Infrastructure, International Conference on Cloud Computing
and Social Networking, April 2012, IEEE Catalog Number CFP1201T-
ART, 2012.

[12] Ye, W., Heidemann & Estrin, D., An Energy Efficient MAC Protocol for
Wireless Sensor Networks, In 21st International Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM' 02),
New York, United States, 2002.

[13] Zheng, T., Radhakrishnan, S. & Sarangan, V., PMAC: An Adaptive
Energy-Efficient MAC Protocol for Wireless Sensor Networks,
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium, 2005.

[14] Dunkels, A., Voigt, T. & Alonso, J., Making TCP/IP Viable for Wireless
Sensor Networks, In Work-in-Progress Session of the first European
Workshop on Wireless Sensor Networks (EWSN 2004), Berlin,
Germany, January 2004.

[15] Di Francesco, M., Anastasi, G., Conti, M., Das, S.K. & Neri, V.,
Reliability and Energy-Efficiency in IEEE 802.15.4/ZigBee Sensor
Networks: An Adaptive and Cross-Layer Approach, IEEE Journal on
Selected Areas in Communications, 29(8), September 2011.

[16] Alam, M.M., Berder, O., Menard, D. & Sentieys, O., TAD-MAC: Traffic-
Aware Dynamic MAC Protocol for Wireless Body Area Sensor Networks,
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
2(1), pp. 109-119, March 2012.

[17] Bose, R. & Helal, A.(S)., Sensor-Aware Adaptive Push-Pull Query
Processing in Wireless Sensor Networks, pp. 243-248, 2010 Sixth
International Conference on Intelligent Environments, 2010.

