A Novel Boost-Buck Converter Architecture for Improving Transient Response and Output-Voltage Ripple

Freddy Kurniawan, Lasmadi Lasmadi, Okto Dinaryanto, Bambang Sudibya, Mohammad Ridlo Erdata Nasution

Abstract


Buck-boost converters are widely used in the development of DC-DC converters. Several techniques and algorithms have been introduced to improve the transient response of buck-boost converters. However, due to the opposite trends of the output current change and the output voltage change, undershoot or overshoot in the output voltage still seems to be inevitable. In order to overcome this problem, a novel boost-buck converter architecture is proposed to build a fast transient response DC-DC converter. The converter consists of a cascaded configuration of the boost and buck stages. The boost stage converts the input voltage to the shared capacitor voltage and the buck stage supplies energy to the load by converting the shared capacitor voltage to the output voltage. By harnessing the energy stored in the shared capacitor, the transient response of the boost buck converter can be improved to 2 µs in a step-up load current change of 1 A with an output-voltage ripple of 15 mV.

Keywords


DC-DC converter; boost; buck; fast-transient; low-ripple

Full Text:

PDF

References


Tofoli, F.L., Pereira, D.C., Paula, W.J. & Júnior, D.S.O., Survey on Non-isolated High-voltage Step-up DC-DC Topologies based on the Boost Converter, IET Power Electronics, 8(10), pp. 2044-2057, 2015.

Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., Blaabjerg, F. & Lehman, B., Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications, IEEE Trans. on Power Electronics, 32(12), pp. 9143-9178, 2017.

Hossain, M.Z., Rahim, N.A. & Selvaraj, J., Recent Progress and Development on Power DC-DC Converter Topology, Control, Design and Applications: A Review, Renewable and Sustainable Energy Reviews, 81, pp. 205-230, 2018.

Gillespie, K., Fair III, H.R., Henrion, C., Jotwani, R., Kosonocky, S., Orefice, R.S., Priore, D.A., White, J. & Wilcox, K., Steamroller: An x86-64 Core Implemented in 28 nm Bulk CMOS. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 104-105, Feb. 2014.

Noethen, B., Arnold, O., Adeva, E.P., Seifert, T., Fischer, E., Kunze, S., Matus, E., Fettweis, G., Eisenreich, H., Ellguth, G., Hartmann, S., Hoppner, S., Schiefer, S., Schlusler, J-U., Scholze, S., Walter, D. & Schuffny, R., A 105GOPS 36 mm2 Heterogeneous SDR MPSoC with Energy-aware Dynamic Scheduling and Iterative Detection-decoding for 4G in 65 nm CMOS, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 188-189, Feb. 2014.

Ehrhart, A., Wicht, B., Lin, M., Huang, Y.S., Lee, Y.H. & Chen, K.H., Adaptive Pulse Skipping and Adaptive Compensation Capacitance Techniques in Current-mode Buck Boost DC-DC Converters for Fast Transient Response, IEEE 10th Int. Conf. on Power Electronics and Drive Systems (PEDS), Kitakyushu, pp. 373-378, 2013.

Huang, P.C., Wu, W.Q., Ho, H.H. & Chen, K.H., Hybrid buck–boost Feedforward and Reduced Average Inductor Current Techniques in Fast Line Transient and High-efficiency Buck-boost Converter, IEEE Trans. Power Electron, 25(3), pp. 719-730, 2010.

Jung, Y.H., Hong, S.K. & Kwon, O.K., A High-Efficient and Fast-Transient Buck-Boost Converter using Adaptive Direct Path Skipping and On-Duty Modulation, Microelectronics Journal, 70, pp. 43-51, 2017.

Hong, X.E., Wu, J.F. & Wei, C.L., 98.1%-efficiency Hysteretic-current-mode Noninverting Buck-boost DC-DC Converter with Smooth Mode Transition, IEEE Trans. Power Electron, 32(3), pp. 2008-2017, 2017.

Lee, Y.H., Huang, S.C., Wang, S.W., Wu, W.C., Chi, P., Ho, H.H., Lai, Y.T. & Chen, K.H., Power-tracking Embedded Buck-boost Converter with Fast Dynamic Voltage Scaling for the SoC system, IEEE Trans. Power Electron, pp. 27(3), pp. 1271-1282, 2012.

Wang, Z., Chen, B., Zhu, L., Zheng, Y. J. Guo, Chen, D., Ho, M. & K.N. Leung, A 3.3-MHz Fast-Response Load-Dependent-On/Off-Time Buck-Boost DC-DC Converter with Low-Noise Hybrid Full-Wave Current Sensor, Microelectronics Journal, 74, pp. 1-12, 2018.

Hwang, Y.S., Liu, A., Ku, Y.T., Chang, Y.B. & Chen, J.J., A Fast Transient Response Flying-Capacitor Buck–Boost Converter Utilizing Pseudocurrent Dynamic Acceleration Techniques, IEEE Trans. On Very Large Scale Integration (VLSI) Systems, 23(6), pp. 1155-1159, 2015.

Fu, M., Ma, C. & Zhu, X., A Cascaded Boost-buck Converter for High-Efficiency Wireless Power Transfer Systems, IEEE Trans. on Industrial Informatics, 10(3), pp. 1972-80, 2014.

Li, C., Huang, W., Chao, R., Bu, F. & Fan, C., An Integrated Topology of Charger and Drive for Electric Buses, IEEE Trans. on Vehicular Technology, 65(6), pp. 4471-4479, 2016.

Jones, D.C. & Erickson, R.W., A Nonlinear State Machine for Dead Zone Avoidance and Mitigation in a Synchronous Noninverting Buck–boost Converter, IEEE Trans. Power Electron, 28(1), pp. 467-480, 2013.

Restrepo, C., Konjedic, T., Calvente, J. & Giral, R., Hysteretic Transition Method for Avoiding the Dead-zone Effect and Subharmonics in a Noninverting Buck–boost Converter, IEEE Trans. Power Electron, 30(6), pp. 3418-3430, 2015.

Liu, P.J. & Chang, C.W., CCM Noninverting Buck-boost Converter with Fast Duty-Cycle Calculation Control for Line Transient Improvement, IEEE Trans. On Power Electronics, 33(6), pp. 5097-5107, 2018.

Kurniawan, F., Development of the Boost-Buck Model to Enhance Output-Voltage Stability of the DC-to-DC Converter, EECCIS, 12(2), pp. 98-103, 2018. (Text in Indonesian and Abstract in English)

Hwang, Y.S., Liu, A., Chang, Y-B. & Chen, J-J., A High-efficiency fast-Transient-response Buck Converter with Analog-voltage-dynamic Estimation Techniques, IEEE Trans. Power Electron, 30(7), pp. 3720-3730, 2015.

Liu, P.J., Chen, T.H. & Hsu, S.R., Area-efficient Error Amplifier with Current Boosting Module for Fast-transient Buck Converters, IET Power Electron, 9(10), pp. 2147-2153, 2016.

Wu, K.I., Hwang, B.T. & Chen, C.C.P., Synchronous Double Pumping Technique for Integrated Current-mode PWM DC–DC Converters Demand on Fast-transient Response, IEEE Trans. Power Electron, 32(1), pp. 849-865, 2017.

Chen, J.J., Hwang, Y.S., Chai, H.H., Ku, Y.T. & Yu, C.C., A Sub-1-μs Ultrafast-Response Buck Converter with Improved Analog-Voltage-Dynamic-Estimation Techniques, IEEE Trans. on Industrial Electronics, 65(2), pp. 1695-1699, 2018.

Ashique, R.H. & Salam, Z., A Family of True Zero Voltage Zero Current Switching (ZVZCS) Nonisolated Bidirectional DC–DC Converter With Wide Soft Switching Range, IEEE Trans. on Industrial Electronics, 64(7), pp. 5416-5427, 2017.

Zhang, Y., Cheng, X.F. & Yin, C., A Soft-Switching Non-Inverting Buck-boost Converter with Efficiency and Performance Improvement, IEEE Trans. on Power Electronics, 34(12), pp. 11526-11530, 2019.




DOI: http://dx.doi.org/10.5614%2Fitbj.ict.res.appl.2020.14.2.4

Refbacks

  • There are currently no refbacks.


Contact Information:

LPPM – ITB, 

Center for Research and Community Services (CRCS) Building Floor 7th, 
Jl. Ganesha No. 10 Bandung 40132, Indonesia,

Tel. +62-22-86010080,

Fax.: +62-22-86010051;

e-mail: jictra@lppm.itb.ac.id.