New Methodology of Block Cipher Analysis Using Chaos Game

Budi Sulistyo, Budi Rahardjo, Dimitri Mahayana, Carmadi Machbub


Block cipher analysis  covers randomness analysis and cryptanalysis. This paper proposes a new method potentially used for randomness analysis and cryptanalysis. The method uses true random sequence  concept as a reference for measuring randomness level of a random sequence. By using this concept, this paper  defines  bias  which represents  violation  of  a  random  sequence  from  true random sequence. In this paper, block cipher   is treated as a mapping function of a discrete time dynamical system. The dynamical system framework is used to make  the  application  of  various  analysis  techniques  developed  in  dynamical system  field  becomes  possible.  There  are three  main parts of  the methodology presented  in  this  paper:  the  dynamical  system  framework  for  block  cipher analysis, a  new chaos game  scheme and an extended measure  concept related to chaos game and fractal analysis. This paper also presents the general procedures of the proposed method, which includes: symbolic dynamic analysis of discr ete dynamical system whose block cipher as its mapping function, random sequence construction,  the  random  sequence  usage  as  input  of  a  chaos  game  scheme, output  measurement  of  chaos  game  scheme  using  extended  measure  concept, analysis  the  result  of  the  measurement.  The  analysis  process  and  of  a  specific real or sample block cipher and the analysis result are beyond the scope of this paper.

Full Text:



Katos, V., A Randomness Test for Block Ciphers, Science Direct: Applied Mathematics and Computation, 162, pp.29-35, 2005.

Hernandez, J.C., Isasi, P., Sierra, J.M. & Tablas, A.G., How to Distinguish Between A Block Cipher and A Random Permutation By Lowering the Input Entropy, in IEEE 35th International Carnahan Conference on Security Technology, 2001.

Barnsley, M, Fractals Everywhere, Academic Press Professional, Inc., San Diego, CA, USA, 1988.

Jeffrey, H.J., Chaos Game Visualization of Sequences, Computer & Graphics, 16(1), pp. 25-33, 1992.

Jeffrey, H.J., Chaos Games Representation of Genetic Sequences, Nucleic Acids Research, 18(8), pp. 2163-2170, 1990.

Yang, J-Y., Yu, Z-G. & Anh, V., Protein Structure Classification Based on Chaos Game Representation and Multifractal Analysis, International Conference on Natural Computation, 4, pp. 665-669, 2008.

Gulick, D., Encounter with Chaos, McGraw Hill, 1992.

Peitgen, H-O, Jurgens, H. & Saupe, D., Fractals for The Class-Room. Part 1: Introduction to Fractals and Chaos, Springer-Verlag New York, Inc., New York, NY, USA, 1992.

Kocarev, L., Jakimoski, G., Stojanovski, T. & Parlitz, U., From Chaotic Maps to Encryption Schemes, In Proceedings of the 1998 IEEE International Symposium on Circuits and Systems. ISCAS '98., 4, pp. 514-517, 1998.

Heys, H.M., A Tutorial on Linear and Differential Cryptanalysis, Technical report, 2001.

Stinson, D.R., Cryptography: Theory and Practice, Second Edition. Chapman & Hall/CRC, Februari 2002



  • There are currently no refbacks.

Contact Information:

ITB Journal Publisher, LPPM – ITB, 

Center for Research and Community Services (CRCS) Building Floor 7th, 
Jl. Ganesha No. 10 Bandung 40132, Indonesia,

Tel. +62-22-86010080,

Fax.: +62-22-86010051;