Incident and Traffic-Bottleneck Detection Algorithm in High-Resolution Remote Sensing Imagery

Sayed M.M. Kahaki, Md. Jan Nordin, Amir H. Ashtari

Abstract


One  of  the  most  important  methods  to  solve  traffic  congestion  is  to detect the incident state of a roadway. This paper describes the development of a method  for  road  traffic  monitoring  aimed  at  the  acquisition  and  analysis  of remote  sensing  imagery.  We  propose  a  strategy  for  road  extraction,  vehicle detection  and incident detection  from remote sensing imagery using techniques based on neural networks, Radon transform  for angle detection and traffic-flow measurements.  Traffic-bottleneck  detection  is  another  method  that  is  proposed for recognizing incidents in both offline and real-time mode. Traffic flows and incidents are extracted from aerial images of bottleneck zones. The results show that the proposed approach has a reasonable detection performance compared to other methods. The best performance of the learning system was a detection rate of 87% and a false alarm rate of less than 18% on 45 aerial images of roadways. The performance of the traffic-bottleneck detection  method had a detection rate of 87.5%.


Full Text:

PDF

References


Lu, J., Chen, S., Wang, W. & Zuylen, H.V., A Hybrid Model of Partial Least Squares and Neural Network for Traffic Incident Detection, Expert Systems with Applications, ISSN 0957-4174, pp. 4775-4784, DOI: 10.1016/j.eswa.2011.09.158, 2011.

Chen, S., Wang, W. & Zuylen, H.V., Construct Support Vector Machine Ensemble to Detect Traffic Incident, Expert System with Applications, Elsevier, ISSN 0957-4174, PP. 10976-10986, DOI: 10.1016/ j.eswa.2009.02.039, 2009.

Wen, H., Yang, Z., Jiang G., & Shao, C., A New Algorithm of Incident Detection on Freeways, Vehicle Electronics Conference, IVEC 2001. Proceedings of the IEEE International, pp.197-202, DOI: 10.1109/ IVEC.2001.961753, 2001.

Chen, S.Y. & Wang, W., Decision Tree Learning for Freeway Automatic Incident Detection, Expert System with Applications, Elsevier, ISSN 0957-4174, pp. 4101-4105, DOI: 10.1016/j.eswa.2008.03.012, 2008.

Masters, P.H., Lam, J.K. & Wong, K., Incident Detection Algorithms for COMPASS-An Advanced Traffic Management System, Vehicle Navigation and Information Systems Conference, 2, pp. 295- 310, DOI: 10.1109/VNIS.1991.205776, 1991.

Sujeeva A.W., An Application of Artificial Neural Networks in Freeway Incident Detection, PhD. Dissertation, University of South Florida, 1998.

Skorput, P., Mandzuka, S. & Jelusic, N., Real-Time Detection of Road Traffic Incidents, Promet-Traffic & Transportation, 22, pp. 273-283, 2010.

Moynihan, G.P., Fonseca, D.J., Brumback, T. & Fernandes, H., Evacuation Decision Support System for Road Incident Detection and Characterization, Journal of Homeland Security and Emergency Management 6, 2009.

Durduran, S.S., A Decision Making System to Automatic Recognize of Traffic Accidents on The Basis of A GIS Platform, Expert System with Application, pp. 7729-7736, 2010.

Jin, H., Feng, Y.M. & Li, Z.R., Extraction of Road Lanes from HighResolution Stereo Aerial Imagery Based on Maximum Likelihood Segmentation And Texture Enhancement, Digital Image Computing: Techniques and Applications, pp. 271-276, DOI: 10.1109/DICTA. 2009.52, 2009.

Lin, Y.C. & Saripalli, S., Road Detection and Tracking from Aerial Desert Imagery, Journal of Intelligent & Robotic Systems 65, pp. 345-359, DOI: 10.1007/s10846-011-9600-6, 2012.

Sahli, S., Ouyang, Y., Sheng, Y.L. & Lavigne, D.A., Robust Vehicle Detection in Low-Resolution Aerial Imagery, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications, DOI: 10.1117/12.850387, 2010.

Sahli, S., Duval, P.L., Sheng, Y.L. & Lavigne, D.A., Robust vehicle Detection in Aerial Images Based on Salient Region Selection and Superpixel Classification, Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems And Applications, DOI: 10.1117/ 12.883890, 2011.

Kahaki, S.M.M. & Nordin, M.J. Highway Traffic Incident Detection Using High-Resolution Aerial Remote Sensing Imagery. Phys. Int., 1, pp. 110-114, DOI: 10.3844/pisp.2010.110.114, 2010.

Higashikubo, M., Hinenoya, T. & Takeuchi, K., Queue Length Measurement Using an Image Processing Sensor, Universal Traffic Management Society of Japan, 2005.

Juozapavicius, A., Blake, R. & Kazimianec, M., Image Processing in Road Traffic Analysis, Nonlinear Analysis: Modeling and Control, Lithuanian Association of Nonlinear Analysts Journal, 10(4), pp. 315-332, 2005.

Ho, L. W. & Kleeman, L., Real Time Object Tracking using Reflectional Symmetry and Motion, IEEE, pp. 2798-2803, Oct 2006.

Hirzallah, N., Automated Camera Monitoring System for Selective Areas of Interest, J. Comput. Sci., 3, pp. 62-66. DOI: 10.3844/jcssp.2007.62.66, 2007.

Panich, S., Method of Object Detection for Mobile Robot, J. Comput. Sci., 6, pp. 1151-1153. DOI: 10.3844/jcssp.2010.1151.1153, 2010.

Lairong, C., Yuan, C. & Ronghua, J., Automatic Incident Detection Algorithm Based on Support Vector Machine. Natural Computation (ICNC), Sixth International Conference. DOI: 10.1109/ICNC.2010. 5583920, 2010.

Hong, Z.A. & Li, L., Artificial Immune Approach for Vehicle Detection from High Resolution Space Imagery, IJCSNS, 7(2), pp. 67-72, February 2007.

Hinz, S., Automatic Road Extraction in Urban Scenes-and Beyond, International Archives of Photogrammetry and Remote Sensing, 2005.

Zhenfeng, Z., Hanqing, L., Hu, J. & Keiichi, U., Car Detection Based on Multi-Cues Integration, IEEE, 2004. DOI: 0-7695-2128-2/04.

Kahaki, S.M.M. & Nordin, M.J., Vision-Based Automatic Incident Detection System Using Image Sequences for Intersections, Pattern Analysis and Intelligent Robotics (ICPAIR), pp. 3-7, 2011. DOI: 10.1109/ ICPAIR.2011.5976902.

Gonzalez, R.C. & Woods, R.E., Digital Image Processing, 2nd ed., New Jersey: Prentice Hall, pp. 68-70, 2002.

Gonzalez, R.C., Woods, R.E. & Eddins, S.L., Digital Image Processing Using MATLAB, 1st ed., Prentice Hall, pp. 102-105, September 5, 2003.

Oriol, R.T. & Valveny, E., Radon Transform for Lineal Symbol Representation, IEEE, icdar, 1, pp.195, 2003.

Beylkin, G., Discrete Radon Transform, IEEE Transactions on Acoustics, Speech and Signal Processing, 35(2), pp. 162-172, 1987.

Sanz, J.L.C., Hinkle, E.B. & Jain, A.K., Radon and Projection Transform-Based Computer Vision, Springer-Verlag, pp. 132-138, 1987.

Jafari-Khouzani, K. & Soltanian-Zadeh, H., Radon Transform Orientation Estimation For Rotation Invariant Texture Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), pp. 1004-1008, June 2005.

Zeller, K., Hinz, S., Rosenbaum, D., Leitloff, J. & Reinartz, P. Traffic Monitoring without Single Car Detection from Optical Airbone Images, ISPRS Hannover Workshop, July 2009.

Reinartz, P., Lachaise, M., Schmeer, E., Krau, T. & Runge, H., Traffic Monitoring with Serial Images from Airborne Cameras, ISPRS Journal of Photogrammetry and Remote Sensing, 61, pp. 149-158, 2006.

Rosenbaum, D., Kurz, F., Thomas, U., Suri, S. & Reinartz, P., Towards Automatic Near Real-Time Traffic Monitoring with An Airborne Wide Angle Camera System, European Transport Research Review, 1, Springer, ISSN 1867-0717, pp. 11-21, 2009.

Coifman, B., Beymer, D., McLauchlan, P. & Malik, J., A Real-Time Computer Vision System for Vehicle Tracking and Traffic Surveillance, Transportation Research Part C: Emerging Technologies, 6(4), pp. 271-288, 1998.

Cassidy, M.J. & Bertini, R.L., Some Traffic Features at Freeway Bottlenecks, Transportation Research Part B: Methodological, 33(1), pp. 25-42, 1999.

Bertini, R.L. & Cassidy, M.J., Some Observed Queue Discharge Features at A Freeway Bottleneck Downstream of A Merge, Transportation Research Part A: Policy and Practice, 36(8), pp. 683-697, 2002.

Chung, K., Rudjanakanoknad, J. & Cassidy, M.J., Relation between Traffic Density and Capacity Drop at Three Freeway Bottlenecks, Transportation Research Part B: Methodological, 41(1), pp. 82-95, 2007.




DOI: http://dx.doi.org/10.5614%2Fitbj.ict.2012.6.2.4

Refbacks

  • There are currently no refbacks.


Contact Information:

ITB Journal Publisher, LPPM – ITB, 

Center for Research and Community Services (CRCS) Building Floor 7th, 
Jl. Ganesha No. 10 Bandung 40132, Indonesia,

Tel. +62-22-86010080,

Fax.: +62-22-86010051;

e-mail: jictra@lppm.itb.ac.id.