Trees with Certain Locating-Chromatic Number

Dian Kastika Syofyan, Edy Tri Baskoro & Hilda Assiyatun

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia.
E-mail: diankastika@students.itb.ac.id

Abstract. The locating-chromatic number of a graph G can be defined as the cardinality of a minimum resolving partition of the vertex set $V(G)$ such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in G are not contained in the same partition class. In this case, the coordinate of a vertex v in G is expressed in terms of the distances of v to all partition classes. This concept is a special case of the graph partition dimension notion. Previous authors have characterized all graphs of order n with locating-chromatic number either n or $n-1$. They also proved that there exists a tree of order n, $n \geq 5$, having locating-chromatic number k if and only if $k \in \{3,4,\ldots,n-2,n\}$. In this paper, we characterize all trees of order n with locating-chromatic number $n-t$, for any integers n and t, where $n > t + 3$ and $2 \leq t < \frac{n}{2}$.

Keywords: color code; leaves; locating-chromatic number; stem; tree.

1 Introduction

The topic of locating-chromatic number was introduced by Chartrand, et al. [1] in 2002. They determined the locating-chromatic numbers of paths, cycles, and double stars. Inspired by Chartrand, et al., other authors have determined the locating-chromatic numbers of some well known classes of graphs, i.e. amalgamation of stars and firecrackers by Asmiati, et al. [2,3], Kneser graphs by Behtoei and Omoomi [4], Halin graphs by Purwasih, et al. [5], Cartesian product of graphs and joint product graphs by Behtoei and Omoomi [6] and Behtoei [7], and homogeneous lobster graphs by Syofyan, et al. [8].

Let $G = (V,E)$ be a connected graph. We define the distance as the minimum length of path connecting vertices u and v in G, denoted by $d(u,v)$. A k-coloring of G is a function $c: V(G) \rightarrow \{1,2,\ldots,k\}$ where $c(u) \neq c(v)$ for any two adjacent vertices u and v in G. Thus, the coloring c induces a partition Π of $V(G)$ into k color classes (independent sets) C_1, C_2, \ldots, C_k where C_i is the set of all vertices colored by i for $1 \leq i \leq k$. The color code $c_i(v)$ of a vertex v in G is defined as the k-vector $(d(v,C_1), d(v,C_2), \ldots, d(v,C_k))$ where $d(v,C_i) = \min\{d(v,x) \mid x \in C_i\}$ for $1 \leq i \leq k$. The k-coloring c of G such that all
vertices have different color codes is called a locating coloring of G. The least integer k is such that there is a locating coloring in G that is called the locating-chromatic number of G, denoted by $\chi_L(G)$.

Chartrand, et al. in [1] have determined all graphs of order n with locating-chromatic number n, namely a complete multipartite graph of n vertices. Furthermore in Chatrand, et al. [9], all graphs of order n with locating-chromatic number $n - 1$ were characterized. Chartrand, et al. [1] also proved that there exists a tree of order n, $n \geq 5$, having locating-chromatic number k if and only if $k \in \{3, 4, ..., n - 2, n\}$. Recently, Baskoro and Asmiati [10] have characterized all trees with locating-chromatic number 3. In this investigation, we have characterized all trees of order n with locating-chromatic number $n - t$, for any integers n and t, where $n > t + 3$ and $2 \leq t < \frac{n}{2}$.

The following results were proved in Chartrand, et al. [1].

Lemma 1. Let G be a simple, connected and non-directed graph. Let function c be a locating coloring of G and $u, v \in V(G)$. If $d(u, w) = d(v, w)$ for every $w \in V(G) \setminus \{u, v\}$, then $c(u) \neq c(v)$.

Corollary 1. If G is a connected graph containing a vertex that is adjacent to k leaves of G, then $\chi_L(G) \geq k + 1$.

2 Main Results

In the following theorem, we provide a method to construct a tree T of order n from any tree of smaller order $t + 1$ where $n > 5$ and $2 \leq t < \frac{n}{2}$, such that $\chi_L(T) = n - t$. A vertex v of degree ≥ 2 in a tree T is called a stem if it is adjacent to a leaf.

Theorem 1. For any integer n and t, where $n > t + 3$ and $2 \leq t < \frac{n}{2}$, let T_{t+1} be any tree of order $t + 1$. Let T_n be a tree of order n obtained by joining $n - t - 1$ new vertices to a vertex $x \in V(T_{t+1})$, where x is not a stem. Then, $\chi_L(T_n) = n - t$.

Proof. Let $V(T_n) = \{x, y_i, z_j | 1 \leq i \leq n - t - 1, 1 \leq j \leq t\}$, where x is adjacent to $n - t - 1$ leaves, y_i are the leaves adjacent to x, and z_j are other vertices in T_n. Define a $(n - t)$-coloring $c: V(T_n) \to \{1, 2, ..., n - t\}$ as follows:

1. $c(x) = n - t$,
2. \(c(y_i) = i \) for \(1 \leq i \leq n - t - 1 \),
3. \(c(z_j) = j \) for \(1 \leq j \leq t \).

Next, we show that the color codes of all vertices under the coloring \(c \) are distinct. We only consider pairs of vertices with the same color. The possibilities are for the pairs of vertices \(y_i \) and \(z_j \) for some \(i, j \). If \(z_j \) is adjacent to \(x \), then \(c_\Pi(y_i) \neq c_\Pi(z_j) \) because \(c_\Pi(y_i) \) contains exactly one entry 1, while \(c_\Pi(z_j) \) contains at least two entries 1. If \(z_j \) is not adjacent to \(x \) then \(c_\Pi(y_i) \neq c_\Pi(z_j) \) because \(c_\Pi(y_i) \) contains entry 1 in the \((n-t)\)th ordinate, while \(c_\Pi(z_j) \) does not contain entry 1 in the \((n-t)\)th ordinate. Since every vertex of \(T_n \) has distinct color codes, \(c \) is a locating coloring of \(T_n \). So, \(\chi_L(T_n) \leq n - t \).

Now, since \(T_n \) contains a vertex \(x \) that is adjacent to \(n - t - 1 \) leaves, then by Corollary 1, \(\chi_L(T_n) \geq n - t \). Hence, \(\chi_L(T_n) = n - t \). \(\square \)

In the following theorem, we give a necessary condition of a tree of order \(n \) whose locating-chromatic number is \(n - t \), where \(2 \leq t < \frac{n}{2} \).

Theorem 2. For any integer \(n \) and \(t \), where \(n > t + 3 \) and \(2 \leq t < \frac{n}{2} \), let \(T_n \) be a tree of order \(n \). If \(\chi_L(T_n) = n - t \), then \(T_n \) has exactly one stem with \(n - t - 1 \) leaves.

Proof. Since \(\chi_L(T_n) = n - t \), every stem of \(T_n \) is adjacent to at most \(n - t - 1 \) leaves. Suppose that there is no stem of \(T_n \) having \(n - t - 1 \) leaves. Then every stem of \(T_n \) is adjacent to at most \(n - t - 2 \) leaves. Furthermore, we have a locating coloring for \(T_n \) by using \(n - t - 1 \) colors as follows.

Let there be \(b \) stems in \(T_n \). First, we denote all stems of \(T_n \) by \(s_i \), for \(1 \leq i \leq b \), the leaves of \(T_n \) adjacent to \(s_i \) by \(l_{ij} \), for \(1 \leq i \leq b \) and \(1 \leq j \leq n - t - 2 \), and the remaining vertices by \(v_k \), for \(0 \leq k \leq n - 4 \). Let \(N(s_i) \) be the set of neighbors of \(s_i \), for \(1 \leq i \leq b \). For a coloring \(c \) of \(V(T_n) \), define \(c(N(s_i)) = \{ c(x) \mid x \in N(s_i) \} \). Now, define a \((n-t-1)\)-coloring \(c \) of \(T_n \) with the following steps:

1. For all stems \(s_i \), define \(c(s_i) = 1 \) or 2 such that if there are at least two stems adjacent to the same \(v_k \) for some \(k \), then two of these stems receive different colors.
2. For all vertices \(v_k \) adjacent to a stem, assign \(c(v_k) = \alpha \), for some \(\alpha \in \{3, 4, 5, \ldots, n - t - 1\} \) such that \(c(v_k) \neq c(v_l) \) for \(k \neq l \).
3. For all vertices \(v_k \) not adjacent to a stem, define \(c(v_k) = a \), for some \(a \in \{3, 4, 5, ..., n - t - 1\} \) such that \(c(v_k) \neq c(v_l) \) if \(d(v_k, C_i) = d(v_l, C_i) \) for \(i = 1, 2 \).

4. For all leaves \(l_{ij} \), define \(c(l_{ij}) = a \), for some \(a \in \{1, 2, ..., n - t - 1\} \) such that all vertices (including leaves) adjacent to stems \(s_i \) and \(s_p \) satisfy \(c(N(s_i)) \neq c(N(s_p)) \) for any \(i \neq p \).

Figure 1: Trees \(H_1, H_2, H_3, H_4, H_5, H_6 \).

Observe that, with the exception of the six trees depicted in Figure 1, the coloring \(c \) can always be done for any tree \(T_n, n \geq 6 \). Meanwhile, for all trees in Figure 1 we cannot use the coloring \(c \) because the number of colors is smaller than the number of vertices \(v_k \) adjacent to a stem. However, we can define another coloring for \(T_n \) in Figure 1 by \(n - t - 1 \) colors such that if \(n = 8, 9, 10, 11, 13 \) then \(t = 3, 4, 5, 6 \), respectively.

Next, we show that \(c \) is a locating coloring of \(T_n \). Let \(x \) and \(y \) be two vertices of \(T_n \) such that \(c(x) = c(y) \). We distinguish five cases:

Case 1. \(x = s_i \) and \(y = s_j \), for \(i \neq j \).

Since \(c(N(s_i)) \neq c(N(s_j)) \) for \(i \neq j \) (from Step (4)), we obtain that \(c_\Pi(x) \neq c_\Pi(y) \).

Case 2. \(x = v_k \) and \(y = v_l \), for \(k \neq l \).
If v_k is adjacent to a stem s_i and v_l is not adjacent to any stem, then $c_{\Pi}(v_k) \neq c_{\Pi}(v_l)$ because $c_{\Pi}(v_k)$ contains entry 1 in the first or second ordinate, while $c_{\Pi}(v_l)$ does not contain entry 1 in the first and second ordinate (from Step (1), (2) and (3)).

Case 3. $x = l_{ij}$ and $y = l_{pq}$, for $i \neq p$.
Since $c(N(s_i)) \neq c(N(s_p))$ for $i \neq p$ (from step (4)), we obtain that $c_{\Pi}(x) \neq c_{\Pi}(y)$.

Case 4. $x = s_i$ and $y = l_{pq}$.
Since $c(N(s_i)) \neq c(N(s_p))$ for $i \neq p$ (from step (4)), we obtain that $c_{\Pi}(x) \neq c_{\Pi}(y)$.

Case 5. $x = v_k$ and $y = l_{ij}$.
Then there are two possibilities for this case:

i) If v_k is adjacent to a stem, then $c_{\Pi}(v_k) \neq c_{\Pi}(l_{ij})$ because $c_{\Pi}(v_k)$ contains at least two entries 1, while $c_{\Pi}(l_{ij})$ contains exactly one entry 1 (from Step (1),(2),(4)).

ii) If v_k is not adjacent to any stem, then $c_{\Pi}(v_k) \neq c_{\Pi}(l_{ij})$ because $c_{\Pi}(v_k)$ does not contain entry 1 in the first and second ordinate, while $c_{\Pi}(l_{ij})$ contains entry 1 in the first or second ordinate (from Step (1),(3),(4)).

By the above cases, we prove that c is a locating coloring of T_n. Then $\chi_L(T_n) \leq n - t - 1$, which contradicts $\chi_L(T_n) = n - t$. Hence, there is a stem of T having $n - t - 1$ leaves.

Next, we will show that there is only one stem of T_n having $n - t - 1$ leaves. We suppose that there are two stems of T_n adjacent to $n - t - 1$ leaves. Then, $|V(T_n)| \geq 2(n - t)$. Since $t < \frac{n}{2}$, $|V(T_n)| \geq 2(n - t) > n$, a contradiction with $|V(T_n)| = n$. □

Applying Theorem 1 and Theorem 2, we obtain the following theorem.

Theorem 3. For any integer n and t, where $n > t + 3$ and $2 \leq t < \frac{n}{2}$, let T_n be a tree of order n. Then $\chi_L(T_n) = n - t$ if and only if T_n has exactly one stem with $n - t - 1$ leaves.

Based on Theorem 3, we can determine all trees T_n on n vertices with $\chi_L(T_n) = n - t$ for any integers n and t, where $n > t + 3$ and $2 \leq t < \frac{n}{2}$. In particular, if $t = 2, 3, \text{ or } 4$, all trees T_n with $\chi_L(T_n) = n - t$ are the caterpillars shown in Figures 2, 3, and 4. But for $t \geq 5$, there are trees T_n on n vertices other than caterpillars with $\chi_L(T_n) = n - t$, for example the cases of $t = 5$ and 6, all trees
with $\chi_L(T_n) = n - 5$ and $\chi_L(T_n) = n - 6$ are depicted in Figure 5 and Figure 6, respectively. Therefore, as a special case of Theorem 3, we have the following corollary.

First, we give the definition of a caterpillar. Let $P_m = x_1x_2...x_m$ be a path with m vertices. A caterpillar $C(m; n_1, n_2, ..., n_m)$, is obtained by joining n_i new vertices to every vertex x_i in a path P_m, $n_i \geq 0$, $1 \leq i \leq m$.

Corollary 2. For any integer n and t, where $n > t + 3$ and $t = 2, 3, 4$, let T_n be a tree of order n. Then $\chi_L(T_n) = n - t$ if and only if T_n is a caterpillar $C(m; n_1, n_2, ..., n_m)$ where $0 \leq n_i \leq n - t - 1$, $2 \leq m \leq t$, $n_1, n_m \neq 0$, and exactly one of n_i is equal to $n - t - 1$.

All caterpillars in the Corollary 2 are shown in Figure 2, 3, and 4.
Figure 4 (continued) All trees of order $n > 7$ with locating chromatic number $n - 4$.

Figure 5 All trees of order $n > 8$ with locating chromatic number $n - 5$.
Figure 6 All trees of order $n > 9$ with locating chromatic number $n - 6$.

Acknowledgements

This research was supported by Research Grant Program Riset Unggulan ITB-DIKTI, Ministry of Research, Technology and Higher Education, Indonesia.
References

