Expanding Super Edge-Magic Graphs

E. T. Baskoro¹ & Y. M. Cholily¹,²

¹Department of Mathematics, Institut Teknologi Bandung
Jl. Ganesa 10 Bandung 40132, Indonesia
Emails: {ebaskoro,yus}@dns.math.itb.ac.id

²Department of Mathematics, Universitas Muhammadiyah Malang
Jl. Tlogomas 246 Malang 65144, Indonesia
Email: yus@ummm.ac.id

Abstract. For a graph \(G \), with the vertex set \(V(G) \) and the edge set \(E(G) \) an edge-magic total labeling is a bijection \(f \) from \(V(G) \cup E(G) \) to the set of integers \(\{1,2,\cdots,|V(G)|+|E(G)|\} \) with the property that \(f(u)+f(v)+f(uv)=k \) for each \(uv \in E(G) \) and for a fixed integer \(k \). An edge-magic total labeling \(f \) is called super edge-magic total labeling if \(f(V(G))=\{1,2,\cdots,|V(G)|\} \) and \(f(E(G))=\{|V(G)|+1,|V(G)|+2,\cdots,|V(G)|+|E(G)|\} \). In this paper we construct the expanded super edge-magic total graphs from cycles \(C_n \), generalized Petersen graphs and generalized prisms.

Keywords: Edge-magic; super edge-magic; magic-sum.

1 Introduction

All graphs considered here are finite, undirected and simple. As usual, the vertex set and edge set will be denoted \(V(G) \) and \(E(G) \), respectively. The symbol \(|A| \) will be the cardinality of the set \(A \). Other terminologies or notations not defined here can be found in [2,7,15].

Edge-magic total labelings were introduced by Kotzig and Rosa [8] as follow. An edge-magic total labeling on \(G \) is a bijection \(f \) from \(V(G) \cup E(G) \) onto \(\{1,2,\cdots,|V(G)|+|E(G)|\} \) with the property that, given any edge \(uv \),

\[
f(u)+f(v)+f(uv)=k
\]

for some constant \(k \). It will be convenient to call \(f(u)+f(v)+f(uv) \) the edge sum of \(uv \) and \(k \) the magic sum of \(f \). A graph is called edge-magic total if it admits any edge-magic total labeling.

* This work was supported by Hibah Bersaing XII DP3M-DIKTI, DIP Number: 004/XXIII/1/-/2004.
Kotzig and Rosa [9] showed that no complete graph K_n with $n > 6$ is edge-magic total and neither is K_4, and edge-magic total labelings for K_3, K_5 and K_6 for all feasible values of k, are described in [14].

In [8] it is proved that every cycle C_n, every caterpillar (a graph derived from a path by hanging any number of pendant vertices from vertices of the path) and every complete bipartite graph $K_{m,n}$ (for any m and n) are edge-magic total.

Wallis et.al. [14] showed that all paths P_n and all n-suns (a cycle C_n with an additional edge terminating in a vertex of degree 1 attached to each vertex of the cycle) are edge-magic total. It was shown in [16] that the Cartesian product $C_n \times P_m$ admits an edge-magic total labeling for odd n.

It is conjectured that all trees are edge-magic total [8] and all wheels W_n are edge-magic total whenever $n \equiv 3 \pmod{4}$ [4]. Enomoto et.al. [4] showed that the conjectures are true for all trees with less than 16 vertices and wheels W_n for $n \leq 30$. Philips et.al. [12] solved the conjecture partially by showing that a wheel W_n, $n \equiv 0$ or $1 \pmod{4}$, is edge-magic total. Slamin et.al [13] showed that for $n \equiv 6 \pmod{8}$ every wheel W_n has an edge-magic total labeling.

An edge-magic total labeling f is called super edge-magic total if $f(V(G)) = \{1, 2, \ldots, |V(G)| \}$ and $f(E(G)) = \{|V(G)| + 1, |V(G)| + 2, \ldots, |V(G)| + |E(G)| \}$. Enomoto et.al [4] proved that the complete bipartite graphs $K_{m,n}$ is super edge-magic total if and only if $m = 1$ or $n = 1$. They also proved the complete graphs K_n is super edge-magic if and only if $n = 1, 2$ or 3.

In this paper we will construct the super edge-magic total graphs by hanging any number of pendant vertices from vertices of the cycles, generalized prisms and generalized Petersen graphs.

2 Results

For $n \geq 3$ and $p \geq 1$ we denote by $C_n + A_p$ a graph which is obtained by adding p vertices and p edges to one vertex of cycles C_n (say v_1). The vertex set and the edge set of $C_n + A_p$ are $V(C_n + A_p) = \{v_i : 1 \leq i \leq n\} \cup \{u_j : 1 \leq j \leq p\}$ and $E(C_n + A_p) = \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_n v_1\} \cup \{v_i u_j : 1 \leq j \leq p\}$.
Let \((n,p) - \text{sun}\) be a graph derived from a cycle \(C_n, n \geq 3\), by hanging \(p\) pendant vertices from all vertices of the cycle. Let us denote the vertex set of \((n,p) - \text{sun}\) by \(V((n,p) - \text{sun}) = \{v_i : 1 \leq i \leq n\} \cup \{u_{i,j} : 1 \leq i \leq n, 1 \leq j \leq p\}\) and the edge set by \(E((n,p) - \text{sun}) = \{v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{v_n v_1\} \cup \{v_{u_{i,j}} : 1 \leq i \leq n, 1 \leq j \leq p\}\). Observe that \(|V((n,p) - \text{sun})| = |E((n,p) - \text{sun})| = n(p+1)\). The cycle \(C_n, n \geq 3\), is super edge-magic total if and only if \(n\) is odd (see [4]). Now, we shall investigate super edge-magic total labelings for graphs of \(C_n + A_p\) and \((n,p) - \text{sun}\) which are expanded from a cycle \(C_n\).

Define a vertex labeling \(f_1\) and an edge labeling \(f_2\) of \(C_n + A_p\) as follows,

\[
f_1(v_i) = \begin{cases} \frac{n+i}{2} & \text{if } i \text{ odd,} \\ \frac{i}{2} & \text{if } i \text{ even,} \end{cases}
\]

\[
f_1(u_j) = n + j \quad \text{for } 1 \leq j \leq p,
\]

\[
f_2(v_i v_{i+1}) = 2(n+p)+1-i \quad \text{for } 1 \leq i \leq n-1,
\]

\[
f_2(v_n v_1) = n+2p+1,
\]

\[
f_2(v_{u_{i,j}}) = n+2p+1-j \quad \text{for } 1 \leq j \leq p.
\]

Theorem 1. If \(n\) is odd, \(n \geq 3\) and \(p \geq 1\), then graph \(C_n + A_p\) is super edge-magic total.

Proof. It is easy to verify that the values of \(f_1\) are \(1, 2, \ldots, n+p\) and the values of \(f_2\) are \(n + p + 1, n + p + 2, \ldots, 2n + 2p\) and furthermore the common edge sum is \(k = 2p + \frac{5n+3}{2}\).

Theorem 2. If \(n\) is odd, \(n \geq 3\) and \(p \geq 1\), then graph \((n,p) - \text{sun}\) is super edge-magic total.

Proof. Label the vertices and the edges of \((n, p) - \text{sun}\) in the following way.

\[
f_3(v_i) = f_1(v_i) \quad \text{for } 1 \leq i \leq n,
\]

\[
f_3(u_{i,j}) = nj + 1 \quad \text{for } 1 \leq j \leq p,
\]

\[
f_3(u_{i,j}) = n(j+1)+2-i \quad \text{for } 2 \leq i \leq n \text{ and } 1 \leq j \leq p,
\]

\[
f_4(v_i v_{i+1}) = 2(n+p)+1-i \quad \text{for } 1 \leq i \leq n,
\]
We can see that the vertices of \((n, p) - \text{sun}\) are labeled by values \(1, 2, \ldots, n(p+1)\) and the edges are labeled by \(n(p+1)+1, n(p+1)+2, \ldots, 2n(p+1)\). Furthermore, all edges have the same magic number \(k = 2n(p+1) + \frac{n+3}{2}\).

A generalized Petersen graph \(P(n, m)\), \(n \geq 3\) and \(1 \leq m \leq \left\lfloor \frac{n-1}{2} \right\rfloor\), consists of an outer \(n\)-cycle \(v_1, v_2, \ldots, v_n\) a set of \(n\) spokes \(v_i z_i\), \(1 \leq i \leq n\), and inner edges \(z_i z_{i+m}\), \(1 \leq i \leq n\), with indices taken modulo \(n\).

For \(n \geq 5\), \(m = 2\) and \(p \geq 1\), we denote by \(P(n, 2) + A_p\) for a graph which is obtained by adding \(p\) vertices and \(p\) edges to one vertex of \(P(n, 2)\), say \(v_1\). Hence, \(V(P(n, 2) + A_p) = V(P(n, 2)) \cup \{u_j : 1 \leq j \leq p\}\) and \(E(P(n, 2) + A_p) = E(P(n, 2)) \cup \{v_j u_j : 1 \leq j \leq p\}\).

Let \(P(n, 2, p)\) be a graph derived from \(P(n, 2)\), \(n \geq 5\), by hanging \(p\) pendant vertices from all vertices \(v_i\), \(1 \leq i \leq n\) of \(P(n, 2)\). Then the vertex set of \(P(n, 2, p)\) is \(V(P(n, 2, p)) = V(P(n, 2)) \cup \{u_{i,j} : 1 \leq i \leq n, 1 \leq j \leq p\}\) and the edge set is \(E(P(n, 2, p)) = E(P(n, 2)) \cup \{v_{j} u_{i,j} : 1 \leq i \leq n, 1 \leq j \leq p\}\).

In [11] it is proved that generalized Petersen graphs \(P(n, 2)\) are edge-magic total. Fukuchi [6] showed that \(P(n, 2)\) are super edge-magic total.

Theorem 3. If \(n\) is odd, \(n \geq 5\) and \(p \geq 1\), then the graph \(P(n, 2) + A_p\) has a super edge-magic total labeling.

Proof. Consider a bijection, \(f_5 : V(P(n, 2) + A_p) \rightarrow \{1, 2, \ldots, 2n + p\}\) where,

\[
f_5(v_i) = \begin{cases} n + \frac{i}{2} & \text{if } i \text{ is even, } 2 \leq i \leq n-1, \\ 3n + \frac{i-1}{2} & \text{if } i \text{ is odd, } 1 \leq i \leq n, \end{cases}
\]
Expanding Super Edge-Magic Graphs

$$f_5(z_i) = \begin{cases} \frac{n-i+4}{4} & \text{if } i \equiv 1 \pmod{4}, \\ \frac{2n-i+4}{4} & \text{if } i \equiv 2 \pmod{4}, \\ \frac{3n-i+4}{4} & \text{if } i \equiv 3 \pmod{4}, \\ \frac{4n-i+4}{4} & \text{if } i \equiv 0 \pmod{4}, \end{cases}$$

$$f_5(u_j) = 2n + j \text{ for } 1 \leq j \leq p.$$

We can observe that under the labeling f_5, \{ $f_5(v_i) + f_5(v_{i+1}) : 1 \leq i \leq n$\} = \{ $\frac{5n+1}{2} + i : 1 \leq i \leq n$\} and \{ $f_5(z_i) + f_5(z_{i+2}) : 1 \leq i \leq n$\} = \{ $\frac{n+1}{2} + i : 1 \leq i \leq n$\} with indices taken modulo n. Moreover, \{ $f_5(v_i) + f_5(v_j) : 1 \leq i \leq n$\} = \{ $\frac{3n+1}{2} + i : 1 \leq i \leq n$\} and \{ $f_5(v_j) + f_5(u_j) : 1 \leq j \leq p$\} = \{ $\frac{7n+1}{2} + j : 1 \leq j \leq p$\}. The elements of the set \{ $f_5(v_i) + f_5(v_{i+1}) : 1 \leq i \leq n$\} \cup \{ $f_5(z_i) + f_5(z_{i+2}) : 1 \leq i \leq n$\} \cup \{ $f_5(v_j) + f_5(z_j) : 1 \leq j \leq p$\} form an arithmetic sequence $\frac{n+1}{2} + 1$, $\frac{n+1}{2} + 2$, $\frac{7n+1}{2}$, $\frac{2n+1}{2} + 1$, $\frac{7n+1}{2} + p$. We are able to arrange the values $2n + p + 1, 2n + p + 2, \cdots, 5n + 2p$ to the edges of $P(n,2) + A_p$ in such way that the resulting labeling is total and every edge $xy \in E(P(n,2) + A_p)$, $f_5(x) + f_5(y) + f_5(xy) = \frac{11n+3}{2} + 2p$. Thus we arrive at the desired result.

Theorem 4. If n is odd, $n \geq 5$ and $p \geq 1$, then the graph $P(n,2, p)$ has a super edge-magic total labeling.

Proof. Define a bijection, $f_6 : V(P(n,2, p)) \rightarrow \{1, 2, \cdots, n(p+2)\}$ as follows,

- $f_6(v_i) = f_5(v_i)$ and $f_6(z_i) = f_5(z_i)$ for $1 \leq i \leq n$,
- $f_6(u_i,j) = n(j+1) + 1$ for $1 \leq j \leq p$,
- $f_6(u_{i,j}) = n(j+2) + 2 - i$ for $2 \leq i \leq n$ and $1 \leq j \leq p$.

We can see that under the vertex labeling f_6 the values $f_6(x) + f_6(y)$ of all edges $xy \in E(P(n,2, p))$ constitute an arithmetic sequence $\frac{2n+1}{2} + 1, \frac{2n+1}{2} + 2, \cdots, \frac{7n+1}{2}, \frac{7n+1}{2} + 1, \cdots, \frac{7n+1}{2} + np$. If we complete the edge labeling with the consecutive values in the set \{ $n(p+2) + 1, n(p+2) + 2, n(p+2) + 3, \cdots, 5n + 2np$\} then we can obtain total labeling where $f_6(x) + f_6(y) + f_6(xy) = \frac{11n+3}{2} + 2np$ for every edge $xy \in E(P(n,2, p))$.

In the sequel we shall consider a graph of a generalized prism which can be defined as the Cartesian product $C_n \times P_m$ of a cycle on n vertices with a path on m vertices.

Let $V(C_n \times P_m) = \{v_{i,k} : 1 \leq i \leq n \text{ and } 1 \leq k \leq m\}$ be the vertex set and $E(C_n \times P_m) = \{v_{i,k}v_{i+1,k} : 1 \leq i \leq n \text{ and } 1 \leq k \leq m\} \cup \{v_{i,k}v_{i,k+1} : 1 \leq i \leq n \text{ and } 1 \leq k \leq m-1\}$ be the edge set, where i is taken modulo n. For $n \geq 3$, $m \geq 2$ and $p \geq 1$, we will consider a graph $(C_n \times P_m) + A_p$ (respectively a graph $(C_n \times P_m) + \sum_{i=1}^{n} A^i_p$) which is obtained by adding p vertices and p edges to one vertex of $C_n \times P_m$, say $v_{i,m}$ (respectively to all vertices $v_{i,m}$, $1 \leq i \leq n$ of $C_n \times P_m$). Thus $V((C_n \times P_m) + A_p) = V(C_n \times P_m) \cup \{u_j : 1 \leq j \leq p\}$,

$$V((C_n \times P_m) + \sum_{i=1}^{n} A^i_p) = V(C_n \times P_m) \cup \{u_{i,j} : 1 \leq i \leq n, 1 \leq j \leq p\},$$

$E((C_n \times P_m) + A_p) = E(C_n \times P_m) \cup \{v_{i,m}u_j : 1 \leq j \leq p\}$, and

$$E((C_n \times P_m) + \sum_{i=1}^{n} A^i_p) = E(C_n \times P_m) \cup \{v_{i,m}u_{i,j} : 1 \leq i \leq n, 1 \leq j \leq p\}.$$

Figueroa-Centeno et.al. [5] showed that the generalized prism $C_n \times P_m$ is super edge-magic if n is odd and $m \geq 2$.

The next two theorems show super edge-magic total labelings of graphs $(C_n \times P_m) + A_p$ and $(C_n \times P_m) + \sum_{i=1}^{n} A^i_p$.

Theorem 5. If n is odd, $n \geq 3$, $m \geq 2$ and $p \geq 1$, then the graph $(C_n \times P_m) + A_p$ has a super edge-magic total labeling.

Proof. If m is even, $m \geq 2$, $1 \leq k \leq m$, $1 \leq i \leq n$, then we construct a vertex labeling f_1 in the following way,
Expanding Super Edge-Magic Graphs

If \(m \) is odd, \(m \geq 3, 1 \leq k \leq m, 1 \leq i \leq n \), then we define a vertex labeling \(f_8 \) as follows,

\[
\begin{cases}
\frac{n+i}{2} + n(k-1) & \text{if } i \text{ is odd and } k \text{ is odd}, \\
\frac{1}{2} + n(k-1) & \text{if } i \text{ is even and } k \text{ is odd}, \\
nk & \text{if } i = 1 \text{ and } k \text{ is even}, \\
n(k-1) + \frac{i-1}{2} & \text{if } i \text{ is odd and } k \text{ is even}, \\
n(k-1) + \frac{n+i-1}{2} & \text{if } i \text{ is even and } k \text{ is even},
\end{cases}
\]

\(f_8(u_j) = mn + j \) for \(1 \leq j \leq p \).

It is easy to verify that for each edge \(xy \in E((C_n \times P_m) + A_p) \) the values \(f_7(x) + f_7(y) \) and \(f_6(x) + f_6(y) \) form an arithmetic sequence \(\frac{n+1}{2} + 1, \frac{n+1}{2} + 2, \ldots, 2mn - \frac{n-1}{2}, 2mn - \frac{n-3}{2}, \ldots, 2mn - \frac{n-1}{p} + p \).

Let \(f_9 \) be a bijection from \(E((C_n \times P_m) + A_p) \) onto \(\{1, 2, \ldots, 2mn - n + p\} \). We can combine the vertex labeling \(f_7 \) (or \(f_8 \)) and the edge labeling \(f_9 + mn + p \) such that the resulting labeling is total and the edge sum for each edge \(xy \in E((C_n \times P_m) + A_p) \) is equal to \(3mn + \frac{3-n}{2} + 2p \).

Theorem 6. If \(n \) is odd, \(n \geq 3, m \geq 2, \) and \(p \geq 1 \), then the graph \((C_n \times P_m) + \sum_{i=1}^{n} A'_i\) has a super edge-magic total labeling.

Proof. Define vertex labeling \(f_{10} \) and \(f_{11} \) such that:

\[
\begin{align*}
\text{if } m \text{ is even, } 1 \leq k \leq m, 1 \leq i \leq n, & \quad f_{10}(v_{i,k}) = f_7(v_{i,k}), \\
\text{if } m \text{ is odd, } 1 \leq k \leq m, 1 \leq i \leq n, & \quad f_{11}(v_{i,k}) = f_8(v_{i,k}), \\
\text{for } 1 \leq j \leq p, & \quad f_{10}(u_{i,j}) = f_{11}(u_{i,j}) = n(m + j - 1) + 1.
\end{align*}
\]
\[f_{10}(u_{i,j}) = f_{11}(u_{i,j}) = n(m + j) - i + 2 \text{ for } 2 \leq i \leq n \text{ and } 1 \leq j \leq p. \]

We can see that vertices of \((C_n \times P_m) + \sum_{i=1}^{n} A^t_p\) are labeled by values 1, 2, 3, \ldots, \(n(m + p)\) and \(f_i(x) + f_i(y)\) for all edges \(xy \in (C_n \times P_m) + \sum_{i=1}^{n} A^t_p\) and \(t \in \{10, 11\}\) constitute an arithmetic sequence \(\frac{n+1}{2} + 1, \frac{n+1}{2} + 2, \ldots, 2mn - \frac{n-1}{2} + np\).

We can complete the edge labeling of \((C_n \times P_m) + \sum_{i=1}^{n} A^t_p\) with values in the set \(\{n(m + p) + 1, n(m + p) + 2, \ldots, n(3m + 2p - 1)\}\) consecutively such that the common edge sum is \(k = 3mn + 2pn - \frac{n-3}{2}\). Thus the total labeling of \((C_n \times P_m) + \sum_{i=1}^{n} A^t_p\) is super edge-magic and the theorem is proved.

References