Enhanced Hydrogen Storage Capacity Over Electro-synthesized HKUST-1

Witri Wahyu Lestari, Marisa Adreane, Hadi Suwarno

Abstract


HKUST-1 [Cu3(1,3,5-BTC)2] (BTC = 1,3,5-benzene-tri-carboxylate) was synthesized using an electrochemical method and tested for hydrogen storage. The obtained material showed a remarkably higher hydrogen uptake over reported HKUST-1 and reached until 4.75 wt% at room temperature and low pressure up to 1.2 bar. This yield was compared to HKUST-1 obtained from the solvothermal method, which showed a hydrogen uptake of only 1.19 wt%. Enhancement of hydrogen sorption of the electro-synthesized product was due to the more appropriate surface area and pore size, effected by the preferable physical interaction between the hydrogen gasses and the copper ions as unsaturated metal centers in the frameworks of HKUST-1.


Keywords


Copper(II); H3BTC; electrosynthesis; HKUST-1; hydrogen storage; solvothermal

Full Text:

PDF

References


Kulesza, J., Barros, B.S., Da Silva, I.M.V., Da Silva, G.G. & Júnior, S.A., Efficient and Environmentally Friendly Electrochemical Synthesis of The Metallacalixarene [Cu(1,3-bcd)·DMF]·2H2O, Cryst. Eng. Comm., 15, pp. 8881-8882, 2013. DOI:10.1039/C3CE41679H

Farrusseng, D., Metal-Organic Frameworks: Applications from Catalysis to Gas Storage, ed. 1, Wiley-VCH, Weinheim, Germany, 2011. DOI:10.1002/9783527635856

Batten, S.R., Champness, N.R., Chen, X-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Suh, M.P. & Reedijk, J., Coordination Polymers, Metal-organic Frameworks and The Need for Terminology Guidelines, Cryst. Eng. Comm., 14(9), pp. 3001-3004, 2012. DOI: 10.1039/c2ce06488j

Tranchemontagne, D.J., Mendoza-Cortés, J.L., O’Keefe, M. & Yaghi, O.M., Secondary Building Units, Nets and Bonding in The Chemistry of Metal-Organic Frameworks, Chem. Soc. Rev., 38(5), pp. 1257-1283, 2009. DOI:10.1039/b817735j

Yan, X-L., Li, S-N., Jiang, Y-C., Hu, M-C. & Zhai, Q-G., Synthesis, Crystal Structures and Gas Adsorption of Two Porous Pillar-layered MOFs Decorated with Different Functional Groups, Inorg. Chem. Commun., 62, pp. 107-110, 2015. DOI: 10.1016/j.inoche.2015.11.001.

Suh, M.P., Park, H.J., Prasad, T.K. & Lim, D-W., Hydrogen Storage in Metal–Organic Frameworks, Chem. Rev., 112(2), pp. 782-835, 2012. DOI: 10.1021/cr200274s

Goldsmith, J., Wong-Foy, A.G., Cafarella, M.J. & Siegel, D.J. Theoretical Limits of Hydrogen Storage in Metal-organic Frameworks: Opportunities and Trade-offs, Chem. Mater., 25(16), pp. 3373-3382, 2013. DOI: 10.1021/cm401978e

Broom, D.P., Hydrogen Storage Materials: The Characterisation of Their Storage Properties, Springer, London, 2011.

Gensterblum, Y., H2 and CH4 Sorption on Cu-BTC Metal Organic Frameworks at Pressures up to 15 MPa and Temperatures between 273 and 318 K, J. of Surface Engineered Materials and Advanced Technology, 1(2), pp. 23-29, 2011. DOI:10.4236/jsemat.2011.12004

Senkovska, I. & Kaskel, S., High Pressure Methane Adsorption in the Metal-organic Frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bcd)3, Microporous Mesoporous Mater., 112(1-3), pp. 108-115, 2008. DOI:10.1016/j.micromeso.2007.09.016

Panella, B., Hirscher, M., Pütter, H. & Müller. U., Hydrogen Adsorption in Metal-Organic Frameworks: Cu-MOFs and Zn-MOFs Compared, Adv. Funct. Mater., 16(4), pp. 520-524, 2006. DOI:10.1002/adfm. 200500561

Müller, U., Puetter, H., Hesse, M., Wessel, H., Schubert, M., Huff, J. & Guzmann, M., Method for Electrochemical Production of A Crystalline Porous Metal-Organic Skeleton Material, US PATENT, US7968739 B2, pp. 1-30, Jun., 2011.

Müller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., Pastre, J., Metal-organic Frameworks-prospective Industrial Applications, J. Mater. Chem., 16(7), pp. 626-636, 2005. DOI: 10.1039/b511962f

Martinez-Joaristi, A., Juan-Alcaniz, J., Serra-Crespo, P., Kapteijn, F. & Gascon, J., Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks, Cryst. Growth Des., 12(7), pp. 3489–3498, 2012. DOI:10.1021/cg300552w

Kumar, R.S., Kumar, S.S. & Kulandainathan, M.A., Efficient Electrosynthesis of Highly Active Cu3(BTC)2-MOF and Its Catalytic Application to Chemical Reduction, Microporous and Mesoporous Mater., 168, pp. 57-64, 2013. DOI:10.1016/j.micromeso.2012.09.028

Da Silva, G.G., Silva, C.S., Ribeiro, R.T., Ronconi, C.M., Barros, B.S., Neves, J.L. & Júnior, S.A., Sonoelectrochemical Synthesis of Metal-Organic Frameworks, Synthetic Metals, Synthetic Metals, 220, pp. 369-373, 2016. DOI:10.1016/j.synthmet.2016.07.003

Jiang, L-L., Zeng, X., Li, M, Wang, M-Q., Su, T-Y, Tian, X-C. & Tang, J., Rapid Electrochemical Synthesis of HKUST-1 on Indium Tin Oxide, RSC Adv., 7(15), pp. 9316–9320, 2017. DOI:10.1039/c6ra26646k

Suwarno, H., Preparation of Uranium Nitride from Uranium Metal through by Hydriding and Nitriding Process, Adv. Mater. Res., 789, pp. 360-366, 2013. DOI: 10.4028/www.scientific.net/AMR.789.360

Lestari, W.W., Adreane, M., Purnawan, C., Fansuri, H., Widiastuti, N. & Rahardjo, S.B., Solvothermal and Electrochemical Synthetic Method of HKUST-1 and Its Methane Storage Capacity, IOP Conf. Series: Materials Science and Engineering, 107(1), pp. 012030, 2016. DOI: 10.1088/1757-899X/107/1/012030

Schlichte, K., Kratzke, T. & Kaskel, S., Improved Synthesis, Thermal Stability and Catalytic Properties of The Metal-organic Framework Compound Cu3(BTC)2, Microporous and Mesoporous Mater., 73(1-2), pp. 81-88, 2004. DOI:10.1016/j.micromeso.2003.12.027

Chui, S.S-Y., Lo, S. M-F., Charmant, J.P.H., Orpen, A.G. & Williams I.D., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, Science, 283(5405), pp. 1148-1150, 1999. DOI: 10.1126/science.283.5405.1148

Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, Pure & Appl. Chem., 57(4), pp. 603-619, 1985. DOI: 10.1351/pac198557040603

Krawiec, P., Kramer, M., Sabo, M., Kunschke, R., Fröde, H. & Kaskel, S., Improved Hydrogen Storage in the Metal-Organic Framework Cu3(BTC)2, Adv. Eng. Mater., 8(4), pp. 293-296, 2006. DOI: 10.1002/adem.200500223

Liu, J-C., Culp, J.T., Natesakhawat, S., Bockrath, B.C., Zande, B., Sankar, S.G., Garberoglio, G. & Johnson, J.K., Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure, J. Phys. Chem. C., 111(26), pp. 9305-9313, 2007. DOI: 10.1021/jp071449i

Khvostikova, O., Assfour, B., Seifert, G., Hermann, H., Horst, A. & Ehrenberg, H., Novel Experimental Methods for Assessment of Hydrogen Storage Capacity and Modelling of Sorption in Cu-BTC, Int. J. Hydrogen Energy, 35(20), pp. 11042-11051, 2010. DOI; 10.1016/j.ijhydene. 2010.07.089

Anbia, M., Faryadras, M., In-situ Na·Cu3(BTC)2 and Li·Cu3(BTC)2 Nanoporous MOFs Synthesis for Enhancing H2 Storage at Ambient Temperature, J. Nanostruct. Chem., 5(4), pp. 357–364, 2015. DOI: 10.1007/s40097-015-0167-9




DOI: http://dx.doi.org/10.5614%2Fj.math.fund.sci.2017.49.3.1

Refbacks

  • There are currently no refbacks.