The Surface-to-volume Ratio of the Synthesis Reactor Vessel Governing the Low Temperature Crystallization of ZSM-5

Ana Hidayati Mukaromah, Grandprix Thomryes Marth Kadja, Rino Rakhmata Mukti, Ignatius Redyte Pratama, Muhamad Ali Zulfikar, Buchari Buchari

Abstract


Zeolite ZSM-5 is one of major catalysts in petroleum and fine-chemical industries. The synthesis of zeolite ZSM-5 is usually carried out at high temperature above 100 °C using the immense amount of organic structure-directing agents (OSDA). It is interesting to note that fine-tuning the initial gel mixture can be used to enhance the typical slow crystallization rate of ZSM-5. Herein, we report the effect of the surface-to-volume ratio of the reactor vessel to the crystallization of ZSM-5 at low temperature. The surface-to-volume ratio of the reactor vessel could influence the heat-transfer during the synthesis which further governed the crystallization of ZSM-5. It was found that the higher the surface-to-volume of the reactor, the more crystalline of the resulting products. The product with the highest crystallinity exhibited a nearly-spherical morphology composed of smaller ZSM-5 crystallites. This phenomenon allowed the presence of inter-crystallite mesopores which is an advantage for the catalytic reaction using bulky molecules.

Keywords


low OSDA;, low temperature; mesopore; surface-to-volume ratio; ZSM-5;

Full Text:

(PDF)

References


Zhao, Y-W., Shen, B-X., Sun, H., Zhan, G-X. & Liu, J-C., Adsorption of Dimethyl Disulfide on ZSM-5 from Methyl Tert-butyl Ether Liquid: A Study on Equilibrium and Kinetics, Fuel Process. Technol., 145, pp. 14-19, 2016.

Xue, Z., Zhang, T., Ma, J., Miao, H., Fan, W., Zhang, Y. & Li, R., Accessibility and Catalysis of Acidic Sites in Hierarchical ZSM-5 Prepared by Silanization, Microporous Mesoporous Mater., 151, pp. 271-276, 2012.

Miyake, K., Hirota, Y., Ono, K., Uchida, Y., Tanaka, S. & Nishiyama, N., Direct and Selective Conversion of Methanol to Para-xylene over Zn Ion Doped ZSM-5/silicalite-1 Core-shell Zeolite Catalyst, J. Catal., 342, pp. 63-66, 2016.

Abda, M.B., Schäf, O. & Zerega, Y., Ion Exchange Effect on Asymmetric Dioxins Adsorption onto FAU-type X-zeolites, Microporous Mesoporous Mater., 217, pp. 178-183, 2015.

Kim, H.S. & Yoon, K.B., Preparation and Characterization of CdS and PbS Quantum Dots in Zeolite Y and their Applications for Nonlinear Optical Materials and Solar Cell, Coord. Chem. Rev., 263-264, pp. 239-256, 2014.

Cai, X., Zhang, Y., Yin, L., Ding, D., Jing, W. & Gu, X., Electrochemical Impedance Spectroscopy for Analyzing Microstructure Evolution of NaA Zeolite Membrane in Acid Water/ethanol Solution, Chem. Eng. Sci., 153, pp. 1-9, 2016.

Viswanadham, N., Kamble, R., Saxena, S.K. & Singh, M., Enhanced Octane Boosting Reactions of Light Naphtha on Mesoporous ZSM-5, Catal. Commun., 9, pp. 1894-1897, 2008.

Cundy, C.S. & Cox, P.A., The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time, Chem. Rev., 103, pp. 663-701, 2003.

Rabenau, A., Hydrothermal Synthesis in Acid Solutions – A Review, Advanced Ceramics III, Somiya, S., ed., Elsevier, pp. 163-179, 1990.

Konno, H., Tago, T., Nakasaka, Y., Ohnaka, R., Nishimura, J. & Masuda, T., Effectiveness of Nano-scale ZSM-5 Zeolite and Its Deactivation Mechanism on Catalytic Cracking of Representative Hydrocarbons of Naphtha, Microporous Mesoporous Mater., 175, pp. 25-33, 2013.

Kadja, G.T.M., Mukti, R.R., Liu, Z., Rilyanti, M., Ismunandar, Marsih, I.N., Ogura, M., Wakihara, T. & Okubo, T., Mesoporogen-free Synthesis of Hierarchically Porous ZSM-5 below 100 °C, Microporous Mesoporous Mater., 226, pp. 344-352, 2016.

Bonaccorsi, L. & Proverbio, E., Microwave Assisted Crystallization of Zeolite A from Dense Gels, J. Cryst. Growth, 247, pp. 555-562, 2003.

Liu, Z., Wakihara, T., Nishioka, D., Oshima, K., Takewaki, T. & Okubo, T., One-minute Synthesis of Crystalline Microporous Aluminophosphate (AlPO4-5) by Combining Fast Heating with a Seed-assisted Method, Chem. Commun., 50, pp. 2526-2528, 2014.

Liu, Z., Wakihara, T., Oshima, K., Nishioka, D., Hotta, Y., Elangovan, S.P., Yunaba, Y., Yoshikawa, T., Chaikittisilp, W., Matsuo, T., Takewaki, T. & Okubo, T., Widening Synthesis Bottlenecks: Realization of Ultrafast and Continuous-flow Synthesis of High-silica Zeolite SSZ-13 for NOx Removal, Angew. Chem. Int. Ed., 54, pp. 5683-5687, 2015.

Liu, Z., Wakihara, T., Anand, C., Keoh, S.H., Nishioka, D., Hotta, Y., Matsuo, T., Takewaki, T. & Okubo, T., Ultrafast Synthesis of Silicalite-1 using a Tubular Reactor with a Feature of Rapid Heating, Microporous Mesoporous Mater., 223, pp. 140-144, 2016.

Liu, Z., Wakihara, T., Nomura, N., Matsuo, T., Anand, C., Elangovan, S.P., Yunaba, Y., Yoshikawa, T. & Okubo, T., Ultrafast and Continuous Flow Synthesis of Silicoaluminophosphates, Chem. Mater., 28, pp. 4840-4847, 2016.

American Society for Testing and Material, Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction, D5758-01, 2002.

Shukla, D.B. & Pandya, V.P., Estimation of Crystalline Phase in ZSM-5 Zeolites by Infrared Spectroscopy, J. Chem. Tech. Biotechnol., 44, pp. 147-154, 1989.

Landers, J., Gor, G.Y. & Neimark, A.V., Density Functional Theory for Characterization of Porous Materials, Colloids Surf. A, 437, pp. 3-32, 2013.

Petushkov, A., Yoon, S. & Larsen, S.C., Synthesis of Hierarchical Nanocrystalline ZSM-5 with Controlled Particle Size and Mesoporosity, Micropororous Mesoporous Mater., 137, pp. 92-100, 2011.

Yokomori, Y. & Idaka, S., The Structure of TPA-ZSM-5 with Si/Al=23, Microporous Mesoporous Mater, 28, pp. 405-413.

Al-Oweini, R. & El-Rassy, H., Synthesis and Characterization by FTIR Spectroscopy of Silica Aerogels Prepared using Several Si(OR)4 and R′′Si(OR′)3 precursors, J. Mol. Struct., 919, pp. 140-145, 2009.

Figueiredo, A.L., Araujo, A.S., Linares, M., Peral, Á., García, R.A., Serrano, D.P. & Fernandes Jr., V.J., Catalytic Cracking of LDPE Over Nanocrystalline HZSM-5 Zeolite Prepared by Seed-assisted Synthesis from an Organic-template-free System, J. Anal. Appl. Pyrol., 117, pp. 132-140, 2016.




DOI: http://dx.doi.org/10.5614%2Fj.math.fund.sci.2016.48.3.5

Refbacks

  • There are currently no refbacks.


View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.