The Synthesis of Alginate-Capped Silver Nanoparticles under Microwave Irradiation

Authors

  • Foliatini Foliatini Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Yoki Yulizar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Mas Ayu Elita Hafizah Postgraduate Program of Material Science, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jakarta 16440, Indonesia

DOI:

https://doi.org/10.5614/j.math.fund.sci.2015.47.1.3

Keywords:

alginate, microwave irradiation, particle size, reducing and stabilizing agent, silver nanoparticles (Ag-NPs).

Abstract

Synthesis of silver nanoparticles (Ag-NP) was successfully performed within a few minutes by microwave irradiation of the precursor salt (AgNO3) and alginate mixed solution in one pot. Herein, alginate molecules acted as both a reducing and stabilizing agent for the preparation of the silver nanoparticles. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, particle size analysis (PSA), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The pH and concentration ratio of the alginate/metal precursor salt greatly influenced the particle size and its distribution of Ag-NP. The higher the pH the higher the nucleation rate and the larger the electrostatic stabilization, while both of them were responsible for producing a smaller particle size and a narrower size distribution. A higher concentration ratio also yielded a smaller particle size and a narrower size distribution, but above the optimum ratio, the trend was conversely changed due to the reducing capability of the alginate, which was dominant above the optimum ratio, thus creating a high density of nuclei, allowing aggregation to occur. A lower ratio not only led to a higher tendency to produce larger particles, but also a higher probability of anisotropic particle shape formation due to the lack of reducing capability of the alginates.

References

Murugadossa, A., Goswamia, P., Paul, A. & Chattopadhyay, A., "Green' Chitosan Bound Silver Nanoparticles for Selective C-C Bond Formation Via In Situ Iodination of Phenols, J. Mol. Catal. A: Chemical, 304(1-2), pp. 153-158, 2009.

Li, W., Sun, C., Hou, B. & Zhou, X., Room Temperature Synthesis and Catalytic Properties of Surfactant-Modified Ag Nanoparticles, Int. J.Spect., pp. 1-7, 2012.

Li, W., Guo, Y. & Zhang, P., SERS-Active Silver Nanoparticles Prepared by a Simple and Green Method, J. Phys. Chem. C, 114(14), pp. 6413-6417, 2010.

Stamplecoskie, K.G., Scaiano, J.C., Tiwari, V.S. & Anis, H., Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy, J. Phys. Chem. C, 115(5), pp. 1403-1409, 2011.

Vasileva, P., Donkova, B., Karadjova, I. & Dushkin, C., Synthesis of Starch-Stabilized Silver Nanoparticles and their Application as a Surface Plasmon Resonance-Based Sensor of Hydrogen Peroxide, Colloids Surf. A: Physicochem. Eng. Aspects, 382(1-3), pp. 203-210, 2011.

Pandey, S., Goswami, G.K. & Nanda, K.K., Green Synthesis of Biopolymer-Silver Nanoparticle Nanocomposite: An Optical Sensor for Ammonia Detection, Int. J. Biol. Macromol., 51(4), pp. 583-589, 2012.

Lara, H.H., Garza-Trevino, E.N, Ixtepan-Turrent, L. & Singh, D.K., Silver Nanoparticles are Broad-Spectrum Bactericidal and Virucidal Compounds, J. Nanobiotechnol., 9(30),pp.1-8,2011.

Seredych, M., Bashkova, S., Pietrzak, R. & Bandosz, T.J., Interactions of NO2 and NO with Carbonaceous Adsorbents Containing Silver Nanoparticles, Langmuir, 26(12), pp. 9457-9464, 2010.

Saifuddin, N., Nian, C.Y., Zhan, L.W. & Ning, K.X., Chitosan-silver Nanoparticles Composite as Point-of-use Drinking Water Filtration System for Household to Remove Pesticides in Water, Asian J.Biochem., 6(2), pp. 142-159, 2011.

Sumesh, E., Bootharaju, M.S.,Anshup & Pradeep, T., A Practical Silver Nanoparticle-Based Adsorbent for the Removal of Hg2+from Water, J. Hazard. Mater, 189(1-2), pp. 450-457, 2011.

Baek, S.-W., Kim, J.-R. & Ihm, S.-K., Design of Dual Functional Adsorbent/Catalyst System for the Control of VOC's by Using Metal-Loaded Hydrophobic Y-Zeolites, Catal. Today, 93-95(82), pp. 575-581, 2004.

Porel, S., Ramakrishna, D., Hariprasad, E., Gupta, A.D. & Radhakrishnan, T.P., Polymer Thin Film With In Situ Synthesized Silver Nanoparticles as a Potent Reusable Bactericide, Curr. Sci., 101(7), pp. 927-934, 2011.

Singh, N. & Khanna, P.K., In situ Synthesis of Silver Nanoparticles in Polymethylmethacrylate, Mater. Chem. Phys., 104(2-3), pp. 367-372, 2007.

Hoppe, C.E., Lazzari, M., Pardinas-Blanco, I. & Lopez-Quintela, M.A., One-Step Synthesis of Gold and Silver Hydrosols Using Poly(N-vinyl-2-pyrrolidone) as a Reducing Agent, Langmuir, 22(16), pp. 7027-7034, 2006.

Noroozi, M., Zakaria, A., Moksin, M.M., Wahab, Z.A. & Abedini, A., Green Formation of Spherical and Dendritic Silver Nanostructures under Microwave Irradiation without Reducing Agent, Int. J. Mol. Sci.,13(7), pp. 8086-8096, 2012.

Iravani, S., Green Synthesis of Metal Nanoparticles using Plants, Green Chem., 13(10), pp. 2638-2650, 2011.

Salam, H.A., Rajiv, P., Kamaraj, M., Jagadeeswaran, P., Gunalan, S. & Sivaraj, R., Plants: Green Route for Nanoparticle Synthesis, Int. Res. J. Biol.Sci., 1(5), pp. 85-90, 2012.

Barud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y. & Ribeiro, S.J.L., Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes, J. Nanomater., 2011(2011), pp. 1-8, 2011.

Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H. & Varadarajan, P.V., A Novel One-Pot "Green' Synthesis of Stable Silver Nanoparticles using Soluble Starch, Carbohydr. Res., 341(12), pp. 2012-2018, 2006.

Kora, A.J., Sashidhar, R.B. & Arunachalam, J., Gum kondagogu (Cochlospermum gossypium): A Template for the Green Synthesis and Stabilization of Silver Nanoparticles with Antibacterial Application, Carbohydr. Polym., 82(3), pp. 670-679, 2010.

Kora, A.J., Sashidhar, R.B. & Arunachalam, J., Aqueous Extract of Gum olibanum (Boswelliaserrata): A Reductant and Stabilizer for the Biosynthesis of Antibacterial Silver Nanoparticles, Process Biochem., 47(10), pp. 1516-1520, 2012.

van Phu, D., Lang, V.T.K., Lan, N.T.K., Duy N.N., Chau N.D., Du B.D., Cam B.D. & Hien, N.Q., Synthesis and Antimicrobial Effects of Colloidal Silver Nanoparticles in Chitosan by -Irradiation, J.Exp.Nanosci., 5(2), pp. 169-179, 2010.

Sharma, S., Sanpui, P., Chattopadhyay, A. & Ghosh, S.S., Fabrication of Antibacterial Silver Nanoparticle-Sodium Alginate-Chitosan Composite Films, RSC Adv., 2(13), pp. 5837-5843, 2012.

Goh, C.H., Heng, P.W.S. & Chan, L.W., Alginates as a Useful Natural Polymer for Microencapsulation and Therapeutic Applications, Carbohydr. Polym., 88(1), pp. 1-12, 2012.

Liu, Y., Chen, S., Zhong, L. & Wu, G., Preparation of High-Stable Silver Nanoparticle Dispersion by using Sodium Alginate as a Stabilizer under Gamma Radiation, Radiat. Phys. Chem., 78(4), pp. 251-255, 2009.

Saha, S., Pal, A., Kundu, S., Basu, S. & Pal, T., Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and their Catalytic Application To 4-Nitrophenol Reduction, Langmuir, 26(4), pp. 2885-2893, 2010.

Chen, P., Zhang, X., Miao, Z., Han, B., An, G. & Liu, Z., In-situ Synthesis of Noble Metal Nanoparticles in Alginate Solution and their Application in Catalysis, J. Nanosci. Nanotechnol., 9(4), pp. 2628-2633, 2009.

Xia, L., Wang, H., Wang, J., Gong, K., Jia, Y., Zhang, H. & Sun, M., Microwave-Assisted Synthesis of Sensitive Silver Substrate for Surface-Enhanced Raman Scattering Spectroscopy, J. Chem. Phys., 129(13), pp. 1-7, 2008.

Hu, B., Wang, S.-B, Wang, K., Zhang, M. & Yu, S.-H., Microwave-Assisted Rapid Facile "Green" Synthesis of Uniform Silver Nanoparticles: Self-Assembly into Multilayered Films and Their Optical Properties, J. Phys. Chem. C, 112(30), pp. 11169-11174, 2008.

Hu, J.-Q., Chen, Q., Xie, Z.-X., Han, G.-B., Wang, R.-H., Ren, B., Zhang, Y., Yan, Z.-L. & Tian, Z.-Q., A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires, Adv. Funct. Mater., 14(2), pp. 183-189, 2004.

Tsutsui, Y., Hayakawa, T., Kawamura, G. & Nogami,M., Tuned Longitudinal Surface Plasmon Resonance and Third-Order Nonlinear Optical Properties of Gold Nanorods, Nanotechnology, 22(27) July 2011, doi:10.1088/0957-4484/22/27/275203.

Wang, W., Chen, Q., Jiang, C., Yang, D., Liu, X. & Xu, S., One-step Synthesis of Biocompatible Gold Nanoparticles using Gallic Acid in the Presence of Poly-(N-vinyl-2-pyrrolidone), Colloids and Surfaces A: Physicochem. Eng. Aspects, 301(1-3), pp. 73-79, 2007.

Anh, N.T., Phu, D.V., Duy, N.N., Du, B.D. & Hien, N. Q., Synthesis of Alginate Stabilized Gold Nanoparticles by -Irradiation with Controllable Size Using Different Au3+ Concentration and Seed Particles Enlargement, Radiat. Phys. Chem., 79, pp. 405-408, 2010.

JovanoviA, A1/2.,RadosavljeviA, A., A iljegoviA, M., BibiA, N., MiakoviA-StankoviA, V. & KaA areviA-PopoviA, Z., Structural and Optical Characteristics of Silver/Poly(N-vinyl-2-pyrrolidone) Nano Systems Synthesized by -irradiation, Radiat.Phys.Chem., 81(11), pp. 1720-1728, 2012.

Garcia, M.A., de la Venta, J., Crespo, P., Lopis, J., Penades, S., Fernandez, A. & Hernando, A., Surface Plasmon Resonance of Capped Au Nanoparticles, Phys. Rev. B, 72(24), pp. 1-4, 2005.

Amaladhas, T.P., Sivagami, S., Devi, T.A., Ananthi, N. & Velamma, S.P., Biogenic Synthesis of Silver Nanoparticles by Leaf Extract of Cassia angustifolia, Adv. Nat. Sci.: Nanosci. Nanotechnol.,3(4), pp. 1-7, 2012.

Sondi, I., Goia, D.V. & MatijeviA, E., Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles, J. Colloid Interface Sci., 260(1), pp. 75-81, 2003.

Tripathy, A., Raichur, A.M., Chandrasekaran, N., Prathna, T. C. & Mukherjee, A., Process Variables in Biomimetic Synthesis of Silver Nanoparticles by Aqueous Extract of Azadirachta indica (Neem) Leaves, J. Nanopart. Res., 12 (1), pp. 237-246, January 2010.

Rao, Y.N., Banarjee, D., Datta, A., Das, S.K., Guin, R. & Saha, A., Gamma Irradiation Route to Synthesis of Highly Re-Dispersible Natural Polymer Capped Silver Nanoparticles, Radiat. Phys. Chem., 79 (12),pp. 1240-1246, December 2010.

Park, J.Y., Patel, D., Choi, E.S., Baek, M.J., Chang, Y., Kim, T.J.& Lee, G.H., Salt Effects On the Physical Properties of Magnetite Nanoparticles Synthesized at Different NaCl Concentrations, Colloids Surf. A: Physicochem. Eng. Aspects, 367 (1-3), pp. 41-46, September 2010.

Jiang, J., Oberdrster, G., Biswas, P., Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies, J.Nanopart. Res., 11(4), pp. 77-89, May 2009.

Downloads

Published

2015-03-24

Issue

Section

Articles