The Synthesis of Alginate-Capped Silver Nanoparticles under Microwave Irradiation


  • Foliatini Foliatini Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Yoki Yulizar Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Mas Ayu Elita Hafizah Postgraduate Program of Material Science, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jakarta 16440, Indonesia



alginate, microwave irradiation, particle size, reducing and stabilizing agent, silver nanoparticles (Ag-NPs).


Synthesis of silver nanoparticles (Ag-NP) was successfully performed within a few minutes by microwave irradiation of the precursor salt (AgNO3) and alginate mixed solution in one pot. Herein, alginate molecules acted as both a reducing and stabilizing agent for the preparation of the silver nanoparticles. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, particle size analysis (PSA), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The pH and concentration ratio of the alginate/metal precursor salt greatly influenced the particle size and its distribution of Ag-NP. The higher the pH the higher the nucleation rate and the larger the electrostatic stabilization, while both of them were responsible for producing a smaller particle size and a narrower size distribution. A higher concentration ratio also yielded a smaller particle size and a narrower size distribution, but above the optimum ratio, the trend was conversely changed due to the reducing capability of the alginate, which was dominant above the optimum ratio, thus creating a high density of nuclei, allowing aggregation to occur. A lower ratio not only led to a higher tendency to produce larger particles, but also a higher probability of anisotropic particle shape formation due to the lack of reducing capability of the alginates.


Murugadossa, A., Goswamia, P., Paul, A. & Chattopadhyay, A., "Green' Chitosan Bound Silver Nanoparticles for Selective C-C Bond Formation Via In Situ Iodination of Phenols, J. Mol. Catal. A: Chemical, 304(1-2), pp. 153-158, 2009.

Li, W., Sun, C., Hou, B. & Zhou, X., Room Temperature Synthesis and Catalytic Properties of Surfactant-Modified Ag Nanoparticles, Int. J.Spect., pp. 1-7, 2012.

Li, W., Guo, Y. & Zhang, P., SERS-Active Silver Nanoparticles Prepared by a Simple and Green Method, J. Phys. Chem. C, 114(14), pp. 6413-6417, 2010.

Stamplecoskie, K.G., Scaiano, J.C., Tiwari, V.S. & Anis, H., Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy, J. Phys. Chem. C, 115(5), pp. 1403-1409, 2011.

Vasileva, P., Donkova, B., Karadjova, I. & Dushkin, C., Synthesis of Starch-Stabilized Silver Nanoparticles and their Application as a Surface Plasmon Resonance-Based Sensor of Hydrogen Peroxide, Colloids Surf. A: Physicochem. Eng. Aspects, 382(1-3), pp. 203-210, 2011.

Pandey, S., Goswami, G.K. & Nanda, K.K., Green Synthesis of Biopolymer-Silver Nanoparticle Nanocomposite: An Optical Sensor for Ammonia Detection, Int. J. Biol. Macromol., 51(4), pp. 583-589, 2012.

Lara, H.H., Garza-Trevino, E.N, Ixtepan-Turrent, L. & Singh, D.K., Silver Nanoparticles are Broad-Spectrum Bactericidal and Virucidal Compounds, J. Nanobiotechnol., 9(30),pp.1-8,2011.

Seredych, M., Bashkova, S., Pietrzak, R. & Bandosz, T.J., Interactions of NO2 and NO with Carbonaceous Adsorbents Containing Silver Nanoparticles, Langmuir, 26(12), pp. 9457-9464, 2010.

Saifuddin, N., Nian, C.Y., Zhan, L.W. & Ning, K.X., Chitosan-silver Nanoparticles Composite as Point-of-use Drinking Water Filtration System for Household to Remove Pesticides in Water, Asian J.Biochem., 6(2), pp. 142-159, 2011.

Sumesh, E., Bootharaju, M.S.,Anshup & Pradeep, T., A Practical Silver Nanoparticle-Based Adsorbent for the Removal of Hg2+from Water, J. Hazard. Mater, 189(1-2), pp. 450-457, 2011.

Baek, S.-W., Kim, J.-R. & Ihm, S.-K., Design of Dual Functional Adsorbent/Catalyst System for the Control of VOC's by Using Metal-Loaded Hydrophobic Y-Zeolites, Catal. Today, 93-95(82), pp. 575-581, 2004.

Porel, S., Ramakrishna, D., Hariprasad, E., Gupta, A.D. & Radhakrishnan, T.P., Polymer Thin Film With In Situ Synthesized Silver Nanoparticles as a Potent Reusable Bactericide, Curr. Sci., 101(7), pp. 927-934, 2011.

Singh, N. & Khanna, P.K., In situ Synthesis of Silver Nanoparticles in Polymethylmethacrylate, Mater. Chem. Phys., 104(2-3), pp. 367-372, 2007.

Hoppe, C.E., Lazzari, M., Pardinas-Blanco, I. & Lopez-Quintela, M.A., One-Step Synthesis of Gold and Silver Hydrosols Using Poly(N-vinyl-2-pyrrolidone) as a Reducing Agent, Langmuir, 22(16), pp. 7027-7034, 2006.

Noroozi, M., Zakaria, A., Moksin, M.M., Wahab, Z.A. & Abedini, A., Green Formation of Spherical and Dendritic Silver Nanostructures under Microwave Irradiation without Reducing Agent, Int. J. Mol. Sci.,13(7), pp. 8086-8096, 2012.

Iravani, S., Green Synthesis of Metal Nanoparticles using Plants, Green Chem., 13(10), pp. 2638-2650, 2011.

Salam, H.A., Rajiv, P., Kamaraj, M., Jagadeeswaran, P., Gunalan, S. & Sivaraj, R., Plants: Green Route for Nanoparticle Synthesis, Int. Res. J. Biol.Sci., 1(5), pp. 85-90, 2012.

Barud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y. & Ribeiro, S.J.L., Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes, J. Nanomater., 2011(2011), pp. 1-8, 2011.

Vigneshwaran, N., Nachane, R.P., Balasubramanya, R.H. & Varadarajan, P.V., A Novel One-Pot "Green' Synthesis of Stable Silver Nanoparticles using Soluble Starch, Carbohydr. Res., 341(12), pp. 2012-2018, 2006.

Kora, A.J., Sashidhar, R.B. & Arunachalam, J., Gum kondagogu (Cochlospermum gossypium): A Template for the Green Synthesis and Stabilization of Silver Nanoparticles with Antibacterial Application, Carbohydr. Polym., 82(3), pp. 670-679, 2010.

Kora, A.J., Sashidhar, R.B. & Arunachalam, J., Aqueous Extract of Gum olibanum (Boswelliaserrata): A Reductant and Stabilizer for the Biosynthesis of Antibacterial Silver Nanoparticles, Process Biochem., 47(10), pp. 1516-1520, 2012.

van Phu, D., Lang, V.T.K., Lan, N.T.K., Duy N.N., Chau N.D., Du B.D., Cam B.D. & Hien, N.Q., Synthesis and Antimicrobial Effects of Colloidal Silver Nanoparticles in Chitosan by -Irradiation, J.Exp.Nanosci., 5(2), pp. 169-179, 2010.

Sharma, S., Sanpui, P., Chattopadhyay, A. & Ghosh, S.S., Fabrication of Antibacterial Silver Nanoparticle-Sodium Alginate-Chitosan Composite Films, RSC Adv., 2(13), pp. 5837-5843, 2012.

Goh, C.H., Heng, P.W.S. & Chan, L.W., Alginates as a Useful Natural Polymer for Microencapsulation and Therapeutic Applications, Carbohydr. Polym., 88(1), pp. 1-12, 2012.

Liu, Y., Chen, S., Zhong, L. & Wu, G., Preparation of High-Stable Silver Nanoparticle Dispersion by using Sodium Alginate as a Stabilizer under Gamma Radiation, Radiat. Phys. Chem., 78(4), pp. 251-255, 2009.

Saha, S., Pal, A., Kundu, S., Basu, S. & Pal, T., Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and their Catalytic Application To 4-Nitrophenol Reduction, Langmuir, 26(4), pp. 2885-2893, 2010.

Chen, P., Zhang, X., Miao, Z., Han, B., An, G. & Liu, Z., In-situ Synthesis of Noble Metal Nanoparticles in Alginate Solution and their Application in Catalysis, J. Nanosci. Nanotechnol., 9(4), pp. 2628-2633, 2009.

Xia, L., Wang, H., Wang, J., Gong, K., Jia, Y., Zhang, H. & Sun, M., Microwave-Assisted Synthesis of Sensitive Silver Substrate for Surface-Enhanced Raman Scattering Spectroscopy, J. Chem. Phys., 129(13), pp. 1-7, 2008.

Hu, B., Wang, S.-B, Wang, K., Zhang, M. & Yu, S.-H., Microwave-Assisted Rapid Facile "Green" Synthesis of Uniform Silver Nanoparticles: Self-Assembly into Multilayered Films and Their Optical Properties, J. Phys. Chem. C, 112(30), pp. 11169-11174, 2008.

Hu, J.-Q., Chen, Q., Xie, Z.-X., Han, G.-B., Wang, R.-H., Ren, B., Zhang, Y., Yan, Z.-L. & Tian, Z.-Q., A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires, Adv. Funct. Mater., 14(2), pp. 183-189, 2004.

Tsutsui, Y., Hayakawa, T., Kawamura, G. & Nogami,M., Tuned Longitudinal Surface Plasmon Resonance and Third-Order Nonlinear Optical Properties of Gold Nanorods, Nanotechnology, 22(27) July 2011, doi:10.1088/0957-4484/22/27/275203.

Wang, W., Chen, Q., Jiang, C., Yang, D., Liu, X. & Xu, S., One-step Synthesis of Biocompatible Gold Nanoparticles using Gallic Acid in the Presence of Poly-(N-vinyl-2-pyrrolidone), Colloids and Surfaces A: Physicochem. Eng. Aspects, 301(1-3), pp. 73-79, 2007.

Anh, N.T., Phu, D.V., Duy, N.N., Du, B.D. & Hien, N. Q., Synthesis of Alginate Stabilized Gold Nanoparticles by -Irradiation with Controllable Size Using Different Au3+ Concentration and Seed Particles Enlargement, Radiat. Phys. Chem., 79, pp. 405-408, 2010.

JovanoviA, A1/2.,RadosavljeviA, A., A iljegoviA, M., BibiA, N., MiakoviA-StankoviA, V. & KaA areviA-PopoviA, Z., Structural and Optical Characteristics of Silver/Poly(N-vinyl-2-pyrrolidone) Nano Systems Synthesized by -irradiation, Radiat.Phys.Chem., 81(11), pp. 1720-1728, 2012.

Garcia, M.A., de la Venta, J., Crespo, P., Lopis, J., Penades, S., Fernandez, A. & Hernando, A., Surface Plasmon Resonance of Capped Au Nanoparticles, Phys. Rev. B, 72(24), pp. 1-4, 2005.

Amaladhas, T.P., Sivagami, S., Devi, T.A., Ananthi, N. & Velamma, S.P., Biogenic Synthesis of Silver Nanoparticles by Leaf Extract of Cassia angustifolia, Adv. Nat. Sci.: Nanosci. Nanotechnol.,3(4), pp. 1-7, 2012.

Sondi, I., Goia, D.V. & MatijeviA, E., Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles, J. Colloid Interface Sci., 260(1), pp. 75-81, 2003.

Tripathy, A., Raichur, A.M., Chandrasekaran, N., Prathna, T. C. & Mukherjee, A., Process Variables in Biomimetic Synthesis of Silver Nanoparticles by Aqueous Extract of Azadirachta indica (Neem) Leaves, J. Nanopart. Res., 12 (1), pp. 237-246, January 2010.

Rao, Y.N., Banarjee, D., Datta, A., Das, S.K., Guin, R. & Saha, A., Gamma Irradiation Route to Synthesis of Highly Re-Dispersible Natural Polymer Capped Silver Nanoparticles, Radiat. Phys. Chem., 79 (12),pp. 1240-1246, December 2010.

Park, J.Y., Patel, D., Choi, E.S., Baek, M.J., Chang, Y., Kim, T.J.& Lee, G.H., Salt Effects On the Physical Properties of Magnetite Nanoparticles Synthesized at Different NaCl Concentrations, Colloids Surf. A: Physicochem. Eng. Aspects, 367 (1-3), pp. 41-46, September 2010.

Jiang, J., Oberdrster, G., Biswas, P., Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies, J.Nanopart. Res., 11(4), pp. 77-89, May 2009.