A New Hybrid Approach for Solving Large-scale Monotone Nonlinear Equations

Jamilu Sabi'u, Abdullah Shah, Mohammed Yusuf Waziri, Muhammad Kabir Dauda

Abstract


In this paper, a new hybrid conjugate gradient method for solving monotone nonlinear equations is introduced. The scheme is a combination of the Fletcher-Reeves (FR) and Polak-Ribiére-Polyak (PRP) conjugate gradient methods with the Solodov and Svaiter projection strategy. Using suitable assumptions, the global convergence of the scheme with monotone line search is provided. Lastly, a numerical experiment was used to enumerate the suitability of the proposed scheme for large-scale problems.

Keywords


global convergence; line search; monotone equations; projection strategy.

Full Text:

PDF

References


Zhang, L., Zhou, W. & Li, D., Global Convergence of a Modified Fletcher–Reeves Conjugate Gradient Method with Armijo-Type Line Search, Numerische Mathematik, 104(4), pp. 561-572, 2006.

Birgin, E.G., Krejić, N. & Martínez, J.M., Globally Convergent Inexact Quasi-Newton Methods for Solving Nonlinear Systems, Numerical algorithms, 32(2-4), pp. 249-260, 2003.

Barzilai, J. & Borwein, J.M., Two-point Step Size Gradient Methods, IMA Journal of Numerical Analysis, 8(1), pp. 141-148, 1988.

Brown, P.N. & Saad, Y., Convergence Theory of Nonlinear Newton–Krylov Algorithms, SIAM Journal on Optimization, 4(2), pp. 297-330, 1994.

Cheng, W. & Li, D.H., A Derivative-free Nonmonotone Line Search and Its Application to the Spectral Residual Method, IMA Journal of Numerical Analysis, 29(3), pp. 814-825, 2008.

Yuan, G. & Zhang, M., A Three-Terms Polak–Ribière–Polyak Conjugate Gradient Algorithm for Large-Scale Nonlinear Equations, Journal of Computational and Applied Mathematics, 286, pp. 186-195, 2015.

Solodov, M.V. & Svaiter, B.F., A Globally Convergent Inexact Newton Method for Systems of Monotone Equations. In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Springer, Boston, MA, pp. 355-369, 1998.

Yan, Q.R., Peng, X.Z. & Li, D.H., A Globally Convergent Derivative-Free Method for Solving Large-Scale Nonlinear Monotone Equations, Journal of Computational and Applied Mathematics, 234(3), pp. 649-657, 2010.

Waziri, M.Y. & Sabi’u, J., A Derivative-free Conjugate Gradient Method and Its Global Convergence for Solving Symmetric Nonlinear Equations, International Journal of Mathematics and Mathematical Sciences, Article ID 961487, pp. 1-8, 2015. DOI: 10.1155/2015/961487

Zhang, H. & Hager, W.W., A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization, SIAM Journal on Optimization, 14(4), pp. 1043-1056, 2004.

Li, Q. & Li, D.H., A Class of Derivative-free Methods for Large-Scale Nonlinear Monotone Equations, IMA Journal of Numerical Analysis, 31(4), pp. 1625-1635, 2011.

Sabi’u, J., Enhanced Derivative-free Conjugate Gradient Method for Solving Symmetric Nonlinear Equations, International Journal of Advances in Applied Sciences, 5(1), pp. 50-57, 2016.

Zhou, W. & Li, D., Limited Memory BFGS Method for Nonlinear Monotone Equations, Journal of Computational Mathematics, 25(1), pp. 89-96, 2007.

Zhang, L., Zhou, W. & Li, D-H., Some Descent Three-term Conjugate Gradient Methods and Their Global Convergence, Optimization Methods and Software, 22(4), pp. 697-711, 2007.

Zhang, L., Zhou, W. & Li, D-H., A Descent Modified Polak–Ribière–Polyak Conjugate Gradient Method and Its Global Convergence, IMA Journal of Numerical Analysis, 26(4), pp. 629-640, 2006.

Waziri, M.Y., Ahmed, K. & Sabi’u, J., A Family of Hager–Zhang Conjugate Gradient Methods for System of Monotone Nonlinear Equations, Applied Mathematics and Computation, 361, pp. 645-660, 2019.

Waziri, M.Y., Ahmed, K. & Sabi’u, J., A Dai–Liao Conjugate Gradient Method via Modified Secant Equation for System of Nonlinear Equations, Arabian Journal of Mathematics, 2019, pp. 1-15, 2019.

Sabi’u, J. & Gadu, A.M., A Projected Hybrid Conjugate Gradient Method for Solving Large-Scale System of Nonlinear Equations, Malaysian Journal of Computing and Applied Mathematics, 1(2), pp. 10-20, 2018.

Abubakar, A.B. & Kumam, P., A Descent Dai-Liao Conjugate Gradient Method for Nonlinear Equations, Numerical Algorithms, 81(1), pp. 197-210, 2019.

Dolan, E.D. & Moré, J.J., Benchmarking Optimization Software with Performance Profiles, Mathematical programming, 91(2), pp. 201-213, 2002.




DOI: http://dx.doi.org/10.5614%2Fj.math.fund.sci.2020.52.1.2

Refbacks

  • There are currently no refbacks.


View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

 

Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM), Center for Research and Community Services (CRCS) Building, 6th & 7th Floor, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, Tel. +62-22-86010080, Fax.: +62-22-86010051; E-mail: jmfs@lppm.itb.ac.id