Correlation and Relativistic Effects on the Level Structure of Negative Ions of Atoms with Half-filled p Shell

Gülay Günday Konan, Leyla Özdemir, Nurgül Gündüz Atik

Abstract


The level structure for negative ions (anions) of some atoms with half-filled p shell have been investigated using the multiconfiguration Hartree-Fock method with Breit-Pauli relativistic effects (MCHF+BP method). Thus, we have performed a systematic calculation including correlation and relativistic corrections for negative ions of these atomic systems. Investigations into the level structures of negative ions provide valuable insight into the fundamental problem of many-body motion. The correlation and relativistic effects in negative ions relative to neutral atoms and positive ions are greatly expected. In this work, we also discuss calculations for these effects in view of the MCHF+BP method.

Keywords


Breit-Pauli Hamiltonian; correlation and relativistic effects; electron affinity; fine-structure levels; MCHF method; negative ion.

Full Text:

PDF

References


Buckman, S.J. & Clark, C.W., Atomic Negative-Ion Resonances, Rev. Mod. Phys., 66(2), pp. 539-655, 1994.

Blondel, C., Recent Experimental Achievements with Negative Ions, Phys. Scr., T58, pp. 31-42, 1995.

Haeffler, G., Ljungblad, U., Kiyan, I.Y. & Hanstorp, D., Fine Structure of As−, Z. Phys. D: At., Mol. Clusters, 42, pp. 263-266, 1997.

Koga, T., Aoki, H., Garcia de la Vega, J.M. & Tatewaki, H., Atomic Ionization Potentials and Electron Affinities with Relativistic and Mass Corrections, Theor. Chem. Acc., 96, pp. 248-255, 1997.

Fischer, C.F., Brage, T. & Jönsson, P., Computational Atomic Structure, an MCHF Approach, Institute of Physics Publishing, Bristol and Philadelphia, England and USA, 1997.

Fischer, C.F., The MCHF Atomic-Structure Package, Computer Physics Communications, 128, pp. 635-636, 2000.

Özdemir, L., Atik, N. & Konan, G.G., The Fine Structure Levels for Ground States of Negative Ions of Nitrogen and Phosphorus, SAU Fen Bilimleri Enstitüsü Dergisi- SAU Journal of Science, 17, pp. 139-146, 2013.

Biémont, E. & Quinet, P., Forbidden Lines in 6pk (k = 1–5) Configu-rations, Physica Scripta, 54, pp. 36-43, 1996.

Kramida, A.E., Atomic Energy Levels and Spectra Bibliographic Database (version 2.0), http://physics.nist.gov/Elevbib, National Insti-tute of Standards and Technology, Gaithersburg, MD., October 5, 2010, (April 16, 2013).

Andersen, T., Atomic Negative Ions: Structure, Dynamics And Collisions, Phys. Reports, 394, pp.157-313, 2004.

Feldmann, D., Rackwitz, R., Heinicke, E. & Kaiser, H.J., Photodetachment of Some Atomic Negative Ions: P−, As−, Sb−, Bi−, Te−, Cr−, Ni−, Z. Phys. A, 282, pp. 143-148, 1977.

Lippa, T.P., Xu, S., Lyapustina, S.A., Nilles, J.M. & Bowen, K.H., Photoelectron Spectroscopy of As−, As2−, As3−, As4−, and As5−, J. Chem. Phys., 109, pp. 10727-10731, 1998.

Walter C.W., Gibson, N.D., Field III, R.L., Snedden, A.P., Shapiro, J.Z., Janczak, C.M. & Hanstorp, D., Electron Affinity of Arsenic and The Fine Structure of As− Measured Using Infrared Photodetachment Threshold Spectroscopy, Phys. Rev. A, 80, pp. 014501 (4 pages), 2009.

Scheer, M., Haugen, H.K. & Beck, D.R., Single and Multiphoton Infrared Laser Spectroscopy of Sb−: A Case Study, Phys. Rev. Lett., 79, pp. 4104-4107, 1997.

Feigerle, C.S., Corderman, R.R. & Lineberger, W.C., Electron Affinities of B, Al, Bi, and Pb, J. Chem. Phys., 74, pp. 1513 (3 pages), 1981.

Bilodeau, R.C. & Haugen, H.K., Electron Affinity of Bi Using Infrared Laser Photodetachment Threshold Spectroscopy, Phys. Rev. A, 64, pp.024501-024503, 2001.

Andersson, P., Lindahl, A.O., Alfredsson, C., Rogström, L., Diehl, C., Pegg, D.J. & Hanstorp, D., The Electron Affinity of Phosphorus, J. Phys. B: At. Mol. Opt. Phys., 40, pp.4097-4107, 2007.




DOI: http://dx.doi.org/10.5614%2Fj.math.fund.sci.2013.45.2.1

Refbacks

  • There are currently no refbacks.


View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.