A New Type of Coincidence and Common Fixed-Point Theorems for Modified 𝛂-Admissible 𝓩-Contraction Via Simulation Function

Sahil Arora, Manoj Kumar, Sanjay Mishra

Abstract


In this manuscript, we introduce the concept of modified α-admissible contraction with the help of a simulation function and use this concept to establish some coincidence and common fixed-point theorems in metric space. An illustrative example that yields the main result is given. Also, several existing results within the frame of metric space are established. The main theorem was applied to derive the coincidence and common fixed-point results for α-admissible 𝒵-contraction.

Keywords


coincidence point; common fixed point; modified 𝛼-admissible 𝓩-contraction; simulation function; triangular 𝛼-orbital admissible function

Full Text:

PDF

References


Wardowski, D., Fixed Points of a New Type of Contractive Mappings in Complete Metric Spaces, Fixed Point Theory and Applications, Article ID 94, pp. 1-6, 2012.

Wardowski, D. & Dung, N.V., Fixed Points of F-weak Contractions on Complete Metric Spaces, Demonstr. Math., XLVII, pp. 146-155, 2014.

Khojasteh, F., Shukla, S. & Radenovic, S., A New Approach to the Study of Fixed Point Theory for Simulation Functions, Filomat, 29(6), pp. 1189-1194, 2015.

Samet, B., Vetro, C. & Vetro, P., Fixed Point Theorem for (α-ψ) Contractive Type Mappings, Nonlinear Analysis, 75, pp. 2154-2165, 2012.

Popescu, O., Some New Fixed Point Theorems for α-Geraghty Contractive Type Maps in Metric Spaces, Fixed Point Theory and Applications, 190, pp. 1-12, 2014.

Banach, S., Sur Les Opérations Dans les Ensembles Abstraits et Leur Application Aux Équations Intégrales, Fundamenta Mathematicae, 3, pp. 133-181, 1922.

Karapinar, E., Fixed Points Results via Simulation Functions, Filomat, 30(8), pp. 2343-2350, 2016.

Aydi, H., Felhi, A., Karapinar, E. & Alojail, F.A., Fixed Points on Quasi-Metric Spaces via Simulation Functions and Consequences, Journal of Mathematical Analysis, 9(2), pp. 10-24, 2018.

Chandok, S., Chanda, A., Dey, L.K., Pavlovic, M. & Radenovic, S., Simulation Functions and Geraghty Type Results, to be appear in Boletim da Sociedade Paranaense de Matemática.

Roldan, A., Karapinar, E., Roldan, C. & Martinez-Moreno, J., Coincidence Point Theorems on Metric Spaces via Simulation Functions, Journal of Computational and Applied Mathematics, 275, pp. 345-355, 2015.

Argoubi, H., Samet, B. & Vetro, C., Nonlinear Contractions Involving Simulation Functions in a Metric Space with a Partial Order, Journal of Nonlinear Science and Applications, 8, pp. 1082-1094, 2015.




DOI: http://dx.doi.org/10.5614%2Fj.math.fund.sci.2020.52.1.3

Refbacks

  • There are currently no refbacks.


View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

 

Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM), Center for Research and Community Services (CRCS) Building, 6th & 7th Floor, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia, Tel. +62-22-86010080, Fax.: +62-22-86010051; E-mail: jmfs@lppm.itb.ac.id