Conic Optimization, with Applications to (Robust) Truss Topology Design

C. Roos, D. Chaerani


After a brief introduction to the field of Conic Optimization we present
some interesting applications to the (robust) trus topologr design (TTD)
problem, where the goal is to design a truss of a given weight best able
to withstand a set of given loads. We present a linear model for the
single-load case and semidefinite models for the multi-load and the ro'
bust TTD problem. All models are illustrated by examples. It is also
shown that by using duality the size of some of these models can be
reduced significantly.


conic optimization; truss topolory design; conic quadratic optimization; semidefinite optimization; robust optimization

Full Text:



W. Achtziger, M. Berrdsoe, A. Ben-Tal, and J. Zowe. Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Engrg., 4(4):315-345. 1992.

A. Ben-Tal and M.P. Bendsoe. A new method for oplimal truss topology design. SIAM J. Optim., 3(2):322-358, 1993.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Semidefinite Program-ming. In: H. Wolkowicz, R. Saigal, and L. Vandenberghe, Eds. Handbook on Semidefinite Programming, Kluwer Academic Publishers, 2000.

A. Ben-Tal, T. Margalit, A. Nemirovski. Robust modeling of multi-stage portfolio problems. In: H. Frenk, C. Roos, T. Terlaky, S. Zhang, Eds. High Perfomance Optimization, Kluwer Academic Publishers, 2000, 303-328.

A. Ben-Tal and A. Nemirovski. Robust truss topolory design via semidefinite programming. SIAM J. Optim., 7(4):991-1016,1997.

A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res., 23(4):769 - 805,1998 .

A. Ben-TaI and A. Nemirovski. Robust solutions of uncertain linear programs. Oper. Res.Lett., 25(1):1-13, 1999.

A. Ben-Tal and A. Nemirovski. Lectures on Modem Convex Optimization. Anal-ysis, Algorithms and Engineering Applications, volume 1 of MPS/SIAM Series on Optimization. SIAM, Philadelphia,USA, 2001. ISBN G89871-491-5.

A. Ben-Tal and A. Nemirovski. Stable Truss Topology Design via Semidefinite Programming. SIAM J. Optim., 7:991-1016,1997.

A. Ben-Tal and A. Nemirovski. Robust solutions of Linear Programming prob-lems contaminated with uncertain data. Mathematical Programming, 88:411-424, 2000.

A. Ben-Tal and A. Nemirovski. On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM J. on Optimization. l2(3):811-833, 2002 .

A. Ben-Tal and A. Nemirovski. Robust optimization-methodology and applica-tions. Math. Program., 92(3, Ser.B):453-480, 2002. ISMP 2000, Part 2 (Atlanta, GA).

A. Ben-Tal and A. Nemirovski. Potential reduction polynomial time method for truss topology design. SIAM J. Optim., 4(3):596-612, 1994.

l L. El Ghaoui and H. Lebret. Robust solutions to least-square problems with uncertain data matrices. SIAM J. of Matris Anal. and.Appl., 18:1035-1064,1997.

L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain sernidefi-nite programs. SIAM J. Optim., 9:33-52, 1998.

L. El Ghaoui. Inversion error, condition number, and approximate inverses of uncertain matrices. Linear Algebra and its Applications.343/344(2002), 171-193.

F. Jarre, M. Kocvara, and J. Zowe. Optimal truss design by interior-point meth-ods. SIAM J. Optim., 8(4):1084-1107(electronic), 1998.

Y. Nesterov and A.S. Nemirovski. lnterior point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics, Vol. 13. SIAM, Philadel-phia, USA, 1994.

C. Roos, T. Terlaky, and J.-Ph.Vial. Theory and Algorithms for Linear Op-timization. An Interior-Point Approach. John Wiley & Sons, Chichester, UK, 1997.

N.Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and SystemSciences, 25:1-11, 1987.

A.L. Soyster. Convex Programming with Set-Inclusive Constraints and Applica-tions to Inexact Linear Programming. Operations Research,21:1154-1157,1973.

T. Terlaky (ed.). Interior Point Methods of Mathematical Programming. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.

Y. Ye. Interior Point Algorithms, Theory and Analysis. John Wiley & Sons, Chichester, UK, 1997.

J. Zowe, M. Kocvara, and M. P. Bendsoe. Free material optimization via math-ematical programming. Moth. Programming, 79(1-3, Ser. B):445-466, 1997.


  • There are currently no refbacks.

View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.


ITB Journal Publisher, LPPM ITB, Center for Research and Community Services (CRCS) Building, 6th & 7th Floor, Jalan Ganesha 10, Bandung 40132, Indonesia, Phone: +62-22-86010080, Fax.: +62-22-86010051; E-mail: