Paper ID: 2132

Modelling Multiple Dosing with Drug Holiday in Antiretroviral treatment on HIV-1 infection

Sutimin1,4, Nuning Nuraini1 , Faraimunashe Chirove2 & Lisyani. B. Suromo3
1Department of Mathematics, Institut Teknologi Bandung, Indonesia
2School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, South Africa
3Clinical Pathology Department, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
4Department of Mathematics, Diponegoro University Semarang, Indonesia
Email: sutimin@undip.ac.id
 

Received February 22th, 2016, 1st Revision July 3rd, 2016, Accepted for publication July 28th, 2016

Abstract.  We develop a within host mathematical model that incorporates the combination of RTI and PI treatments by using pharmacokinetics model to describe the dynamics of target cells and viral load in early HIV-1 infection. The local stability of uninfected steady state for the model can be determined by alternative threshold parameter.  A pharmacokinetics model is employed to estimate the drug efficacy in multiple dosing. We explore numerically the effect of periodic drug efficacy of pharmacokinetics type under various treatment interruptions on outcomes of HIV-1 infection. The effectiveness of treatment interruptions is determined time period of drug holidays. Our results show that the long drug holidays leads to therapy failure. Under treatment interruptions of combination of one RTI and one PI therapy, the effectiveness of treatment requires short duration of drug holiday. 

Keywords: Langerhans; CD4+T cells; Drug holiday; HIV-1; Pharmacokinetics.

References

[1] Dragic, T., Litwin V, Allaway G.P., Martin E. R., Huang, Nagashima K.A, Cayanan C, Maddon P.J., Koup R.A., Moore J.P., & Paxton W.A., HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381(6584), pp. 667-673, 1996.

[2] Hladik,  F.,  Sakchalathorn, P.,  Ballweber, L., Lentz, G., Fialkow, M, Eschenbach, D., & Mc Elrath, M.J., Initial Events in Establishing Vaginal Entry and Infection by Human Immunodeficiency Virus Type-1, Immunity, 8(2), pp. 257-270, 2000.

[3] Rong, L., Feng, Z., &  Perelson, A.S., Emergence of HIV-1 Drug Resistance During Antiretroviral Treatment, Bull. Math. Biol., 69(6), pp. 2027-2060, 2007.

[4] Ding, A.A., & Wu, H., Assessing antiviral potency of anti-HIV therapies in    vivo by comparing viral decay rates in viral dynamic models, Biostatistics, 2(1), pp. 13-29, 2001.

[5] Kirschner, K.E., & Webb, G.F., A Mathematical model of combined drug therapy of HIV infection, J. Theor. Med., 1(1), pp. 25-34, 1997.

[6] Srivastava, P.K., Banerjee M., & Chandra P., Modeling the Drug Therapy for HIV Infection, J. Biol. Sys., 17(2), pp. 213-223, 2009.

[7] De Leenheer, P., Within-Host Virus Models with Periodic Antiviral Therapy, Bull. Math. Biol., 71(1), pp. 189-210, 2009.

[8] Tarfulea, N., A mathematical model for HIV treatment with time-varying antiretroviral therapy, Int. J. Comp. Math., 88(15), pp. 3217-3235, 2011.

[9] Sattentau, Q.J., Cell-to-cell spread of retroviruses, Viruses, 2(6), pp.1306–1321, 2010.

[10] Perelson, A.S., & Ribeiro, R.M., Modeling the within-host dynamics of HIV infection, BMC Biology, 11(96), pp. 1-10, 2013.

[11] Chirove, F., Sutimin, E. Soewono & N. Nuraini, Analysis of combined Langerhans and CD4  T Cells HIV infection, SIAM J.  App. Math., 74(4), pp. 1174-1193, 2014.

[12] Sutimin, F. Chirove, E. Soewono, N. Nuraini, & Lisyani B. S., A Model Incorporating Combined RTIs and PIs Therapy During Early HIV-1 Infection, (to appear).

[13] Vikram, L., Singh, R.A., Sandeep, S., Tarun, J., & Mohan D., Population pharmacokinetics of antiretroviral agents: on review, IRJP, 3(7), pp. 75-85, 2012.

[14] Bonhoeffer, S., Rembiszewski, M., Ortiz, G.M., & Nixon, D.F., Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, AIDS, 14(15), pp. 2313-2322, 2000.

[15] Ju, R., & Uetrecht, F.M., Mechanism of idiosyncratic drug reactions: Reactive metabolites formation, protein binding and the regulation of the immune system, Current Drug Metabolism 3 (4), pp. 367–377, 2002.

[16] Pichler, W.J., The p-i concept: Pharmacological interaction of drugs with immune receptors, World Allergy Organ J. 1(6), pp. 96–102, 2008. 

[17] Weber, J., The pathogenesis of HIV-1 infection, British Med. Bull., 58(1), pp. 61-72, 2001.

[18] Diekmann, O., & Heesterbeek J.A.P., Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation, John Wiley & Son, Ltd., Chichester, UK, 2000.

[19] Dixit, N.M., & Perelson, A.S., Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay, J. Theor. Biol., 226(1), pp. 95-109, 2004.

[20] Miron, R.E., & Smith, R.J., Modelling imperfect adherence to HIV induction therapy, BMC Infect. Dis., 10(6), pp. 1-16, 2010.

[21] Benson, Perspective Structured Treatment Interruptions—New Findings, International AIDS Society-USA, 14(3), pp. 107-111, 2006.

[22] Culshaw, R., & Ruan, S., A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165(1), pp. 27–39, 2000.

[23] Kamath, A.T., Henri, S.,  Battye, F., Tough, D.F., & Shortman, K., Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs, Blood, 100 (5), pp. 1734–1741, 2002.

[24] Stafford, M.A., Corey, L., Cao, Y., Daar, E.S., Ho, D.D., & Perelson, A.S., Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (3), pp. 285–301, 2000.

[25] Blauvelt, D., Blauvelt, A., Sugaya, M., Loré K., Koup, R.A., & Daniel, C., HIV-Infected Langerhans cells preferentially transmit virus to proliferating autologous CD4+ memory T cells located within Langerhans cell-to-cell clusters, J. Immunol., 172(4), pp. 2219 – 2224, 2004.

[26] Perelson, A.S., Kirschner, D.E., & De Boer, R., Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114(1), pp. 81–125, 1993.

[27] Kirschner, D., Using mathematics to understand HIV immune dynamics, Notices Amer. Math. Soc., 43 (2), pp. 191–202, 1996.

[28] Wang, Z., & Liu, X., A chronic viral infection model with immune impairment, J. Theor. Biol., 249(3), pp. 532–542, 2007.

[29] Perelson, A.S., & Nelson, P.W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1), pp. 3–44, 1999.

[30] Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., & Ho, D.D., HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271(5255), pp. 1582–1586, 1996.

[31] Adams, B.M., Banks, H.T., Davidian, M., Kwon, H.D, Tran, H.T., Wynne, S.N., & Rosenberg, E.S., HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184(1), pp. 10–49, 2005.

[32] Dimitrov, D.S., Willey, R.L., Sato, H., Chang, L.J., Blumenthal, R., & Martin, M.A., Quantitation of human immunodeficiency virus type 1 infection kinetics, J. Virol., 67(4), pp. 2182–2190, 1993.

[33] Haase, A.T., Henry, K., Zupancic, M., Sedgewick, G., Faust, R.A., Melroe, H., Cavert, W., Gebhard, K., Staskus, K., Zhang, Z.Q., Dailey, P.J., Balfour, H.H. Jr., Erice, A., & Perelson, A.S., Quantitative image analysis of HIV-1 infection in lymphoid tissue, Science, 274(5289), pp. 985–989, 1996.

[34] Mbogo, W.R., Luboobi, L.S., & Odhiambo, J.W., Stochastic Model for Langerhans Cells and HIV Dynamics In Vivo, ISRN App. Math., vol. 2014, p. 1-10, 2014.

[35] Cameron, P., Pope, M., Granelli-Piperno, A., & Steinman, R.M., Dendritic cells and the replication of HIV-1, J. Leukoc. Biol., 59(2), p. 158 – 171, 1996.

[36] Rivadeneira, P.S., Moog, C.H., Stan, G-B, Brunet, C., Raffi F., Ferré, V., Costanza, V., Mhawej, M.J., Biafore, F., Ouattara, D.A., Ernst, D., Fonteneau R., & Xia, X., Mathematical Modeling of HIV Dynamics After Antiretroviral Therapy Initiation: A Review, Biores Open Access, 3(5), p. 233 – 241, 2014.

[37] Horton, J.J., Allen, M.H., & MacDonald, D.M., An assessment of Langerhans cell quantification in tissue sections, J. Am. Acad. Dermatol, 11 (4), p. 591 – 593, 1984

[38] Knight, S.C., Macatonia, S.E., & Patterson, S., HIV I infection of dendritic cells, Int. Rev. Immunol., 6(2-3), p. 163 – 173, 1990.



View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.