Paper ID:6387

Evaluation of Batch Culture Phytoremediation Process Using Local Hydromacrophytes to Reduce Synthetic Pesticide Residue Contaminated in Water Irrigation

Catur Retnaningdyah1,2 & Endang Arisoesilaningsih1

1Biology Department, Faculty of Mathematics and Natural Sciences University of Brawijaya, Jl. Veteran Malang 65145

2E-mail: caturretnaningdyah@gmail.com

Received 07/11/17, 1st Revision 18/09/18, Accept to Publish 21/11/18

Abstract. The aim of this study study is to evaluated the effectivity of batch culture phytoremediation process to reduce water irrigation be enriched with 6.4 µL/L synthetic pesticide ‘Prevathon’. This is a true experiment research using a completely randomized design which conducted in greenhouse using a batch culture system on a 30 L bucket with sand and gravel as a substrate. The treatment were five types of hydromacrophytes (emergent: Scirpus sp., Acorus calamus, Marsilea crenata; floating leaf macrophytes: included Ipomoea aquatica, Azolla sp.; submerged: Valisneria sp., Hydrilla verticilata; polyculture of the three hydromacrophytes, and controls without plant), repeated three times at the same time. The effectiveness of the phytoremediation model was determined by water physicochemical parameters, periphyton diversity and biotic diatom indices (percentage of pollution tolerant value/%PTV and trophic diatom index/TDI) as bioindicator of water quality   on 6, 13, 29 and 37 days after incubation. Research results showed that decreasing value of Biochemical Oxygen Demand/BOD, turbidity, bicarbonate, nitrate, orthophosphate, Total Phosphate/TP and free chlorine significantly after incubation for 6 days. Decreasing concentration of Chemical Oxygen Demand/COD and after incubation for 13 days.  Water quality improved from slightly and moderately polluted (diversity index 1.6-2.8) become clean water and slightly polluted (diversity index 2.8-4.2), from moderately and heavily organic pollution (PTV 40.0-93.7%) to slightly and free of organic pollution (PTV 2.4-34.1%), and from meso-eutrophic and eutrophic (TDI 37.4-70.4) become oligo and meso-eutrophic (TDI 13.7-26.4). The water quality Hydromacrophytes submerged and polyculture were more effectively perform phytoremediation process compared with others

Keywords: Diatom biotic indices, phytoremediation, Prevathon, water irrigation.

References

[1]          JICA, The Study for Formulation Development Program in the Republic of Indonesia, Final Report, Volume I. Executive Summary, Nopember 1995.

[2]          Wimbaningrum, R., Indriyani, S., Retnaningdyah, C. & Arisoesilaningsih, E., Monitoring Water Quality Using Biotic Indices of Benthic Macroinvertebrates along Surfaces Water Ecosystems in Some Tourism Areas in East Java, Indonesia, J. Ind. Tour. Dev. Std., 4(2), pp.81-90, 2016.

[3]          Habiebah, R.A.S. & Retnaningdyah, C., Evaluasi Kualitas Air Akibat Aktivitas Manusia di Mata Air Sumber Awan dan Salurannya, Singosari Malang, J. Biotropika, 2(1), pp. 40-45, 2014.

[4]          Kartikasari, D., Retnaningdyah, C., & Arisoesilaningsih, E., Application of Water Quality and Ecology Indices of Benthic Macroinvertebrate to Evaluate Water Quality of Tertiary Irrigation in Malang District, J.Trop. Life.Science, 3(3), pp. 193-201, 2013.

[5]          Retnaningdyah, C. & Arisoesilaningsih E., Indikasi Pencemaran Mata Air di DAS Brantas Hulu Wilayah Malang Raya Menggunakan Indeks Biotik dari Makroinvertebrata Bentos, Prosiding Seminar Nasional Biodiversitas, Ridwan, M., Pamungkas, D.W., Kharismamurti, K., Widiyanti, N., Putri, R.D.A., Noviana, Y., (ed(s), 3(1), pp. 210-213, 2014.

[6]          Daam, M.A. & Brink, P.J.V., Implications of Differences Between Temperate and Tropical Freshwater Ecosystems for The Ecological Risk Assessment of Pesticides, Ecotoxicol., 19, pp. 24–37, 2010.

[7]          Keller, A.E., Acute Toxicity of Several Pesticides, Organic Compounds, and a Wastewater Effluent to the Freshwater Mussel, Anodontai Mbecilis Ceriodaphnia Dubia, and Pimephalesp Romelas, Environ. Contain. Toxicol., 51, pp. 696-702. 1993.

[8]          Dama´sio J, Navarro-Ortega, A., Tauler, R., Lacorte, S., Barcelo, D., Soares, A.M.V.M., Lo’pez, M.A., Riva, M.C. & Barata, C., Identifying Major Pesticides Affecting Bivalve Species Exposed to Agricultural Pollution Using Multi-Biomarker and Multivariate Methods, Ecotoxicol., 19, pp.1084–1094, 2010.

[9]          Bantu, N. & Vakita, V. R., Acute Toxicity of Chlorantraniliprole to Freshwater Fish Channa Punctatus (Bloch). Advances in Zoology and Botany, 1(4), pp. 78-82, 2013.

[10]      Yongqiang, L., Gao, Y., Liang, G. & Lu, Y., Chlorantraniliprole as A Candidate Pesticide Used in Combination with The Attracticides for Lepidopteran Moths, PLoS One, 12(6), 2017.

[11]      Otoritas Kompeten Pangan Organik, Pedoman Sertifikasi Produk Pangan Organik, Departemen Pertanian, Jakarta, 2008.

[12]      Chaudhry Q, Schroder, P., Werck-Reichhart, D., Grajek, W. & Marecik, R., Prospects and Limitations of Phytoremediation for the Removal of Persistent Pesticides in the Environment, Environ. Sci. & Pollut. Res., 9, pp. 4-17, 2002.

[13]      Tiwari, K.K, Dwivedi, S., Mishra, S., Srivastava, S., Tripathi, R.D., Singh, N.K. & Chakraborty, S., Phytoremediation Efficiency of Portulaca Tuberosa Rox and Portulaca Oleracea L. Naturally Growing in an Industrial Effluent Irrigated Area in Vadodra, Gujrat, India, Environ. Monit. Assess., 147, pp.15–22, 2008.

[14]      Retnaningdyah, C., Arisoesilaningsih, E., & Samino, S., Use of Local Hydromacrophytes as Phytoremediation Agent in Pond to Improve Irrigation Water Quality Evaluated by Diatom Biotic Indices, Biodiversitas, 18(4), pp. 1611-1617, 2017. 

[15]      Ivansyah, K. & Retnaningdyah C., Potensi Hidromakrofita Lokal Untuk Peningkatan Kualitas Air Irigasi Tercemar Pupuk NPK Dengan Sistem Batch Culture, J. Biotropika, 1(3), pp. 80 – 84, 2013.

[16]      Retnaningdyah, C., The Improvement of the Quality of Pol-Luted Irrigation Water Through a Phytoremediation Process in A Hydroponic Batch Culture System, In AIP Conference Proceedings 1908 of 8th International Conference on Global Resource Conservation (ICGRC 2017): Green Campus Movement for Global Conservation: 19 – 20 July 2017; Malang. Edited by Salunkhe C, Kikuchi A, Govinda B., doi: 10.1063/1.5012703

[17]      Retnaningdyah, C. & Arisoesilaningsih, E., Using Benthic Diatom to Assess the Success of Batch Culture System Phytoremediation Process of Water Irrigation. J.Trop. Life.Science, 8(3), pp. 259 – 268, 2018, doi: 10.11594/jtls.08.03.08

[18]      Krebs, C.J., Ecological Methodology, Harper and Row Publ., New York, 1989.

[19]      EPA, Pesticide Fact Sheet: Chlorantraniliprole, Office of Prevention, Pesticides and Toxic Substances (7505P), April 2008.

[20]      Barbee, G.C., McClain, W.R., Lanka, S.K. & Stout, M.J., Acute Toxicity of Chlorantraniliprole to Non-Target Crayfish (Procambarus Clarkii) Associated with Rice-Crayfish Cropping Systems, Pest. Manag. Sci, 66, pp. 996-1001, 2010.

[21]      Clesceri, L.S., Greenberg, A.E. & Eaton, A.D., Standard Methods for the Examination of Water and Waste Water, 20th Ed., Washington, 1998.

[22]      Edmondson W.T., Freshwater Biology, Second Ed., John Wiley and Sons Inc., New York, 1959.

[23]      Prescott, G.W., How to Know the Fresh Water Algae, 3rd Ed. Wm.C. Brown Company Publisher, Iowa, 1978.

[24]      Wu, N, Schmalz, B., & Fohrer, N., Study Progress in Riverine Phytoplankton and Its Use as Bio-Indicator-A Review, Austin J Hydrol., 1(1), pp. 9, 2014.

[25]      Kelly, M.G., Use of The Trophic Diatom Index to Monitor Eutrophication in Rivers, Wat. Res., 32(1), pp. 236-242, 1998.

[26]      Kelly, M.G. & Whitton, B.A., The Trophic Diatom Index:  A New Index for Monitoring Eutrophication in Rivers, J. of Appl. Phyco., 7, pp.433-444. 1995.

[27]      Wurts, W.A. & Durborow, R.M., Interactions of pH, Carbon Dioxide, Alkalinity and Hardness in Fish Ponds, SRAC Publication, (464), Southern Regional Aquaculture Center, December 1992.

[28]      Goldman, C.R. & Horne A.J., Limnology, Mc. Graw Hill International Book Co., New York, 1983.

[29]      Ayers R.S. & Westcot, D.W., Water Quality for Agriculture. FAO Irrigation and Drainage Paper, 29 Rev. 1, Rome, 1994.

[30]      Retnaningdyah, C. & Arisoesilaningsih, E., Ecological Significance of Irrigation Channel Riparian to Improve Benthic Macroinvertebrate Diversity, Oral presentation on International Conference on Global Resource Conservation (ICGRC), Malang, Indonesia, February 7th-8th 2013.

[31]      Reynolds, C.S., The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 2006

[32]      Pasisingi, N., Pratiwi, N. M. T. M. & Krisanti, M., The use of trophic diatom index to determine water quality in the upstream of Cileungsi river, West Java, Ind. Fish.Res. J., 20(1), pp.11-16, 2014.

[33]      Ren, Y., Wei, J., Ren, Z., Pei, H., Hu, W., & Feng, Y., A Three-Year Investigation of Planktonic Diatoms and Their Indicative Potential in Dongping Lake, China. Fresenius Env. Bulletin, 25(9), pp. 3570-3578, 2016.



View my Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

 

ITB Journal Publisher, LPPM ITB, Center for Research and Community Services (CRCS) Building, 6th & 7th Floor, Jalan Ganesha 10, Bandung 40132, Indonesia, Phone: +62-22-86010080, Fax.: +62-22-86010051; E-mail: jmfs@lppm.itb.ac.id