IMOBILISASI KULTUR CAMPURAN MIKROBA DAN KARAKTERISTIK AKTIFITASNYA DALAM MENURUNKAN ORGANIK DAN AMONIAK PADA LIMBAH CAIR DOMESTIK

Edwan Kardena, Himawan G Prabowo, Qomarudin Helmy

Abstract


Abstrak. Air limbah domestik yang mengandung senyawa organik dapat berpotensi mencemari lingkungan dan menyebabkan eutrofikasi bila tidak diolah. Salah satu upaya untuk mengurangi kandungan organik dari air limbah adalah dengan menggunakan IPAL yang memanfaatkan proses biologi. Proses biologi dinilai baik karena kandungan organik dari air limbah dapat berguna untuk pertumbuhan mikroba, operasionalnya murah, dan tidak menghasilkan produk sampingan yang berbahaya. Teknologi pengolahan air limbah secara konvensional umunya menggunakan prinsip pertumbuhan mikroba tersuspensi, adapun perkembangan teknologi pengolahan dewasa ini mengarah pada prinsip pertumbuhan mikroba terlekat, termasuk diantaranya adalah teknologi imobilisasi mikroba. Penggunaan mikroba terimobilisasi ini dinilai memiliki kelebihan yaitu konsentrasi selnya yang tinggi dan mampu berinteraksi dengan lingkungan ekstrim. Pada penelitian ini dibuat imobilisasi mikroba dengan tujuan untuk menurunkan kadar organik dari air limbah domestik, dengan 3 macam variasi penggunaan mikroba terimobilisasi sebanyak 3 g, 6 g, dan 9 g. Hasil penelitian menunjukkan bahwa reaktor dengan mikroba sebanyak 3 g, 6 g, dan 9 g mampu menurunkan kandungan organik COD dengan efisiensi sebesar 81,3%, 87,5%, dan 87,5%; BOD sebesar 83,96%, 93,75%, dan 93,34%; dan amonia sebesar 71,14%, 75,31%, dan 78,29%. Mikroba campuran yang terjerat dalam matriks alginate serta lama penyimpanan matriks tidak berpengaruh nyata terhadap jumlah dan viabilitas sel mikroba.

 

Kata kunci: alginat, imobilisasi, kultur campuran, limbah domestic, senyawa organik

 

 

Abstract. Domestic wastewater that contains organic compounds can potentially pollute the environment and cause eutrophication if not treated. One effort to reduce the organic content of wastewater is to use WWTP which utilizes biological processes. Biological processes are considered good because the organic content of wastewater can be useful for microbial growth, is inexpensive and does not produce harmful byproducts. Conventional wastewater treatment technology generally uses the principle of suspended microbial growth, while the development of treatment technology today leads to the principle of embedded microbial growth, including microbial immobilization technology. The use of immobilized microbes is considered to have advantages, namely high cell concentration and being able to interact with extreme environments. In this study microbial immobilisation was made with the aim of reducing organic content from domestic wastewater, with 3 variations of the use of immobilized microbes of 3 g, 6 g, and 9 g. The results showed that reactors with microbes of 3 g, 6 g and 9 g were able to reduce the organic content of COD with efficiencies of 81.3%, 87.5%, and 87.5%; BOD of 83.96%, 93.75% and 93.34%; and ammonia at 71.14%, 75.31% and 78.29%. Mixed microbes that are trapped in the alginate matrix and the length of storage of the matrix have no significant effect on the number and viability of microbial cells.

 

Keywords: Alginate, domestic wastewater, immobilization, mixed culture, organic compound

Full Text:

PDF

References


Basyal, K., Arouguz, A.Z., Adiguel, Z., Baysal, B.M. 2013: Chitosan/alginate crosslinked hydrogels: Preparation characterization and application for cell growth purposes, International Journal of Biological Macromolecules, 59,342-348

Fleming, D. L. 2004: Evaluating bacterial cell immobilization matrices for use n a biosensor. Virginia Polytechnic Institute and State University, Blacksburg, Virginia USA.

Juntawang, C., Rongsayamanont, C., dan Khan, E. 2017: Fouling characterization in entrapped cells-based-membrane bioreactor treating wastewater. Separation and Purification Technology, 175, 321-329.

Kardena, E., Helmy, Q., Ridhati, S.L. 2018: Molecular imprinted hydrogel polymer MIHP as microbial immobilization media in artificial produced water treatment. IOP Conference Series: Earth and Environmental Science. 106.012088.

Khalid, S., Han, J., Hashmi, I., Hasnain, G., Ahmed, M.A., Khan, S.J., dan Arshad, M. 2018: Strengthening calcium alginate microspheres using polysulfone and its performance evaluation: Preparation, characterization and application for enchanced biodegradation of chlorpyrifos. Science of the Total Environment. 631-632:1046-1058.

Krasaekoopt, W., Bhandari, B., Deeth, H. (2003): Evaluation of encapsulation techniques of probiotic for yogurt. Int. Dairy J. 13:3-13.

Kureel, M.K., Geed, S.R., Giri, B.S., dan Singh, R.S. 2017: Biodegradation and kinetic study of benzene in bioreactor packed with PUF and alginate beads and immobilized with Bacillus sp M3, Bioresource Technology, 242, 92-100.

Kurniasih, Ariesyady, H.D., Sulaeman, A., dan Kardena, E. (2013): Biosorption of chromium (VI) using immobilized algal-bloom biomass: kinetic and equilibrium studies. International Journal of Environmental and Resources, Volume 2 Issues 1. 25-31.

Lin, H., Zuliang, C., Chen, C.M., Naidu, R. 2013: Biodegradation of TNT using Bacillus mycoides immobilized in PVA–sodium alginate–kaolin. Appl. Clay Sci. 83–84,336–342.

Mahbubillah, M.A. dan Sovitri, M. 2013: Imobilisasi sel Bacillus S1 dengan matriks alginat untuk proses reduksi merkuri. Jurnal Sains dan Seni. FMIPA, ITS, Surabaya.

Mujtaba, G., Rizwan, M., Kim, G., dan Lee, K. 2018: Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris, Chemical Engineering Journal, 343, 155-162

Pratiwi, D. (2018): Viabilitas bakteri dari air limbah ayam potong yang dienkapsulasi dalam natrium alginat dan potensinya dalam mendegradasi pestisida berbahan aktif karbofuran. Skripsi, Biologi, FMIPA USU. Medan, Januari.

Samuel, J., Mrudula, P., Madora, L. P., Arun, M., Natarajan, C., dan Amitava, M. (2013) : Batch and contimous flow studies of adsorptive removal of Cr (VI) by adapted bacterial consortia immobilzed in alginate beads. Bioresource Technology, 128, 423-430.

Shen, Y., Gao, J., dan Li, L. 2017: Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal. Bioresource Technology. 243, 905-913.

Tazkiaturrizki, T., Soewondo, P., Handajani, M. 2018: Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continous feed. IOP Conference Series: Earth and Environmental Science. 106, 012078.

Tsai, S.L., Lin, C.W., Wu, C.H., Shen, C.M. 2013: Kinetics of xenobiotic biodegradation bythe Pseudomonas sp. YATO411 strain in suspension and cell-immobilized beads. J. Taiwan Inst. Chem. Eng. 44, 303–309.

Vandith, V., Setiyawan, A.S., Soewondo, P., Bophann, P., Hardjono. 2017: Kinetics of nutrient removal in an on-site domestic wastewater treatment facility, MATEC web of Conferences. 147.04004.

Velarosdela, R.N. 2018: https://www.tribunnews.com/metropolitan/ 2018/07/30/penjelasan-kenapa-penyemprotan-cairan-mikroba-dinilai-efektif-hilangkan-bau-di-kali-item

Xu, X., Jin, Z., Wang, B., Lv, C., Hu, B., dan Shi, D. 2017 Treatment of high-strength ammonium wastewater by polyvinyl alcohol-sodium alginate immobilization of activated sludge. Process Biochemistry. 63, 214-220.




DOI: http://dx.doi.org/10.5614%2Fj.tl.2020.26.1.5

Refbacks

  • There are currently no refbacks.