USAHA MENUJU STANDARISASI KEKASARAN PERMUKAAN DAN PROBLEMATIKNYA

Dr. Ir. Muljowidodo Sastrodiputra

Usaha menuju standarisasi kekasaran permukaan telah dilakukan secara intensif sejak dua dekade terakhir ini. Hasil-hasil usaha tersebut ternyata belum memak sah secara nyata. Dalam paper singkat ini akan dibahas hal-hal yang menjadi dasar dilaksanakannya usaha-usaha tersebut, parameter-parameter kekasaran permukaan yang diusulkan serta kesulitan-kesulitan yang dihadapi dalam mencapai tujuan akhir dari usaha tersebut.

1. PENDAHULUAN.

Sejak dari semula kekasaran permukaan suatu benda kerja dipakai sebagai suatu parameter pengukur keberhasilan proses pembuatan benda kerja tersebut. Mula-mula satu benda kerja dibuat, dan kemudian dicoba. Apabila ternyata berhasil, cara pembuatan yang sama diulangi kembali.

Berikutnya dicari suatu parameter dari kekasaran permukaan benda kerja yang dianggap baik, dan diameter tersebut dipakai untuk mengukur benda kerja-benda kerja selanjutnya setelah selesai dibuat melalui proses-proses pengerjaan yang mungkin tidak sama.

Cara pengukuran kekasaran permukaan yang mula-mula dilakukan hanya dengan pengamatan secara visual atau dengan perabaan jari-jari tangan kemudian digantikan dengan microscope dan stylus instruments. Parameter kekasaran permukaan pertama yang diusulkan adalah Rq (RMS). Kemudian harga Ra (Arithmetic average atau Centre Line average) diusulkan. Di Jerman harga Rt (puncak ke lembah) masih banyak dipakai. Biasanya harganya satu harga parameter kekasaran permukaan yang dicantumkan dalam gambar-gambar teknik, walaupun disadari secara luas bahwa hal tersebut sering tidak mencukupi dalam pemakaiannya praktisnya. Dalam beberapa dekade terakhir ini beberapa parameter baru dari kekasaran permukaan banyak diusulkan, diantaranya:

- bearing ratio curve (Abbott curve)
- ordinate distribution function
- auto correlation function
- crest radius distribution function
- amplitude frequency spectrum

Akibatnya timbul kebingungan tentang parameter mana yang sebaiknya dicantumkan dalam gambar teknis seharian hari. Usaha dari berbagai bagai negara ataupun organisasi internasional untuk mencoba me-standardkan parameter tersebut pun menjadi sulit karena adanya berbagai bagai aspek yang harus dipertimbangkan sebelum keputusan yang matang dapat diambil. Ini dapat dilihat dari makin menumpuknya rancangan-rancangan (draft), usulan-usulan standarisasi parameter kekasaran permukaan tersebut, yang belum bisa disepakati secara mutlak bersama-sama. Dalant paper yang singkat ini akan dibahas usaha apa yang telah dilakukan menuju standarisasi 'kekasaran permukaan serta problem-problem yang masih harus dipecahkan secara bersama, dewasa ini.

2. PARAMETER KEKASARAN PERMUKAAN

Apabila bentuk kekasaran permukaan suatu benda dapat kita peroleh, dan dapat dihitung penyimpangan- penyimpangan ordinate-nya terhadap suatu garis reference lurus seperti pada gambar 1, maka parameter kekasaran permukaan dapat didefinisikan sebagai berikut:

Gambar 1. Suatu bentuk kekasaran permukaan dari benda kerja yang dibubut dan garis referensinya.

1) Laboratorium Metrologi Industri, Jurusan Mesin ITB.
2.1. Parameter-parameter Klasik

Gambar 2. Parameter-parameter klasik dari kekasaran permukaan.

a). ordinat dari beberapa puncak tertinggi
 ordinat dari beberapa lembah terendah

b). \(R_t \) (puncak ke lembah maximum)
 \[R_t = y_{\text{max}} - y_{\text{min}} \]
 .. (1)

c). \(R_p \) (puncak tertinggi)
 \[R_p = y_{\text{max}} \]
 .. (2)

d). \(R_v \) (lembah terendah)
 \[R_v = y_{\text{min}} \]
 .. (3)

e). \(R_z \) (jarak rata-rata puncak ke lembah)
 \[R_z = \frac{(R_1 + R_2 + ... + R_5) + (R_6 + R_7 + R_8)}{5} \]
 .. (4)

f). \(R_a \) (Arithmatic Average)
 \[R_a = \frac{1}{N} \sum_{i=1}^{N} X_1 \]
 .. (5)

g). \(R_q \) (root mean square height).
 \[R_q = \sqrt{\frac{1}{N} \sum_{i=1}^{N} y_x^2} \]
 .. (6)

2.2. Fungsi distribusi ordinat

Gambar 3. Fungsi distribusi ordinat.

Fungsi distribusi ordinat ini (Gambar 3) mempunyai 2 parameter yaitu skewness dan kurtosis yang menentukan bentuk dari distribusi tersebut. Definisi dari parameter-parameter tersebut adalah sebagai berikut:

\textbf{2.3. Amplitude Frequency Spectrum}

Fourier transformasi suatu profile kekasaran permukaan dari time domain ke frequency domain akan menghasilkan amplitudo frequency spectrum dari profile tersebut seperti terlihat pada gambar 5.

Gambar 5. Amplitudo-frequency spectrum dari benda kerja yang dibubut.

Mesin Vol. I No. 1
2.4. Fungsi Autokorelasi

Fungsi autokorelasi didefinisikan sebagai berikut:

$$a(\beta) = \lim_{L} \frac{1}{N} \int_{-L/2}^{L/2} f(x) f(x + \beta) \, dx \ldots (10)$$

Beberapa parameter dari fungsi Autokorelasi yang diusulkan oleh D.J. Whitehouse antara lain dapat dilihat pada gambar 6.

Gambar 6. Fungsi Autokorelasi dan parameter-parameter lainnya dari suatu benda kerja yang dibubut.

2.5. Fungsi Distribusi kemiringan lereng (slope distribusi function)

Kemiringan lereng dari suatu profil dapat didefinisikan sebagai berikut (Gambar 7).

$$\nu_{\text{kemiringan lereng}} = \frac{dy}{dx} \ldots \ldots \ldots (11)$$

SLOPE OF THE SURFACE PROFILE

Beberapa parameter kemiringan lereng yang digunakan untuk menentukan fungsi distribusi kemiringan lereng diantaranya:

- Da : harga rata-rata kemiringan lereng
- Dq : harga RMS kemiringan lereng
- Skewness dari fungsi distribusi kemiringan lereng
- Kurtosis dari fungsi distribusi kemiringan lereng

2.6. Fungsi Distribusi Radius Puncak

Radius puncak dari suatu profil didefinisikan menurut persamaan klasik sebagai berikut:

$$r^* = \left(\frac{1}{2} \left(\frac{d^2y}{dx^2} \right)^2 \right)^{3/2} \ldots \ldots \ldots \ldots \ldots (12)$$

Presentasi dari fungsi distribusi ini dan parameter-parameter lainnya dari suatu benda kerja yang dibubut dapat dilihat pada Gambar 8.

3. PROBLEMATIK STANDARDISASI KEKASARAN PERMUKAAN.

Setelah kita ketahui betapa banyaknya parameter-parameter yang telah diusulkan, akan kita tinjau pada di sini problem-problem utama yang timbul dalam usaha standardisasi parameter-parameter tersebut.

Problem-problem utama tersebut dapat dikualifikasi sebagai berikut:

a) Metode pengukuran
b) Bentuk dan ukuran dari stylus
c) Sistem datum yang dipakai
d) Reference line yang dipilih
e) Cut-off ware length dan panjang pengukuran yang hendak dipergunakan
f) Parameter kekasaran permukaan yang dianalisa.

3.1. Metode pengukuran

Ada beberapa metode pengukuran kekasaran permukaan yang dikenal hingga saat ini, dan secara garis besar dapat dibedakan atas dua cara:

a) metode pengukuran dengan stylus
b) metode pengukuran tanpa memakai stylus

Beberapa jenis instrumen yang bekerja atas dasar kedua metode pengukuran tersebut akan diuraikan secara singkat sebagai sekedar contoh.

3.1.1. Metode pengukuran dengan stylus

Dalam garis besarnya prinsip kerja alat yang digunakan untuk mengolah sinyal yang diraba oleh stylus dapat dibagi menjadi dua:

a) alat yang sensitif terhadap kecepatan gerak (speed), misalnya:
 - dengan menggerakkan magnet permanen yang menjadi inti (core) dari suatu kumparan (Gambar 9a)
 - dengan metode piezo-electric (Gambar 9b)
Gambar 8. Parameter-parameter kekasan permukaan dari benda kerja yang dibubut.
3.2. Bentuk dan ukuran dari stylus

Apabila usaha standardisasi kekasaran permukaan lebih di titik beratkan pada stylus method, maka problem pertama yang timbul adalah bagaimana cara mengukur dan mengkalibrasikan bentuk geometris dari stylus yang digunakan.

Hingga saat ini cara pengukuran dan pengkalibrasin stylus masih belum secara resmi distandardisasikan. Contoh dari rancangan usulan (draft) dari ISO yang terakhir ini misalnya adalah ISO/TC57/SC 2N78, (16). Pada prinsipnya ada tiga cara praktis yang dapat dipakai untuk mengkalibrasi bentuk geometris dari stylus:
- dengan melewatkan stylus melintasi suatu celah sempit dan mengukur sinyal keluarnya.
- dengan melewatkan stylus melintasi pisau yang sangat tajam dan mengukur sinyal keluarnya.
- dengan melewatkan stykus melintasi suatu profil yang presisi dan membandingkan hasilnya.

3.3. Sistem Datum

Ada dua sistem datum yang dipakai hingga saat ini yaitu:

a) M system : yang menggunakan garis reference yang diperoleh dari penyaringan secara electronis profile dari permukaan yang diukur (gambar 11).

\[
R_a = \frac{1}{L} \int_{0}^{L} y^2 \, dL \\
R_b = \sqrt{\frac{1}{L} \int_{0}^{L} y' \, dL}
\]

Gambar 11. M system.

b) E system : Yang menggunakan garis reference yang diperoleh dari lintasan skid dengan jari-jari tertentu (gambar 12) dibandingkan dengan profil permukaan yang diukur (gambar 13).

Gambar 10. Alat pembanding kekasaran permukaan

Gambar 12. Posisi skid dan stylus

Januari 1982
Tabel 1. Cut-off wave length (diambil dari NBN 863 NI)

<table>
<thead>
<tr>
<th>Grens Golflengten mm (in)</th>
<th>Nummer van de ruwheidsklas</th>
<th>R_a</th>
<th>R_{max}</th>
<th>Bewerkingssuifd (exemplatif)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>N 13</td>
<td>100</td>
<td>400</td>
<td>Zandgeut - Kokkillegenget - Smeden</td>
</tr>
<tr>
<td>(0,3)</td>
<td>N 12</td>
<td>50</td>
<td>200</td>
<td>Grof zandstralen - Grof schaven - Grof draaien</td>
</tr>
<tr>
<td></td>
<td>N 11</td>
<td>25</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>N 10</td>
<td>12,5</td>
<td>50</td>
<td>Kokkillegenget - Drukgieten - Nauwkeurig smeden - Grof person - Zandstralen - Vlamsnijden - Schaven - Vijlen - Boren - Grof frezen</td>
</tr>
<tr>
<td>(0,1)</td>
<td>N 9</td>
<td>6,3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N 8</td>
<td>3,2</td>
<td>12,5</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>N 7</td>
<td>1,6</td>
<td>10</td>
<td>Koudwalsen - Warmwalsen - Trekken - Person - Vijlen - Schrapen - Schaven - Boren - Draailen - Frezen - Ruimen - Slijpen</td>
</tr>
<tr>
<td>(0,03)</td>
<td>N 6</td>
<td>0,8</td>
<td>3,2</td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>N 4</td>
<td>0,4</td>
<td>1,6</td>
<td>Koudwalsen - Trekken - Nauwkeurig</td>
</tr>
<tr>
<td>(0,01)</td>
<td>N 3</td>
<td>0,2</td>
<td>0,8</td>
<td>Draailen - Nauwkeurig boren - Frezen - Ruimen - Slijpen - Homen</td>
</tr>
<tr>
<td></td>
<td>N 2</td>
<td>0,05</td>
<td>0,25</td>
<td>Met diamant draaien - Met diamant boren - Nauwkeurig slijpen - Homen - Polieren</td>
</tr>
<tr>
<td></td>
<td>N 1</td>
<td>0,025</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N 0,1</td>
<td>0,012</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>0,025</td>
<td></td>
<td>0,01</td>
<td>0,04</td>
<td>Honen - Superfinish - Polieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 2. Harga panjang pengukuran disesuaikan dengan harga cut-off wave length yang sebanding (diambil dari NEN 3635).

<table>
<thead>
<tr>
<th>type ruwheidsmeter</th>
<th>Cut-off λ_B</th>
<th>meetlengte (L)</th>
<th>ligt tussen</th>
</tr>
</thead>
<tbody>
<tr>
<td>met gefixeerde,</td>
<td>0,08</td>
<td>0,4 en</td>
<td>2</td>
</tr>
<tr>
<td>door mechanische</td>
<td>0,25</td>
<td>1,25</td>
<td>5</td>
</tr>
<tr>
<td>middelen bepaalde</td>
<td>0,8</td>
<td>2,4</td>
<td>8</td>
</tr>
<tr>
<td>meetlengte L</td>
<td>2,5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>met vrij in te</td>
<td>0,08</td>
<td>2,5</td>
<td>16</td>
</tr>
<tr>
<td>stellen meetlengte L</td>
<td>0,25</td>
<td>2,5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0,8</td>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

Januari 1982
Untuk mengetasi kesimpangsiuran mengenai hal ini, badan standarisasi dari Belanda pernah mengeluarkan harga patokan panjang pengukuran (L) dibandingkan dengan harga cut-off wave length yang sebanding (Tabel 2).

3.5. Parameter Kekasaran Permukaan

Problem yang terakhir dan yang paling sulit justru adalah menetapkan parameter yang mana yang paling tepat dipakai sebagai standard pengukur. Hal ini tidaklah mudah karena setiap parameter mempunyai kelebihan dan kekurangannya masing-masing. Ambil contoh misalnya beberapa bentuk kekasaran permukaan yang mempunyai harga Ra yang sama seperti pada Gambar 17.

Gambar 17. Beberapa bentuk kekasaran permukaan yang berbeda dengan harga Ra yang sama.

Akan terlihat bahwa bentuk-bentuk kekasaran permukaan tersebut akan berlainan sifatnya dalam pemakaian praktisnya. Oleh karena itu timbul usul-usul untuk menambahkan parameter yang lain seperti skewness dari fungsi distribusi ordinate dalam spesifikasi kekasaran permukaan suatu benda untuk melengkapi data-data teknis permukaan tersebut. Demikianlah usul-usul lain makin berkembang, misalnya Al Salih (42) mengusulkan skewness dan kurtosis dari Fungsi Distribusi Ordinat untuk mengidentifikasi kekasaran permukaan suatu benda, Peklenik (15) mengusulkan Fungsi Autokorelasi, Spragg & Whitehouse (17) mengusulkan kombinasi dari Ra dan panjang gelombang rata-rata (average wave length), Myers (13) mengusulkan kemiringan lereng (slope), Greenwood & Williamson (14) mengusulkan radius puncak dsb.

Pada hakekatnya ada dua tujuan penting dari pemilihan parameter yang tepat untuk distandardkan bagi kriteria kekasaran permukaan:

a) Parameter kekasaran permukaan yang dipilih harus dapat menjamin fungsi dari benda kerja yang bersangkutan dalam pemakaian praktisnya.

b) Parameter kekasaran permukaan yang dipilih harus dapat membedakan permukaan benda-benda kerja yang dibuat melalui proses yang berbeda-beda.

Sampai dewasa ini berbagai-bagai riset telah diadakan untuk menemukan parameter kekasaran tersebut, dan hasilnya masih belum nampak secara nyata.

IV. KESIMPULAN DAN SARAN-SARAN

Dari uraian diatas dapatlah diambil beberapa kesimpulan yang penting, yaitu:

1) Usaha menuju standarisasi kekasaran permukaan masih jauh dari tujuan akhir. Masih banyak hal yang harus dilakukan untuk mencapai hal tersebut.

2) Arah yang diambil hingga saat ini baru mencukupi salah satu segi saja dari sifat-sifat permukaan yaitu topography. Segi-segi lainnya misalnya Surface Metallurgy, Residual Stress dll yang mempengaruhi sifat-sifat benda kerja dalam pemakaian praktis, belum dianalisa.

Apabila usaha menuju standarisasi kekasaran permukaan hendak dilaksanakan di Indonesia, maka ada beberapa saran-saran yang dapat disampaikan disini yaitu:

1) Sebaiknya dilakukan inventarisasi dari standarisasi yang telah ada, maupun yang baru berupa rancangan (draft) dari beberapa badan standarisasi negara lain yang telah maju dalam hal ini.

DAFTAR PUSTAKA:

7. Document: NBN 863 NI

