PENGARUH ROTASI PARTIKEL PADA MEKANISME KEAUSAN EROSI

Satryo Soemantri *

Abstrak

PENDAHULUAN

Formulasi untuk mengetahui volume material yang terkelupas akibat proses keausan erosi telah dibahas oleh Finnie [1] dengan mengasumsikan terjadinya proses pemotongan logam oleh partikel. Formulasi tersebut kemudian dikembangkan lebih lanjut [2] sehingga diperoleh:

\[
V = \frac{c M U^2}{4p(1 + \frac{m r^2}{u^2})} \left[\cos^2 \alpha - \left(\frac{\kappa_f}{u}\right)^2 \right] \tag{1}
\]

dengan

- \(V \) = volume material yang terkelupas
- \(M \) = massa total partikel erosif
- \(m \) = massa tiap partikel erosif
- \(I \) = momen inersia partikel terhadap titik berat
- \(r \) = jari-jari rata-rata partikel
- \(\alpha \) = sudut datang partikel
- \(U \) = kecepatan partikel
- \(p \) = tekanan alir material
- \(c \) = koefisien pemotongan material oleh partikel
- \(\kappa_f \) = kecepatan horisontal ujung partikel pada saat proses pemotongan berhenti

Eksperimen menunjukkan bahwa formulasi tersebut sesuai dengan data hasil pengujian. Volume material yang terkelupas umumnya proporsional dengan massa total partikel yang menumbuk kecuali pada sudut datang 90°. Ukuran partikel tidak berpengaruh terhadap keausan erosi jika partikel berukuran lebih besar daripada 100 um. Tekanan air, \(p \), untuk logam FOC yang dianil berbanding lurus dengan kekerasan Vickersnya [3]. Salah satu keunggulan formulasi di atas adalah bahwa untuk sudut datang antara 0° sampai 45°, besarnya volume aus dapat diperkirakan secara tepat. Sedangkan untuk sudut datang yang lebih besar, terjadi perbedaan yang cukup besar antara hasil pengujian dengan formulasi di atas. Perbedaan ini diperkirakan sebagai akibat dari asumsi mekanisme pemotongan logam yang ternyata tidak berlaku untuk daerah sudut datang mendekati 90°. Proses pemotongan logam terjadi apabila ada gerak relatif horisontal antara partikel erosif dengan permukaan yaitu untuk sudut datang lebih kecil daripada 90°. Salah satu mekanisme yang dapat menjelaskan terjadinya keausan pada sudut datang 90° adalah rotasi partikel dan hal ini telah dibahas pada literatur [3]. Penelitian yang dilakukan oleh Soderberg dkk. [4] menunjukkan bahwa

*) Staf Pengajar Jurusan Teknik Mesin ITB
rotasi partikel berpengaruh pada keausan erosi. Dalam penelitian tersebut digunakan alat erofuge yang dapat memberikan kecepatan putar partikel yang cukup tinggi. Berikut ini akan dibahas mengenai mekanisme keausan erosi akibat adanya rotasi partikel.

ANALISIS PROSES KEAUSAN EROSI

Perhatikan gambar 1 yang menunjukkan partikel erosif yang diidealisasikan. Volume material yang dipindahkan oleh partikel tersebut dapat didekati dengan integral \(y \cdot dx_T \) (\(X_T \) dan \(Y_T \) adalah koordinat ujung partikel) selama periode pemotongan. Untuk itu maka perlu ditetapkan lintasan yang ditempuh oleh ujung partikel dan penetapan saat berhentinya proses pemotongan. Asumsi yang digunakan adalah sebagai berikut (untuk penyederhanaan):

1. Volume aus didasarkan pada bentuk partikel yang diidealkan.
2. Partikel cukup kaku dan tidak pecah.
3. Selama proses pemotongan, kecepatan rotasi partikel cukup kecil dan untuk bentuk partikel seperti pada gambar 1 berlaku hubungan

\[X_T = X_0 + x\phi, \quad Y_T = Y_0 \]

4. Konfigurasi geometri partikel dan material yang terdeformasi selama proses pemotongan adalah sama. Sehingga perbandingan antara gaya vertikal dengan gaya horisontal pada partikel dianggap konstan, \(K \).

Berdasarkan hasil pengujian proses gerinda \([5]\) maka harga \(K \) yang umum adalah \(K = 2 \), sehingga harga koefisien gesek \(= 0,5 \).

5. Berdasarkan hasil pengujian proses pemotongan logam \([6]\), harga tekanan alir antara partikel dengan material adalah konstan. Hal yang sama juga diterapkan pada proses erosi.

6. Berdasarkan observasi pada proses pemotongan logam, kedalaman pemotongan dianggap separuh dari kedalaman kontak antara partikel dengan logam. Sehingga \(\phi = l/Y_T = 2, \quad l \) dapat dilihat pada gambar 1.

Dengan menggunakan asumsi-asumsi tersebut maka persamaan gerak dapat dituliskan dan diselesaikan untuk \(x \) dan \(y \) sebagai berikut \([1]\):

\[
Y = \left[\frac{U \sin \alpha}{\beta} \right] \sin \beta t
\]

\[
x = \left[\frac{U \sin \alpha}{\beta} \right] \sin \beta t + (U \cos \alpha) t (2)
\]

\[
\phi = \left[\frac{m \rho U \sin \alpha}{\beta K} \right] (\sin \beta t - \beta t) + \phi_0 t
\]

dengan \(\beta=\left[\frac{p \rho b/K}{m} \right]^{1/2} \) dan \(\phi_0 \) merupakan kecepatan sudut awal dari partikel dan \(b' \) adalah lebar partikel.

Partikel yang menumbuk permukaan mempunyai kecepatan rotasi awal \(\phi_0 \) akibat adanya interaksi dengan partikel lainnya, akibat pengaruh fluida penggerak atau akibat gerak partikel dalam alur \([4]\). Soderberg dkk. \([4]\) menunjukkan bahwa harga \(\phi_0 = 0,62 \) U. Dari persamaan (2) diperoleh bahwa kecepatan rotasi
Gambar 2. Volume aus erosif relatif sebagai fungsi sudut datang partikel.

maksimum dicapai apabila \(\cos \beta \theta = 1 - (0,62K)/(m^2 \sin \alpha) \). Dengan melakukan substitusi harga, \(K = 2 \) dan dengan asumsi bahwa \(I = 1/(3m^2) \), \(\phi_{\text{max}} \) dapat diperoleh apabila \(\cos \beta \theta = 1 - (0,41/\sin \alpha) \). Dengan memvariasikan \(\phi \) untuk daerah \(\alpha \) antara 0° dan 90° diperoleh bahwa \(\phi_{\text{max}} \) terjadi pada \(\alpha = 90° \) (\(\cos \beta \theta = 0,94 \) rad).

\[
\phi_{\text{max}} = (0,38)U/(Br) \tag{3}
\]

Dalam pengujian umumnya digunakan harga \(U = 250 - 450 \text{ ft/sec} \), \(r_{\text{min}} = 125 \times 10^{-6} \text{ m}, P_{\text{min}} = 26,5 \text{ kg/mm}^2, b'_{\text{min}} = 250 \times 10^{-6} \text{ m} \) dan massa rata-rata partikel erosi adalah 1,39 \times 10^{-5} \text{ kg}. Dengan menggunakan harga-harga tersebut, diperoleh \(\phi_{\text{max}} = 6° \), sehingga dapat dituliskan bahwa \(x' = x + r\phi \) dan \(y' = y \). Untuk menghitung volume material yang terkelupas pada proses erosif

\[
V = b \int y''_{\text{r}} dx''_{\text{r}} = b \int y'_{\text{r}} x'_{\text{r}} dt \tag{4}
\]

dengan \(t_c \) menyatakan waktu pada saat pemotongan berhenti dan tanda dot

menyatakan turunan terhadap waktu, \(t \). Karena sudut putar partikel selama proses rotasi cukup kecil, maka

\[
V = b \int_{t_c} y (x + r\phi) dt \tag{5}
\]

Dengan menggunakan harga untuk \(x, y \) dan \(\phi \) dari (2), akan diperoleh

\[
V = \frac{cM U^2}{4p(1 + ml^2)} \left[\cos^2 \alpha - \left(\frac{x'}{U} \right)^2 + \frac{a^2 + 2a \cos \alpha}{U} \right] \tag{6}
\]

dengan \(a = (\phi r)/U \). Persamaan (6) serupa dengan persamaan (1) kecuali bahwa pada persamaan (1) kecepatan sudut awal partikel, \(\phi_{\text{r}} \), dianggap sama dengan nol.

Proses pemotongan dapat berhenti dengan dua cara, salah satunya adalah karena kecepatan horisontal partikel sama dengan nol (\(x' = 0 \)). Sehingga
\[V = \frac{c M U^2}{4p(1 + \frac{mr^2}{I})} \left[\cos \alpha + a \right]^2 \] (7)

Yang kedua adalah karena partikel meninggalkan permukaan \(y_t = 0 \) dan diperoleh

\[x_t' = UC \cos \alpha - \frac{2US \sin \alpha}{P} + a U \] (8)

\[V = \frac{c M U^2}{4p(1 + \frac{mr^2}{I})} \left[\frac{\sin 2\alpha - \frac{2}{P} \sin^2 \alpha}{2 \sin \alpha} \right] \] (9)

dengan \(P = K/(1 + mr^2 I^{-1}) \). Gambar 2 menunjukkan volume aus relatif sebagai fungsi dari sudut datang partikel berdasarkan persamaan (1) dan (6).

Tampak bahwa rotasi partikel akan dapat meningkatkan atau mengurangi volume aus, terutama pada daerah \(\alpha = 20^\circ \) yaitu pada saat terjadi erosional maksimum. Demikian juga pada daerah \(\alpha = 90^\circ \) diperkirakan akan terjadi pengikisan material. Soderberg dkk. [7] menunjukkan data pengujian yang dilakukan dengan menggunakan erofuge. Erofuge tersebut dapat memberikan kecepatan rotasi awal pada partikel sebelum menumbuk permukaan, hal ini dimungkinkan oleh adanya alur yang memancing partikel menggelinding sebelum keluar. Jika dibandingkan dengan hasil pengujian oleh Sheldon dan Finnie [8], maka tampak bahwa ke dua hasil tersebut hampir sama (lihat gambar 3), sedangkan alat yang digunakan oleh Sheldon dan Finnie tidak dirancang untuk menghasilkan rotasi partikel. Dengan demikian keausan erosional tidak dipengaruhi oleh rotasi partikel dan bahwa mekanisme keausan erosional sudut datang 90° tidak dapat dijelaskan oleh fenomena rotasi partikel. Interaksi antar partikel lebih dominan daripada gerak tiap partikel, sehingga rotasi yang dialami oleh partikel akan terganggu.

Terjadinya keausan erosional pada sudut datang 90° sementara masih dianggap akibat dari:

1. Permukaan yang menjadi terlalu kasar sehingga lebih mudah dikikis oleh partikel.
2. Impak yang berulang-ulang sehingga material mengalami kelelahan.

Hasil lain yang juga ditunjukkan pada gambar 3 adalah perbedaan antara hasil pengujian setelah 4 jam dengan setelah 12 jam. Setelah 12 jam pengujian, permukaan menjadi sangat kasar sehingga sudut antara gerak partikel dengan permukaan menjadi bervariasi. Hal ini akan memperbesar terjadinya pengikisan material. Disamping itu ketergantungan laju keausan erosional terhadap sudut datang partikel menjadi berkurang (lihat gambar 3, kurva I). Kelelahan material juga diperkirakan terjadi pada kasus ini karena permukaan mengalami tambukan untuk waktu yang cukup lama.

KESTIMPULAN

Analisis mekanisme keausan erosional menunjukkan bahwa dengan adanya rotasi partikel, secara teoritis akan meningkatkan pengikisan material dan juga akan menyebabkan terjadinya keausan pada sudut datang 90°. Hasil eksperimen belum dapat menunjukkan hal ini. Kapasitas partikel yang ditumbukan ternyata tidak berrotasi lagi.

DAFTAR PUSTAKA

2. Finnie, I., Wear 19(1972), 81 - 90