Aplikasi Size Effect Law pada Beton Marine dengan Pola Bukaan Tarik

https://doi.org/10.5614/jts.2021.28.2.3

Authors

  • Fella Supazaein UNIVERSITAS MERCU BUANA
  • Resmi Bestari Muin

Keywords:

Beton marine, mekanika fraktur, size effect law, nonlinear fracture mechanics

Abstract

Abstrak

Beton marine harus menggunakan high performance concrete (HPC). Penggunaan HPC dapat mengoptimalkan komponen struktur. Saat ini, perencana struktur hanya menggunakan perspektif mekanika tegangan pada tahap desain. Padahal semestinya keruntuhan tidak hanya terjadi pada perspektif mekanika tegangan, akan tetapi bisa juga terjadi dari perspektif mekanika fraktur. Dengan kata lain, struktur juga harus didesain berdasarkan kriteria mekanika fraktur agar keruntuhan secara fraktur bisa di atasi. Penelitian ini mengkaji aplikasi size effect law pada benda uji balok HPC dengan berbagai ukuran yang sudah ditentukan (small, medium dan high) untuk memperoleh dua parameter fraktur, energi fraktur (Gf) dan angka kegetasan. Benda uji yang digunakan pada penelitian ini memiliki 2 variasi rasio takik terhadap tinggi benda uji. Benda uji set I menggunakan rasio takik terhadap tinggi benda uji sebesar 1/3 dan benda uji set 1I menggunakan rasio takik terhadap tinggi benda uji sebesar 1/6. Penelitian dilakukan dengan menggunakan metoda pengujian tiga titik lentur (three point bend) sesuai pedoman pengujian RILEM. Hasil penelitian ini dapat berkontribusi dalam penerapan metode untuk mendapatkan nilai parameter dari kinerja fraktur. Hasil pengujian menunjukkan energi fraktur pada benda uji set II) lebih besar 8,4% dari benda uji set I. Hasil angka kegetasan nilai(β) pada penelitian ini berada pada range 0,1 < β < 10 yang menandakan material harus didesain dengan kriteria nonlinear fracture mechanic.

Kata-kata Kunci: Beton marine, mekanika fraktur, nonlinier, size effect law, angka kegetasan.

Abstrak

Marine concrete must use high performance concrete (HPC). The use of HPC can optimize structural components. Nowadays, structural designers only use a stress mechanics perspective at the design stage. Whereas failure should not only occur from the perspective of stress mechanics, but can also occur from the perspective of fracture mechanics. In other words, the structure must also be designed according to the fracture mechanics criteria so that fracture failure can be controlled This study examines the application of size effect law to HPC concrete on beams with various predetermined sizes (small, medium and high) to obtain fracture parameters, namely fracture energy (Gf) and brittleness number. The specimens used in this study has 2 variations in the ratio of the notch to the height of specimens. Set 1 used a notch-to-height ratio of 1/3 and Set 1I used a notch-to-height ratio of 1/6. The research was conducted using the three point bend test method according to the RILEM test guidelines. The results of this study can contribute to the application of the method to obtain parameter values ​​of fracture performance. The test results shown that the fracture energy in set II specimens) is 8.4% greater than set I specimens. The value of brittleness number (β)  in this research is in the range of 0.1 < β < 10 which indicates that the material must be designed with the criteria of nonlinear fracture mechanic.

Key words: Marine concrete, fracture mechanics,nonlinier, size effect law, brittleness number.

References

Aitcin, P. C., & Neville, A. (1993). High-performance concrete demystified. Concrete International, 15(1), 21-26.

Arianti, A. D., Muin, R. B., & Patty, A. H. (2020). Effect of water-cement ratio on fracture energy based on work of fracture. IOP Conference Series: Materials Science and Engineering, 830(2). https://doi.org/10.1088/1757-899X/830/2/022063

Badan Standardisasi Nasional. (2000). Sni 03-6468-2000 Tata cara perencanaan campuran tinggi dengan semen portland dengan abu terbang (p. 18).

Bazant, Z. P., & Pfeiffer, P. A. (1987). Determination of Fracture Energy From Size Effect and Brittleness Number. ACI Materials Journal, 84(6), 463-480. https://doi.org/10.14359/2526

BaA3/4ant, Z. P., & Yu, Q. (2009). Universal size effect law and effect of crack depth on quasi-brittle structure strength. Journal of Engineering Mechanics, 135(2), 78-84. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(78)

Einsfeld, R. A., & Velasco, M. S. L. (2006). Fracture parameters for high-performance concrete. Cement and Concrete Research, 36(3), 576-583. https://doi.org/10.1016/j.cemconres.2005.09.004

Fidi, F., Muin, R. B., & Patty, A. H. (2020). The effect of aggregate gradation on concrete fracture energy using the work of fracture method. IOP Conference Series: Materials Science and Engineering, 830(2). https://doi.org/10.1088/1757-899X/830/2/022061

Hillerborg, A. (2017). Analysis of Concrete Structures by Fracture Mechanics. In Analysis of Concrete Structures by Fracture Mechanics. https://doi.org/10.4324/9780203626764

Kazemi, M. T., Golsorkhtabar, H., Beygi, M. H. A., & Gholamitabar, M. (2017). Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods. Construction and Building Materials, 142, 482-489. https://doi.org/10.1016/j.conbuildmat.2017.03.089

La, M. D. E., & Du, R. (1991). Size effect method for determining fracture energy and process zone size of concrete. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28(2-3), A198. https://doi.org/10.1016/0148-9062(91)93225-u

Martin, J., Stanton, J., Mitra, N., & Lowes, L. N. (2007). Experimental testing to determine concrete fracture energy using simple laboratory test setup. ACI Materials Journal, 104(6), 575-584. https://doi.org/10.14359/18961

Muin, R. B., Arianti, A. D., Fidi, Patty, A. H., & Alva, S. (2013). Pengontrolan Retak pada Beton dengan Optimalisasi Interaksi Komposit Beton pada Interface Zone. 53(9), 1689-1699.

Muralidhara Rao, T., & Gunneswara Rao, T. D. (2009). Fracture parameters of high strength concrete-an experimental study. Journal of Structural Engineering (Madras), 35(6), 397-403.

Murdiyanto, D., Yoedono, B. S., & Patty, A. H. (2018). Review Kuat Tekan Beton Polos dari Perspektif Mekanika Fraktur. Reka Buana"i: Jurnal Ilmiah Teknik Sipil Dan Teknik Kimia, 3(2), 122. https://doi.org/10.33366/rekabuana.v3i2.1018

Uday, N. P. (2017). Experimental Determination of Fracture Energy by RILEM Method. The International Journal of Engineering and Science, 06(03), 106-115. https://doi.org/10.9790/1813-060301106115

https://en.wikipedia.org/wiki/Fracture_mechanics

Published

2021-09-03