Kekuatan dan Permeabilitas Beton Abu Terbang Volume Tinggi

https://doi.org/10.5614/jts.2021.28.2.2

Authors

  • I Made Alit Karyawan Salain Udayana University

Keywords:

Abu Terbang Kelas C, Kuat Tekan, Kuat Tarik Belah, Permeabilitas.

Abstract

Abstrak

Tulisan ini menyajikan hasil penelitian tentang properti dari beton abu terbang volume tinggi (ATVT) yang telah mengeras yang dibuat dengan mengganti sebagian semen Portland biasa (SPI) dengan abu terbang kelas C (ATC). Tujuan dari penelitian adalah untuk memeriksa perkembangan kekuatan dan permeabilitas beton ATVT terhadap waktu hidrasi. Tiga campuran beton ATVT, M1, M2, dan M3, dibuat dengan mengganti berturut-turut 40%, 50% dan 60% SPI dengan ATC, dalam perbandingan berat. Satu campuran kontrol, M0, dibuat dengan menggunakan 100% SPI. Proporsi campuran beton yaitu 1,0 perekat : 2,0 agregat halus : 3,0 agregat kasar dengan faktor air perekat sebesar 0,3. Pada setiap campuran ditambahkan 1,5% superplastisiser dari berat perekat. Uji yang dilaksanakan menyangkut kuat tekan, kuat tarik belah, dan permeabilitas pada umur 28, 56, dan 90 hari. Hasil uji menunjukkan bahwa kuat tekan, kuat tarik belah, dan impermeabilitas meningkat secara gradual dengan waktu hidrasi dan mampu mencapai yang dihasilkan oleh M0, terutama untuk campuran M1, setelah umur 90 hari. Mengacu pada hasil uji kuat tekan pada umur 28 hari, campuran beton ATVT tersebut dapat dipergunakan sebagai beton struktural.

Kata-kata Kunci: Abu terbang kelas C, kuat tekan, kuat tarik belah, permeabilitas.

Abstract

This paper presents the result of research concerning the harden properties of high volume abu terbang (HVFA) concrete created by substituting ordinary Portland cement (OPC) with Class C fly ash (CFA). The goals of the research is to verify the strength and permeability evolution of the HVFA concrete with hydration time. Three HVFA concrete mixtures, M1, M2, and M3, were created by substituting OPC, by weight, with 40%, 50%, and 60% of CFA, successively. One control mixture, M0, was created by utilizing 100% OPC. The mix proportion of concrete was 1.0 binder : 2.0 fine aggregate : 3.0 coarse aggregate, and the water-binder ratio was 0.3. In each mixture, it was added 1.5% superplasticizer by binder weight. Tests conducted regarding compressive strength, splitting tensile strength and permeability at the age of 28, 56, and 90 days. The results show that the compressive strength, the splitting tensile strength and the impermeability of HVFA concrete improve gradually with hydration time and could reach those of M0, especially for M1 mixture, after 90 days of hydration. Based on the compressive strength test results at 28 days, the HVFA concrete mixtures could be used for structural concrete.

Keywords: Class C fly ash, compressive strength, permeability, splitting tensile strength.

References

Aggarwal, V., Gupta, S. M., and Sachdeva, S. N., 2010, Concrete Durability Through High Volume Fly Ash Concrete (HVFC) A Literature Review, International Journal of Engineering Science and Technology, Vol. 2, No. 9, 4473-4477.

Andrew, R. M., 2019, Global CO2 emissions from cement production, 1928-2018, Earth System Science Data, https://doi.org/10.5194/essd-2019-152

Armstrong, T., 2020, World Cement Consumption Rises by 2.8% in 2019, The Global Cement Report, 13th Edition.

ASTM C 618, 1985, Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete, American Society for Testing and Materials, USA.

ASTM C 494-92, 1994, Standard Specification for Chemical Admixtures for Concrete, Annual Book of ASTM Standards, Concrete and Aggregates, American Society for Testing and Materials, Philadelphia.

Benhelal, E., Zahedi, G., Shamsaei, E., & Bahadori, A., 2013, Global strategies and potentials to curb CO2 emissions in cement industry, Journal of Cleaner Production, Vol. 51, 142-161, https://doi.org/10.1016/j.jclepro.2012.10.049

Crouch, L. K., Hewitt, R., and Byard, B., 2007, High Volume Fly Ash Concrete, 2007 World of Coal Ash (WOCA), Northern Kentucky, USA, 1-14.

Garside, M., 2020, Major countries in worldwide cement production 2015-2019, https://www.statista.com/statistics/267364/world-cement-production-by-country/

Lea F. M., 1970, The Chemistry of Cement and Concrete, Third edition, Edward Arnold Ltd., London.

Malhotra, V. M., and Mehta, P. K., 2002, High-Performance, High-Volume Fly Ash Concrete, Supplementary Cementing Materials for Sustainable Development, Inc., Ottawa, Canada.

Mehta, P. K., 1986, Concrete Structure Properties, and Materials, Englewood Cliffs, New Jersey.

Mehta, P. K. and Meryman H., 2009, Tools for Reducing Carbon Emissions Due to Cement Consumption, Structure Magazine.

Neville, A. M. and Brooks, J. J., 1998, Concrete Technology, Longman Singapore Publishers Pte Ltd, Singapore.

Rashad, A. M., Seleem, H. E. H., and Shaheen, A. F., 2014, Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete, International Journal of Concrete Structures and Materials, Vol. 8, No. 1, 69-81.

Salain I M. A. K., Clastres P., Bursi J. M., and Pellissier C., 2001, Circulating Fluidized Bed Combustion Ashes as an Activator of Ground Vitrified Blast Furnace Slag, Proceeding of Three-day International Symposium on Sustainable Development and Concrete Technology, San Francisco, U.S.A., September, SP 202-15, 225-244.

Salain, I M. A. K., Giri, I. B. D., Saraswati, M. A. A., 2011, Pemanfaatan Abu Terbang Dalam Jumlah Besar Pada Pembuatan Beton, Prosiding Seminar Nasional AVoER ke-3, Palembang, 26-27 Oktober, Paper M-1, 342-350.

Siddique, R., 2004, Performance characteristic of high-volume Class F fly ash concrete, Cement and Concrete Research, vol. 34, 487-493.

SNI 15-0302, 2004, Semen Portland Pozolan, Badan Standardisasi Nasional, Jakarta, Indonesia.

SNI 03-2834, 2000, Tata Cara Pembuatan Rencana Campuran Beton Normal (Methods for design of normal concrete mixes), Badan Standarisasi Nasional, Jakarta, Indonesia.

SNI 03-1974, 1990, Metode Pengujian Kuat Tekan Beton (Test method for compressive strength of concrete), Badan Standarisasi Nasional, Jakarta, Indonesia.

SNI 03-2491, 2002, Metode Pengujian Kuat Tarik Belah Beton (Test methods for splitting tensile strength of concrete), Badan Standarisasi Nasional, Jakarta, Indonesia.

SNI 2847:2019, 2019, Persyaratan beton struktural untuk bangunan gedung dan penjelasan, Badan Standarisasi Nasional, Jakarta, Indonesia.

Volz, J. S., Arezoumandi, M., Looney, T., and Ortega, C., 2013, High-Volume Fly Ash Concrete (Technical Final Report), Center for Transportation Infrastructure and Safety/NUTC program Missouri University of Science and Technology 220 Engineering Research Lab Rolla, MO 65409.

Zhang, C., Han, R., Yu, B., and Wei, Y., 2018, Accounting process-related CO2 emissions from global cement production under Shared Socioeconomic Pathways, Journal of Cleaner Production, Vol. 184, 451-465, https://doi.org/10.1016/j.jclepro.2018.02.284

Published

2021-09-03