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Abstract

This is a pedagogical paper on estimating the number of people that can be infected by one infectious
person during an epidemic outbreak, known as the reproduction number. Knowing the number is crucial for
developing policy responses. There are generally two types of such a number, i.e., basic and effective (or
instantaneous). While basic reproduction number is the average expected number of cases directly generated
by one case in a population where all individuals are susceptible, effective reproduction number is the number
of cases generated in the current state of a population. In this paper, we exploit the deterministic susceptible-
infected-removed (SIR) model to estimate them through three different numerical approximations. We apply
the methods to the pandemic COVID-19 in Italy to provide insights into the spread of the disease in the country.
We see that the effect of the national lockdown in slowing down the disease exponential growth appeared
about two weeks after the implementation date. We also discuss available improvements to the simple (and
naive) methods that have been made by researchers in the field.

Authors of this paper are members of the SimcovID (Simulasi dan Pemodelan COVID-19 Indonesia)
collaboration.
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1. INTRODUCTION

”"When will the peak of the pandemic hit? When will it be over?”

Those are unarguably among the most asked questions during the ongoing coronavirus disease 2019
(COVID-19) crisis, i.e., a disease outbreak of atypical pneumonia that originated from Wuhan, China [!].
The disease spread to over 100 countries in a matter of weeks [2], with most internationally imported cases
reported to date having history of travel to Wuhan [3], [4]. The pandemic has made governments all over the
world take serious responses [5]. The governmental measures result in a significant disruption in the lives of
their people that raised such questions above.

Diseases grow rather exponentially at the initial transmissibility of outbreak [6], [7]. When there is no
intervention and the proportion of infections starts to become comparable to the entire population, the growth
will slow down as susceptible is fuel to diseases. This type of logistic growth will yield the peak of a pandemic
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that everybody is interested in and its arrival can be forecast using, e.g., the susceptible-infected-removed
(SIR) compartment model [8].

However, in the presence of pandemic, human beings adapt. Governments intervene. As such, using the
SIR model to predict the peak, while new cases are mainly outcomes of national policies and/or community
behaviour, would be similar to forecasting what policymakers would do or the effectiveness of their response
[©1, [10], [11], which is dynamic and can be unprecedented. On top of that, there is a lack of knowledge of
epidemiology characteristics and a high rate of undocumented cases [12]. A brute force analysis by fitting
reported data to the SIR model is therefore prone to a false prediction if not done carefully (see, e.g., Fig.
2 of [13] that incorrectly predicted the peak time as well as the total infection of COVID-19 in Italy when
compared to the latest data). We will show below how data-driven forecasts are sensitive to the time-series
information that we input in the model.

Considering the limitations and obstacles, it is therefore important to determine instead the so-called
disease reproduction number or reproductive factor [14], which is the number of people that are infected by
one infectious person during an epidemic outbreak [15], [16], [17], [18], [19]. It depends on the duration of
the infectious period, the probability of infecting a susceptible individual during one contact, and the number
of susceptible people contacted per unit of time.

There are generally two types of such a number, i.e., basic [15] and effective (or instantaneous) [16].
While basic reproduction number is the average expected number of cases directly generated by one case
in a population where all individuals are susceptible, effective reproduction number is the number of cases
generated in the current state of a population. This paper is intended to give a brief review of these numbers
to undergraduate students and a broad science-educated audience in general. We also hope that the paper can
be an expository article of epidemiology to policyholders in making public health measures.

To quantify directly the actual reproduction number is difficult, if not impossible, and as such, we can
only estimate it indirectly. One common approach is to fit a model to epidemiological data that will provide
values of some parameters [60]. Here, we use the SIR compartment model as our model reference, where the
reproduction number is associated to the threshold point for stability of the disease free equilibrium.

There are three estimation methods that we will discuss. As a case study, we apply the methods to discuss
and forecast viral transmission of COVID-19 in Italy. The first one is by parameter fit to the SIR model
[20], which is probably the most popular analysis to the study of COVID-19 [13]. The computed parameters
will then be used to obtain the reproduction number. The second method is to use the reported data of
infected and removed people [21]. Comparing the number with that obtained using the parameter fit shows
a similar trend in the decrease of the infection rate in Italy. The third method is using the ratio of increment
of infections from two subsequent days [22], [23]. However, such a quantity is usually highly fluctuating as
we demonstrate for the case of Italy. The trend is obtained using, e.g., a parameter fit of the Richards curve
[6], [24] to the cumulative cases.

As the methods presented here are all based on the SIR model, they are limited by assumptions commonly
made within the SIR model. An important assumption is that the presented data are an accurate representation
of what happens in the population, although this can be relaxed for some methods in this paper. Another
assumption or limitation is that it does not include people that are infected but not infectious, which can be
overcome by incorporating another compartment, such as the commonly used Exposed group.

We conclude the paper with a brief review of improvements to the methods by including randomness
(stochastic processes).

2. SIR MODEL AND THE REPRODUCTION NUMBER
The SIR model equations are given by

ds ST

= 0N o
dl ST

a Bﬁ -1, 2
dR

P 7. 3)

Here, S and I denote the total number of susceptible and infected individuals. Variable R represents the
removed compartment that can consist of recovered (and become-resistant) and deceased individuals. The
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total population is N = S + I + R. Note that dN/dt = d(S + I + R)/dt = 0, which implies that N is
constant. The parameters 3 and -y are the transmission and removal rate constants, respectively. The average
length of time an infected individual remains infective, i.e., the infectious time, is 1/+. Note that this still
applies even when the parameters § and - are functions of time. Additionally, we denote the cumulative
(total) case as T' = I + R, which satisfies the equation

dr ST
il el 4
7 g N “

Equation (2) can also be written as i
— =R —1)1I 5
dt 7( t ) ) ( )
where g

Ry = ﬁRo, Ro = B/ (6)

R: is the effective reproduction number and R is the basic one. Note from (5) that depending on the value
of R, i.e., whether R; > 1 or R; < 1, the infections I will increase or decrease in time, respectively. It is
therefore important to track this number to forecast the spread of an infection in an area.

As data are collected and reported regularly in a certain time interval, it is instructive to consider instead
the discrete model

Sy 1,

A — ntn
Sn T3 N @)
Al :Tﬁsrjlvjn — 71y, 3
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where AK,, = K,,4+1 — K,, K =5, I, R. 7 is the time interval, which in the limit 7 — 0, make the model
(7)-(9) become (1)-(3). We take 7 = 1 day, which is the standard time interval to report updates on cases
for COVID-19. The reproduction numbers (6) can be checked to be still applicable here. In the following,
we will mainly use the discrete SIR model (7)-(9).

As the main part of this report, we will consider three different methods to approximate the effective
reproduction number R;.

2.1. Method 1: Parameter fit

To calculate R; (6), one needs to determine first the parameters S and -, as well as the number of
susceptible .S,, and hence the population size IN. Because infection data are given in terms of the number of
infected and removed (i.e., recovered or deceased) people, we can find the parameter set for which the model
has the best agreement with the data. In that case, we fit the deterministic epidemiological model (7)-(9) by
employing a generalized least squares scheme, i.e., we search for the minimum of an unconstrained problem
specified by

min I, — Idata, 24 R, — Rdata, 2 , (10
{51.8:7} - ( ) ( )

where Idata,, and Rdata, are reported infected and removed cases at day n. Here we only limit ourselves
to minimization using three parameters (S1, 3, and ) only. Note that NV is implicitly part of the estimated
parameters because N = S7 + I; + R;. We take I; = Idata; and Ry = Rdata; at the initial step.

Table 1: Parameters obtained from the minimization procedure in Method 1 for the case of COVID-19 in Italy.

Fitted Day 1-53  Fitted Day 53-87  Fitted Day 1-87

S, 77301.031 154875.683 161479.047
0.282 0.119 0.246
~+® 0,021 0.0169 0.017

~32 0017 0.008 0.009
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Figure 1: Predicted evolution of the COVID-19 outbreak in Italy based on the fits of the discrete SIR model (7)-(9) for
(a) active cases; (b) recovered; (c) deceased. Shaded regions represent the official data retrieved from the JHU CSSE
repository [25]. There are three different predicted trends, based on the length of the fitted data, see the legends. Day 1
= 31 Jan 2020, Day 39 (national lockdown) = 9 Mar 2020, Day 87 = 26 Apr 2020.
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Figure 2: Estimated effective reproduction number using Method 1 (dashed lines) and Method 2 (stars). The lines are
necessarily split into two parts following the national lockdown, see the text.

The search is done using fminsearch function of MATLAB that implements the Simplex search method.
To illustrate our computation, we consider COVID-19 cases in Italy, which was one of the world’s worst-hit
countries. Data were retrieved from [25] on 26 April 2020, which in the analysis will be denoted as Day 87
(i.e., Day 1 is 31 Jan 2020). We present in Fig. | the reported data and the fitting SIR dynamics. We slightly
modify the model by splitting the removed compartment (R) into recovered and deceased ones with rates
41 and ) respectively and as such, v = v(1) 4 ~(2),

From our computations, using all the available data, i.e., Day 1-87, to be fitted into the SIR equations
yields rather bad agreement. It turned out to be necessary to split the data into two periods, separated around
the national lockdown that was implemented on 9 March 2020 (Day 39). To be precise, it is the threshold
date of the lockdown effect that manifested two weeks later, i.e., from Day 53.

The split is to incorporate the intervention and behavioural change of the population in the model that
requires the parameter values to vary over time. Note that the SIR model assumes the parameter values
to be constant during the fitted period, which is not necessarily correct. Assuming constant value of those
parameters implicitly assumes that the decline in active cases is because herd immunity (i.e., substantial
decline in susceptible population) has been formed, which has not been detected anywhere, even at places
with high death counts. Splitting the graph and fitting the parameters separately are therefore to solve the
assumption violation, where an extra care must be taken in the procedure.

Using the splitting, we obtain good agreement as can be seen in Fig. 1. It is important to note that using
data from Day 1-53, we obtained a predicted peak at the end of March 2020, which clearly is not correct,
i.e., parameter fits depend sensitively on the fitted data. This explains the incorrect prediction of [13].

In Table 1, we list the fitting parameters. Using the values, we plot in Fig. 2 the resulting estimated effective
reproduction number R; (6). It is clear that the national lockdown effectively decreased the number. The
curve crosses the axis R, = 1 at the peak on 19 Apr 2020.

2.2. Method 2: Using infected and recovered data

In the second method, instead of getting the parameters S and ~ from fitting, we will derive them from
the governing equations (8)-(9) directly. Writing 3 = f3,, and v = +,, on the right hand side of the equations,
it is straightforward to obtain

Al + Ra) AR,

n — N, n = .
Z 78,1, i 71,

an
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From the definition (6), we have Rog = 8, /7, and as such,

Sh AT,
= — = 1 - .
R+ N Ro + AR,

12)

We therefore obtain that the effective reproduction number is related to the ratio between the change of the
infected and the removed compartments. Because AR,, > 0, then R; < 1 if and only if Al < 0.

We show in Fig. 2 the estimated reproduction number using the second method, depicted in stars. Because
it uses the increase in infected and removed counts which tend to be highly fluctuating, the resulting curve is
also wavering. This could be simply solved by smoothing the data using a moving average filter. Nevertheless,
in our case here, we still can observe that it is following the same trend as that obtained from Method 1,
i.e., the dashed curve.

2.3. Method 3: Using new cases
The third method is to exploit the daily reported new cases, which in terms of the SIR model will be given
by the daily difference of the cumulative cases AT,,. Integrating (2) in time between ¢ and (¢ + 7) gives us

In+1 — Ine'Y f:JrT(Rt—l)dt ~ Inb(Rt), (13)

where
b(Ry) = (R 1), (14)

Here, we denote I(t 4+ 7) = I,,41 and I(t) = I,,. In the last equation, we have assumed that R; is constant
within the time interval.
On the other hand, we have from (4) a discrete approximation

ATn - TﬁSnJrlInJrl/N - TﬁSnJrlInb(Rt)/N =~ TﬂSnInb(,R’t)/N (15)

The last step is expected to be valid for emerging diseases, i.e., I varies slowly.
At the same time, we also have from (4)

AT,_y = 78S,1,/N. (16)

Combining (15) and (16) gives us the effective reproduction number
1
b(Ri) = AT, /AT, 1, Ry=1+ po In (b(Ry)) - (17)

Because b(R:) is a monotonically increasing function in R, it can be enough to plot b itself to determine
whether the disease decreases or not.

In Fig. 3(a) we plot b(R:) from the data of COVID-19 cumulative cases in Italy shown in stars. However,
the curve is highly fluctuating that may hide the trend. As mentioned in Method 2 above, this could also be
solved by smoothing the data using a moving average filter. Another possible way is by approximating the
reported cumulative cases with a continuous function. A natural candidate is certainly the generalised logistic
function, also known as Richards’ curve,

A
(B + e=Cln=no)) /¥

T, = (18)

Again using a least square method to fit the reported cumulative cases to the function, we obtain that the
best parameter values are A = 119520, B = 0.9858, C' = 0.0665, ng = 0.0086, v = 0.0232. We plot the
fitted data and the approximation in Fig. 3(b) in stars and dashed line, respectively.

Using the approximation (18), we are now able to plot a smooth curve (shown in dashed in Fig. 3(a)) that
is expected to indicate the trend of b(R;) calculated from the reported data.
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Figure 3: (a) Plot of b(R) in time from the reported data (stars) and the approximation obtained using Richards’ curve
(dashed line). (b) Cumulative cases from data (stars) and Richards’ approximation (dashed line).

3. CONCLUSION

We have presented three simple (or actually simplistic) methods to estimate the reproduction number of
the COVID-19 pandemic based on the SIR equations as the underlying model. We applied the methods to
the data of COVID-19 cases in Italy, where we saw that the implemented national lockdown had positive
impacts that appeared about two weeks later.

To extend the deterministic methods reviewed herein, one may consider complex models that include
more compartments [0], [26]. However, to be more realistic, one should include statistical randomness and
probability in the calculations.

In the spirit of Method 1, Cintrén-Arias et al. [20] combined parameter fits with statistical asymptotic theory
and sensitivity analysis to give approximate sampling distributions for the estimated parameters. Method 3
has been improved in [22], [23] to include a probabilistic description such that the probabilistic formulation
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for future cases is equivalent, via Bayes’ theorem, to the estimation of the probability distribution for the
reproduction number.

In addition to estimating the reproduction number based on a model, it is also possible to approximate the
reproduction number from the serial interval (the time between the onset of symptoms in a primary case and
the onset of those in secondary cases) without assuming a model [27], [28], [29].

ACKNOWLEDGEMENT

H.S. is extremely grateful to his wife, dr. Nurismawati Machfira, who has happily taken a new additional
job as ’head teacher’ of their children at home during school closure, while maintaining her job as their
primary carer, so that he could still #workfromhome and wrote this paper. Part of this research is funded by
Program Pengabdian Masyarakat ITB 2020.

REFERENCES

[1] The 2019-nCoV Outbreak Joint Field Epidemiology Investigation Team, Qun Li. An Outbreak of NCIP (2019-nCoV) Infection
in China - Wuhan, Hubei Province, 2019-2020. China CDC Weekly, 2(5), 79-80, 2020. doi: 10.46234/ccdcw2020.022

[2] Callaway, E., Time to use the p-word? Coronavirus enter dangerous new phase, Nature, 579, 12, 2020.

[3] Wu, J.T.,, Leung, K. and Leung, G.M., Nowcasting and forecasting the potential domestic and international spread of the 2019-
nCoV outbreak originating in Wuhan, China: a modelling study, The Lancet, 395(10225), pp. 689-697, 2020.

[4] Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S. and Eggo, R.M., Early dynamics of transmission
and control of COVID-19: a mathematical modelling study, The Lancet Infectious Diseases, 20(5), pp. 553-558, 2020.

[5] National responses to the COVID-19 pandemic, Wikipedia, 2020. Available at:
https://en.wikipedia.org/wiki/National_responses_to_the_COVID-19_pandemic, Accessed on May 8, 2020.

[6] Ma,J., Estimating epidemic exponential growth rate and basic reproduction number, Infectious Disease Modelling, 5, pp. 129-141,
2020.

[71 Chowell, G. and Viboud, C., Is it growing exponentially fast? — Impact of assuming exponential growth for characterizing and
forecasting epidemics with initial near-exponential growth dynamics, Infectious Disease Modelling, 1(1), pp. 71-8, 2016.

[8] Taslim Ali, S.K., A study on stochastic epidemic models with the optimal control policies, PhD Thesis, Karnatak University,
2014. Available at http://hdl.handle.net/10603/98827.

[91 Gumel, A.B., Ruan, S., Day, T., Watmough, J., Brauer, F., Van den Driessche, P., Gabrielson, D., Bowman, C., Alexander, M.E.,
Ardal, S. and Wu, J., Modelling strategies for controlling SARS outbreaks, Proceedings of the Royal Society of London, Series
B: Biological Sciences, 271(1554), pp. 2223-2232, 2004.

[10] Yang, Z., Zeng, Z., Wang, K., Wong, S.S., Liang, W., Zanin, M., Liu, P., Cao, X., Gao, Z., Mai, Z. and Liang, J., Modified
SEIR and Al prediction of the epidemics trend of COVID-19 in China under public health interventions, Journal of Thoracic
Disease, 12(3), p. 165, 2020.

[11] Fang, Y., Nie, Y., Penny, M., Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions:
A data-driven analysis, Journal of Medical Virology, 92(6), pp. 645-59, 2020.

[12] Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, and J. Shaman. Substantial undocumented infection facilitates the rapid
dissemination of novel coronavirus (SARS-CoV-2). Science 368(6490), pp. 489-493, 2020.

[13] Fanelli, D. and Piazza, F., Analysis and forecast of COVID-19 spreading in China, Italy and France., Chaos, Solitons & Fractals,
134:109761, 2020.

[14] Dietz, K., The estimation of the basic reproduction number for infectious diseases, Statistical Methods in Medical Research,
2(1), pp. 23-41, 1993.

[15] Chowell, G. and Brauer, F., The Basic Reproduction Number of Infectious Diseases: Computation and Estimation Using
Compartmental Epidemic Models, In Mathematical and Statistical Estimation Approaches in Epidemiology, pp. 1-30, Springer,
Dordrecht, 2009.

[16] Nishiura, H. and Chowell, G., The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic
trends, In Mathematical and Statistical Estimation Approaches in Epidemiology, pp. 103-121, Springer, Dordrecht, 2009.

[17] van den Driessche, P., Reproduction numbers of infectious disease models, Infectious Disease Modelling, 2(3), pp. 288-303,
2017.

[18] Ridenhour, B., Kowalik, J.M. and Shay, D.K., Unraveling RO: Considerations for Public Health Applications, American Journal
of Public Health, 108(S6), pp. S445-S454, 2018.

[19] Delamater, P.L., Street, E.J., Leslie, T.F.,, Yang, Y. and Jacobsen, K.H., Complexity of the Basic Reproduction Number (RO),
Emerging Infectious Diseases, 25(1), pp. 1-4, 2019.

[20] Cintrén-Arias, A., Castillo-Chdvez, C., Bettencourt, L.M.A., Lloyd, A.L., and Banks, H.T., The estimation of the effective
reproductive number from disease outbreak data, Mathematical Biosciences and Engineering, 6, pp. 261-283, 2009.



36

[21]
[22]
(23]
[24]
[25]
[26]
[27]
[28]

[29]

Susanto, H., et al.

Chen, Y-C, Lu, P-E., Chang, C-S. and Liu, T-H. A time-dependent SIR model for COVID-19 with undetectable infected persons.
arXiv:2003.00122 [q-bio.PE]

Bettencourt, L.M.A. and Ribeiro, R.M., Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious
Diseases, PLoS ONE, 3(5): 2185, 2008.

Chowell, G., Nishiura, H. and Bettencourt, L.M.A., Comparative estimation of the reproduction number for pandemic influenza
from daily case notification data, Journal of The Royal Society Interface, 4, pp. 155-166, 2007.

Nuraini, N., Khairudin, K. and Apri, M., Modeling Simulation of COVID-19 in Indonesia based on Early Endemic Data,
Communication in Biomathematical Sciences, pp. 3(1), pp. 1-8, 2020.

Novel coronavirus (COVID-19) cases, provided by Johns Hopkins University Center for Systems Science and Engineering (JHU
CCSE). https://github.com/CSSEGISandData/COVID-19

Li, J., Blakeley, D. and Smith, R.J., The Failure of R, Computational and Mathematical Methods in Medicine 2011, Article
ID 527610.

Cori, A., Ferguson, N.M., Fraser, C., Cauchemez, S., A New Framework and Software to Estimate Time-Varying Reproduction
Numbers During Epidemics, American Journal of Epidemiology, 178(9), pp. 1505-1512, 2013.

Wallinga, J. and Teunis, P., Different Epidemic Curves for Severe Acute Respiratory Syndrome Reveal Similar Impacts of Control
Measures, American Journal of Epidemiology, 160(6), pp. 509-516, 2004.

Obadia, T., Haneef, R. and Boglle, P-Y., The RO package: a toolbox to estimate reproduction numbers for epidemic outbreaks,
BMC Medical Informatics and Decision Making, 12, p. 147, 2012.



	Introduction
	SIR model and the reproduction number
	 Method 1: Parameter fit
	 Method 2: Using infected and recovered data
	 Method 3: Using new cases

	Conclusion
	References

