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Abstract

Dengue is one of the major health problems in Bangladesh and many people are died in recent years due
to the severity of this disease. Therefore, in this paper, a SIRS model for the human and SI model for vector
population with saturated incidence rate and constant treatment function has been presented to describe the
transmission of dengue. The equilibrium points and the basic reproduction number have been computed. The
conditions which lead the disease free equilibrium and the endemic equilibrium have been determined. The
local stability for the equilibrium points has been established based on the eigenvalues of the Jacobian matrix
and the global stability has been analyzed by using the Lyapunov function theory. It is found that the stability
of equilibrium points can be controlled by the reproduction number. In order to calculate the infection rate, data
for infected human populations have been collected from several health institutions of Bangladesh. Numerical
simulations of various compartments have been generated using MATLAB to investigate the influence of
the key parameters for the transmission of the disease and to support the analytical results. The effect of
treatment function over the infected compartment has been illustrated. The sensitivity of the reproduction
number concerning the parameters of the model has been analyzed. Finally, the most sensitive parameter that
has the highest effect over reproduction number has been identified.
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1. INTRODUCTION

Dengue is a vector borne disease that is transmitted to human through the bite of Aedes aegypti and Aedes
albopictus mosquito [1], [2]. It is considered as one of the major public health problems in tropical and
subtropical countries around the world. The first outbreak of dengue was in Philippines in 1953 and Thailand
in 1955 [3]. Due to climate change and lack of public awareness the disease transmission has increased in
recent years [4]. Every year 50-390 million people are infected worldwide with approximately 25,000 deaths
are caused by dengue [5]. Although there is no specific medicine for dengue haemorrhagic fever (DHF),
proper medical care can save life and public awareness can reduce infection [6].

Mathematical models have been widely used in several aspect to describe the transmission of dengue. A
variety number of models have been developed and analyzed considering different facts of the disease. Based
on the classical SIR model, the transmission has been studied in [4], [7], [8], [9], [10], [11], [12], [13], [14].
The authors in [15], [16], [17] have used the SEIR model for the study of the dynamics of dengue. In [5],
[18] the authors have introduced migrated and treatment class for human population and aquatic class for
vector population. In [19], the comparison of five different models of dengue fever and their best feature
with performances for various scenarios have been investigated. Two host viral strains and temporary cross-
immunity have been studied in [20], and a multi-strain dengue model in immunological aspects has been
presented in [21].

In communicable disease modelling the incidence rate plays a vital role to describe the number of infection
per unit time and by which the model gives a qualitative description of the disease dynamics. The bilinear
incidence rate βSI and the standard incidence rate β(S/N)I for the classical epidemiological models [22] are
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often considered. It can be observed from the real phenomenon that the disease dynamics is not always follows
these rates and many of the epidemiological mechanisms are more appropriate with nonlinear transmission
rate [23]. Still now researchers have proposed several types of nonlinear incidence rate in [24], [25], [26],
[27], [28], [29]. A saturated incidence rate g(I)S has been proposed by Capasso and Serio [30], after studying
the spread of cholera epidemic. When a large number of infective involves in the population then exposure
to the disease agent is virtually certain and the transmission rate may slow down. This happened because of
the number of effective contact between the susceptible population and infected population may saturate at
high infection level due to overcrowding of infective or due to protective measures by susceptible [29]. Since
a large number of infective involves in vector borne disease, saturated incidence rate has been considered as
more suitable for the vector borne diseases like dengue than linear incidence rates. In [5], [11], [23], [29],
[31], [32] the authors have used saturated incidence rate in order to describe vector borne diseases.

Treatment is significant in every infectious disease for the infected population to become recovered. Usually,
the treatment rate is considered to be proportional to the number of infective individuals. In reality, it depends
on several factors such as medicines, medical resources, effectiveness of therapy, isolation process, etc. In
some cases, it is observed that if the number of infectives abruptly increases then the adequate treatment
becomes more challenging [33]. However, It is wise to assume a suitable treatment function for the country
with a limited capacity for providing these treatment factors. In [34], Wang and Ruan introduced a constant
treatment function in a SIR model. A piecewise linear treatment function has been considered by Wang in
[35]. In addition, Zhou and Fan have considered the Holling type II treatment function in [24].

The recent outbreak of dengue in the year 2018 and 2019 in Bangladesh gives us a scenario of large
number of infected population. As a consequence, to relate with the realistic phenomenon, we have proposed
a model by considering the saturated incidence rate ShIm

1+α1Im
and SmIh

1+α2Ih
for the transmission of human

infection and mosquito infection respectively. Here α1 and α2 are Holling type II functional parameters.
Moreover, the treatment facility becomes limited within the cities with the outgrowth of a huge number of
infective. However, considering the real fact, we have considered a constant treatment function according to
[34] in our model, which is defined by,

T (Ih) =

{
u, if Ih > 0

0, if Ih = 0

This simulated a limited capacity for the treatment. Here u is a positive constant represents the capacity of
treatment for infective.

The formulation of the model has been described in section 2. The existence of the equilibrium points
has been discussed in 3.1. The local and global stability analysis of the equilibrium have been presented in
3.2 and 3.3 respectively. Description of data for infective population and numerical simulations have been
shown in section 3.4. In section 3.5 the sensitivity analysis of the parameters have been carried out. Finally,
a general conclusion have been drawn in section 4.

2. MODEL FORMULATION

In order to formulate the model for dengue transmission, the interaction between two interacting populations
such as human and mosquito are required. The human population have been divided into three compartments
which are susceptible (Sh), infected (Ih) and recovered (Rh). On the other hand, the mosquito population
have been divided into two compartments namely susceptible (Sm) and infected (Im). The total number of
human population (Nh) and mosquito population (Nm) can be written as Nh(t) = Sh(t)+Ih(t)+Rh(t) and
Nm(t) = Sm(t) + Im(t) respectively. All new born human as well as mosquito population are considered to
be infection free and susceptible. The birth rate and the death rate of human populations are considered as
λh and µh respectively. On the contrary, birth and death rate of mosquito populations are considered as λm
and µm respectively.

The dengue disease is transmitted to humans by the direct contact of infected vector and consequently, a
susceptible vector becomes infected after biting an infected human. It is considered that all the susceptible
and infected humans and vectors are homogeneously mixing with one another. The disease contact rate of
susceptible human population due to infected mosquito population has been considered as βm and the disease
contact rate of susceptible mosquito population due to the infected human population has been considered
as βh. The cases of several death are observed in different cities of Bangladesh due to dengue. Therefore,
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to make our model more realistic the disease-related death d has been considered. The natural recovery rate
for the infected human has been considered as rh. As there is no permanent immunity from dengue and a
recovered human can again be infected, so, γh has been considered as the transmission rate from recovered
class to susceptible class.

Using all the assumptions, variables and parameters described above, the following system of differential
equations represents our proposed model.

dSh
dt

= λh − βm
ShIm

1 + α1Im
− µhSh + γhRh

dIh
dt

= βm
ShIm

1 + α1Im
− rhIh − µhIh − T (Ih)− dIh

dRh
dt

= rhIh − µhRh + T (Ih)− γhRh
dSm
dt

= λm − βh
SmIh

1 + α2Ih
− µmSm

dIm
dt

= βh
SmIh

1 + α2Ih
− µmIm.

(1)

In order to make the model (1) biologically meaningful, it is necessary to prove that all the variables are non
negative all of the time (t). In other words the solution of the model (1) with positive initial condition will
remain positive for time t ≥ 0. Since the model (1) represents the interaction between the human and vector
populations, it is important to state all the variables and parameters are non negative with respect to time. It
is found by summing the first three equations of (1), the total human population Nh satisfies the following
equation,

dNh
dt

= λh − µhNh − dIh,

and the total mosquito population satisfies the equation,

dNm
dt

= λm − µmNm.

It is easy to prove that,
dNh
dt
≤ λh−µhNh and

dNm
dt
≤ λm−µmNm for a special case d = 0. This follows

whenever Nh ≥ λh

µh
and Nm ≥ λm

µm
then

dNh
dt
≤ 0 and

dNm
dt
≤ 0 respectively. On the other hand a standard

comparison theorem [36] is used to show that 0 ≤ (Nh, Nm) ≤
(
Nh(0)e−µht + λh

µh
(1− e−µht),

Nm(0)e−µmt + λm

µm
(1− e−µmt)

)
. Thus for t → ∞, 0 ≤ (Nh, Nm) ≤

(
λh

µh
, λm

µm

)
and the region D =

{(Sh, Ih, Rh, Sv, Iv) ∈ R5
+ : Nh ≤ λh

µh
, Nm ≤ λm

µm
} is the positively invariant region for the model (1).

Here the initial human population is considered as N0
h(t) = S0

h(t) + I0h(t) + R0
h(t) = λh

µh
in order to get

a population of a constant size [37] (that is, Sh(t) + Ih(t) + Rh(t) = Nh(t) = λh

µh
). The third equation of

(1) is independent of first and second and by using Rh = λh

µh
− Sh − Ih in (1), the third equation can be

eliminated. Additionally, by using the property of treatment function we found the following reduced model.

dSh
dt

= λh − βm
ShIm

1 + α1Im
− µhSh + γh

(
λh
µh
− Sh − Ih

)
dIh
dt

= βm
ShIm

1 + α1Im
− rhIh − µhIh − u− dIh

dSm
dt

= λm − βh
SmIh

1 + α2Ih
− µmSm

dIm
dt

= βh
SmIh

1 + α2Ih
− µmIm.

(2)
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Considering Nh1 = Sh + Ih it is found from the reduced model (2) that

dNh1
dt

= λh +
γhλh
µh
− µhNh1 − γhNh1 − (rh + µh + d)Ih − u,

and for the mosquito population
dNm
dt

= λm − µmNm.

From the above equations it can be seen that in absence of disease (Ih = 0 , u = 0), Nh1 → λh

µh
. Since the

spread of the disease will reduce the population Nh1 this follows that Nh1 ∈ [0, λh

µh
]. It is noted that D is

the positively invariant region for the model (1) and the region

D1 = {(Sh, Ih, Sv, Iv) ∈ R4
+ : Nh ≤

λh
µh
, Nm ≤

λm
µm
}

is the positively invariant region for the model (2). Our goal in this paper is to analyze the global dynamics
of Model (2) and investigate the transmission of dengue in Bangladesh through the model.

3. ANALYSIS OF THE MODEL

3.1. Existence of Equilibria and Basic Reproduction Number
Disease free equilibrium (DFE) point come to light when the infections are zero and by using Ih = Im = 0

in (2), the model gives us a unique DFE which is E0
d =

(
S0
h, I

0
h, S

0
m, I

0
m

)
=
(
λh

µh
, 0, λm

µm
, 0
)

.
To find the basic reproduction number of the model 2, the method of next generation matrix has been used

and following [38], the basic reproduction number is found to be,

R =

√
βhβmλhλm

µ2
mµh(rh + µh + d)

. (3)

Choosing, Rh = βhλh

µh(rh+µh+d)
and Rm = βmλm

µ2
m

Equation (3) can be written as R =
√
RhRm. Here, Rh

describes the number of humans that one infectious mosquito infects over its expected infection period in a
completely susceptible humans population, and Rm is the number of mosquitoes infected by one infectious
human during the period of infectiousness in a completely susceptible mosquito population [31].

The endemic equilibrium points (EEP) E∗ = (S∗h, I
∗
h, S

∗
m, I

∗
m) of the system (2) can be found by the

following equations,

λh − βm
S∗hI

∗
m

1 + α1I∗m
− µhS∗h + γh

(
λh
µh
− S∗h − I∗h

)
= 0

βm
S∗hI

∗
m

1 + α1I∗m
− rhI∗h − µhI∗h − u− dI∗h = 0

λm − βh
S∗mI

∗
h

1 + α2I∗h
− µmS∗m = 0

βh
S∗mI

∗
h

1 + α2I∗h
− µmI∗m = 0.

(4)

After calculation Equation (4) gives,

S∗h =
(λh(µh + γh)− γhµhI∗h)

(
βh(µm + α1λm)I∗h + µ2

m(1 + α2I
∗
h)
)

µh [βmβhλmI∗h + (µh + γh) (βh(µm + α1λm)I∗h + µ2
m(1 + α2I∗h))]

S∗m =
λm(1 + α2I

∗
h)

µm + (βh + α2µm)I∗h

I∗m =
βhλmI

∗
h

µm (µm + (βh + α2µm)I∗h)
.
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Where I∗h is the positive root of Equation

a(I∗h)2 + bI∗h + c = 0, (5)

with

a = µh
[(
βmβhλm + (µh + γh)(µmβh + µ2

mα2 + α1βhλm)
)

(rh + µh + d) + βmβhλmµhγh
]

b = µh
[
u
(
βmβhλm + (µh + γh)(µmβh + µ2

mα2 + α1βhλm)
)

+ µ2
mµh(µh + γh)(rh + µh + d)(1−R2)

]
c = uµ2

mµh(µh + γh).

Here it can be seen that a > 0 and c > 0. By Descartes’ rule of signs the only possibility for the equation
(5) to have positive root if b < 0. From the above equation, it is easy to find that b > 0 when R ≤ 1. Thus
for R ≤ 1 there is no positive endemic equilibrium of the model (2) and the endemic equilibrium exists
for R > 1. Now if R > 1 i.e b < 0 the number of root of Equation (5) can be determined based on the
discriminant ∆ = b2 − 4ac. If ∆ > 0 then there are two positive root that means two endemic equilibrium.
For ∆ = 0 there is one root of multiplicity 2 and for ∆ < 0 there is no positive root. Solving ∆ = b2− 4ac
as a quadratic equation in terms of 1 − R2 we get ∆ > 0 when R2 > Rc1 or R2 < Rc2 and ∆ = 0 when
R2 = Rci , (i = 1, 2) where,

Rc1 = 1− −u(βmβhλm+(µh+γh)(µmβh+µ
2
mα2+α1βhλm))+

√
4ac

c(rh+µh+d)

Rc2 = 1− −u(βmβhλm+(µh+γh)(µmβh+µ
2
mα2+α1βhλm))−

√
4ac

c(rh+µh+d)
.

Since the case of endemic equilibrium arise for R > 1, it is straightforward to write 1 ≤ Rc1 < R2 < Rc2.
Therefore, the system (2) exhibits two endemic equilibrium if 1 ≤ Rc1 < R2 < Rc2 and one endemic
equilibrium of multiplicity two if R2 = Rci , (i = 1, 2) and no equilibrium for other cases.

3.2. Local Stability Analysis
The local stability of the equilibrium points of the model (2) have been analyzed based on the eigenvalues

of the Jacobian matrix and Routh-Hurwitz criteria. The Jacobian matrix corresponding to the system (2)
around the point E = (Sh, Ih, Sm, Im) is,

J(E) =


− βmIm

1+α1Im
− µh − γh −γh 0 − βmSh

(1+α1Im)2
βmIm

1+α1Im
−(rh + µh + d) 0 βmSh

(1+α1Im)2

0 − βhSm

(1+α2Ih)2
− βhIh

1+α2Ih
− µm 0

0 βhSm

(1+α2Ih)2
βhIh

1+α2Ih
−µm

 . (6)

The local stability of the model for both DFE and EEP has been established by using following theorems.

Theorem 3.1. The disease free equilibrium E0
d is locally asymptotically stable when R < 1 and is unstable

when R > 1.

Proof. To analyze the local stability at DFE we use Ih = Im = 0 in (6) we get the following Jacobian
matrix.

J(E0
p) =

 −µh − γh −γh 0 −βmS0
h

0 −(rh + µh + d) 0 βmS
0
h

0 −βhS0
m −µm 0

0 βhS
0
m 0 −µm

 .

The characteristic polynomial in the case of DFE is,

f(λ) = (µh + γh + λ)(µm + λ)
[
(rh + µh + d+ λ)(µm + λ)− βhβmS0

hS
0
m

]
. (7)

Among the four roots of Equation (7), two are −(µh + γh), and −µm, which are negative. The other two
roots are found by the quadratic equation,

λ2 + a1λ+ a2 = 0 (8)
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with a1 = rh + µh + d+ µm
and a2 = µm(rh + µh + d)− βhβmS0

hS
0
m = µm(rh + µh + d)(1−R2).

It is easy to find that a1 > 0 and a2 > 0 if R < 1. Thus for R < 1 the coefficients of Equation (8)
are all positive and by Routh-Hurwitz criteria all the roots are negative. Thus we found all the roots of the
characteristic polynomial (7) are negative if R < 1 and at least one root is positive for R > 1. If all the
roots of the characteristic polynomial are negative then the DFE is locally asymptotically stable [39]. This
concludes that for R < 1 the disease free equilibrium E0

d is locally asymptotically stable and unstable for
R > 1.

Theorem 3.2. The endemic equilibrium E∗ = (S∗h, I
∗
h, S

∗
m, I

∗
m) is locally asymptotically stable if and only

if the inequality R2 ≥ λhλm
βmγhµhS∗mI

∗
h

holds.

Proof. The Jacobian matrix (6) at endemic equilibrium point E∗ is

J(E∗) =


− βmI

∗
m

1+α1I∗m
− µh − γh −γh 0 − βmS

∗
h

(1+α1I∗m)2

βmI
∗
m

1+α1I∗m
−(rh + µh + d) 0

βmS
∗
h

(1+α1I∗m)2

0 − βhS
∗
m

(1+α2I∗h)
2 − βhI

∗
h

1+α2I∗h
− µm 0

0
βhS

∗
m

(1+α2I∗h)
2

βhI
∗
h

1+α2I∗h
−µm

 . (9)

The characteristic polynomial of the matrix (9) is

f(λ) = (µm + λ)(λ3 + p1λ
2 + p2λ+ p3), (10)

where
p1 = A+ µh + γh + rh + µh + d+ C + µm
p2 = (C + µm)(A+ µh + γh + rh + µh + d) + (rh + µh + d)(A+ µh + γh) +Aγh −BD
p3 = Aγh(C + µm) + (rh + µh + d)(A+ µh + γh)(C + µm)−BD(µh + γh),
with
A =

βmI
∗
m

1+α1I∗m
, B =

βmS
∗
h

(1+α1I∗m)2 , C =
βhI
∗
h

1+α2I∗h
, and D =

βhS
∗
m

(1+α2I∗h)
2 .

Here, p1 > 0. Using second and fourth equation from (4) and after some algebraic calculation p2 and p3
can be written as
p2 = (C+µm)(A+µh+γh+rh+µh+d)+(rh+µh+d)(A+µh+γh)+(I∗m)2(1+α1I

∗
m)2

(
R2 − λhλm

βmγhµhS∗mI
∗
h

)
p3 = (rh + µh + d)(A+ µh + γh)(C + µm) + C(I∗m)2(1 + α1I

∗
m)2(µh + γh)

(
R2 − λhλm

βmγhµhS∗mI
∗
h

)
,

and
p1p2 − p3 = (A+ µh + γh + rh + µh + d) [(C + µm)(A+ µh + γh + rh + µh + d)+

(rh + µh + d)(A+ µh + γh) + (I∗m)2(1 + α1I
∗
m)2

(
R2 − λhλm

βmγhµhS∗mI
∗
h

)]
+

(C + µm)2(A+ µh + γh + rh + µh + d) + ((C + µm) + C(µh + γh))

(
R2 − λhλm

βmγhµhS∗mI
∗
h

)
.

In the above expressions p2 and p3 are greater than zero and p1p2 > p3 if R2 ≥ λhλm
βmγhµhS∗mI

∗
h

. One of
the eigenvalue of Equation (10) is negative and if p1 > 0 , p2 > 0, p3 > 0, and p1p2 > p3 then by Routh-
Hurwitz criteria all other eigenvalues are negative. Consequently the EEP is locally asymptotically stable.
This concludes E∗ is locally asymptotically stable for R2 ≥ λhλm

βmγhµhS∗mI
∗
h

.

3.3. Global Stability
The global stability for DFE and EEP of the model (2) have been studied based on a Lyapunov function.

The following theorems are used to establish the global stability.

Theorem 3.3. The disease-free equilibrium E0
d of the model (2) is globally asymptotically stable in D1 if

R ≤ 1.



MATHEMATICAL MODELLING AND ANALYSIS OF DENGUE TRANSMISSION IN BANGLADESH 107

Proof. To establish the global stability for disease free equilibrium, consider the Lyapunov function L =
{(Sh, Ih, Sm, Im) ∈ D1 : Sh > 0, Ih ≥ 0, Sm > 0, Im ≥ 0} defined by,

L = w1Ih + w2Im,

where w1 = µm

βm
and w2 = λh

µh
. The time derivative of L along the solutions of the model (2) yields

L
′

=
µm
βm

[
βm

ShIm
1 + α1Im

− rhIh − µhIh − u− dIh
]

+
λh
µh

[
βh

SmIh
1 + α2Ih

− µmIm
]

≤ λhβhλm
µhµm

Ih −
µm(rh + µh + d)

βm
Ih =

µm(rh + µh + d)

βm
[R2 − 1]Ih.

Therefore, L
′ ≤ 0 for R ≤ 1 and L

′
= 0 if and only if I∗h = 0. Furthermore, (Sh, Ih, Sm, Im) →(

λh

µh
, 0, λm

µm
, 0
)

as t → ∞, since Ih → 0 as t → ∞. Consequently, the largest compact invariant set in

{(Sh, Ih, Sm, Im) ∈ D1 : L
′

= 0} is the singleton {E0
d} and by Lasalle’s invariance principle [40], E0

d is
globally asymptotically stable in D1 if R ≤ 1.

Theorem 3.4. The endemic equilibrium point E∗ of the model (2) is globally asymptotically stable on D1

if R > 1 and if
1) (Sh − S∗h) and (Ih − I∗h) have the same sign.
2) (Sm − S∗m) and (Im − I∗m) have the same sign.

Proof. Consider the following positive definite Lyapunov function

V =
1

2
(Sh − S∗h)2 + w1

1

2
(Ih − I∗h)2 +

1

2
(Sm − S∗m)2 + w2

1

2
(Im − I∗m)2. (11)

Where w1 and w2 are positive constants. The Lyapunov derivative along the solutions of (2) is

V
′

=(Sh − S∗h)

[
λh − βm

ShIm
1 + α1Im

− µhSh + γh

(
λh
µh
− Sh − Ih

)]
+ w1(Ih − I∗h)

[
βm

ShIm
1 + α1Im

− rhIh − µhIh − u− dIh
]

+ (Sm − S∗m)

[
λm − βh

SmIh
1 + α2Ih

− µmSm
]

+ w2(Im − I∗m)

[
βh

SmIh
1 + α2Ih

− µmIm
]
.

Let f(Im) = Im
1+α1Im

and f(Ih) = Ih
1+α2Ih

for convenience. Using the relations at equilibrium state from (4)
and after making some rearrangement the above equation becomes,

V
′

= −(βmf(Im) + µh + γh)(Sh − S∗h)2 − γh(Sh − S∗h)(Ih − I∗h)− w1(rh + µh + d)(Ih − I∗h)2

− (βhf(Ih) + µm)(Sm − S∗m)2 − w2µm(Im − I∗m)2 + w1βmf(Im)(Sh − S∗h)(Ih − I∗h)

+ w2βhf(Ih)(Sm − S∗m)(Im − I∗m) + βmS
∗
hImI

∗
mf(Im)f(I∗m)(Im − I∗m)(w1(Ih − I∗h)− (Sh − S∗h))

+ βhS
∗
mIhI

∗
hf(Ih)f(I∗h)(w2(Im − I∗m)− (Sm − S∗m)).

Choosing, w1 =
Sh−S∗h
Ih−I∗h

and w2 =
Sm−S∗m
Im−I∗m

. Since Sh > 0, Sm > 0, Ih > 0, Im > 0, S∗h > 0, S∗m > 0, I∗h > 0

and I∗m > 0 at E∗ then w1 and w2 are positive after satisfying the conditions (1) and (2). Using w1 and w2

in the above equation yields,

V
′

= −(µh+γh)(Sh−S∗h)2−µm(Sm−S∗m)2−µm(Sm−S∗m)(Im−I∗m)−(rh+µh+γh+d)(Sh−S∗h)(Ih−I∗h).

This follows that, V
′ ≤ 0 if the condition (1) and (2) holds. Moreover V

′
= 0 if and only if Sh =

S∗h, Ih = I∗h, Sm = S∗m and Im = I∗m. Thus the largest compact invariant subset of the set where V
′

= 0
is singleton {(Sh, Ih, Sm, Im) = (S∗h, I

∗
h, S

∗
m, I

∗
m)} and hence by Lasalle’s Invariance principle [40] the

endemic equilibrium point E∗ is globally asymptotically stable in D1.
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3.4. Numerical Simulations
In order to perform the numerical simulations, the data of infected human and the number of death cases

due to dengue have been collected from Institute of Epidemiology Disease Control and Research (IEDCR),
and from Directorate General of Health Services, Bangladesh [41]. Table 1 presents the data in particular
month from 2016 to 2019.

Table 1: Month wise dengue cases in Bangladesh from 2016 to 2019

Month 2016 2017 2018 2019
January 13 92 26 38

February 3 58 7 18
March 17 36 19 17
April 38 73 29 58
May 70 134 52 193
June 254 267 295 1884
July 926 286 946 16253

August 1451 346 1796 52636
September 1544 430 3087 16856

October 1077 512 2406 8143
November 522 409 1192 4011
December 145 126 293 1247

Total Infected 6060 2769 10148 101354
No. of death 14 8 26 164

From Table 1, it can be observed that, over the time span the infection was fewer in 2017 and highest in
2019. Average number of infective has increased in the subsequent years after 2017. The number of dengue
infected that found in the year 2019 was approximately 10% escalated than the immediate previous year.
In addition, the number of death in 2019 was highest among any of the previous year. It is noticeable that,
during the month of July-October highest number of dengue infections are encountered in every year. The
real data presented in Table 1 have been used to estimate the human infection rate and death rate of the
model (2). The estimation process for determining the values of these two parameters are followed from [42].
Since the real data for mosquito population is unavailable and due to the involvement of enormous number
of mosquito individuals, we have assumed the mosquito infection rate as doubled as human infection rate.
The value of the parameters used for numerical simulations and their sources have been summarized in Table
2.

Table 2: Parameter values and sources.

Parameter Value Source
βh 0.0824 Calculated
βm 0.1648 Assumed
λh Variable ...
λm Variable ...
rh 0.1429 [17]
γh 0.00274 [17]
µh 3.9× 10−5 [20]
µm 0.0714 [20]
α1 5 [23]
α2 5 [23]
u Variable ...
d 0.0001452 Calculated

Using the parameter value from Table 2, the simulation for susceptible human, infected human, susceptible
mosquito and infected mosquito has been presented in Figure 1. The simulation has been carried out for both
of the cases when R < 1 and R > 1. From Figure 1, it can be seen that the infection dies out for R < 1, on
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the other hand infection persist for R > 1. For the case of R < 1, the only positive index in the figure is the
susceptible human compartment. This represents the population is infection free for R < 1 and become fully
susceptible until further outbreak. This result validates the analytical results obtained in previous sections.
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Figure 1: Time series of the compartments for R < 1 and R > 1. The parameters are: βh = 8.24×10−2, βm = 0.1648,
λh = 8.471 × 10−3, λm = 2 × 10−4, µh = 3.9 × 10−5, µm = 7.14 × 10−2, u = 5 × 10−4, α1 = 5, α2 = 5,
rh = 0.1429, γh = 2.74 × 10−3, d = 1.452 × 10−4 and βh = 8.24 × 10−2, βm = 0.1648, λh = 1, λm = 15,
µh = 3.9×10−5,u = 5×10−4, µm = 7.14×10−2, α1 = 5, α2 = 5, rh = 0.1429, γh = 2.74×10−3, d = 1.452×10−4.

In order to examine the effect of saturated incidence rate over the compartments, Figure 2 have been
generated by varying the values of α1 and α2. The dynamics of the compartments with and without saturation
effect have been shown by taking α1 = α2 = 0 and α1 = α2 = 5 respectively. The other parameters of Table
2 are unchanged. The figure 2 depicts there is a considerable difference in the dynamics of the compartments
by changing the unsaturated effect into saturated. For unsaturated phenomenon, the susceptible vanishes and
the infected fluctuates within very short time whereas in case of saturation effect, the results are more realistic.

A constant treatment function have been used in the model (2) which represents the maximum treatment
capacity after the outbreak of the disease. However, this capacity varies from city to city as well as from
country to country. It is well known that the more adequate treatment gives the less infection. To see the
effect Figure 3 has been generated for different values of u and the other parameters of Table 2 remain same.
From Figure 2 it can be seen that the increased value of u decreases the index of the figure of infected
population.

3.5. Sensitivity Analysis
Sensitivity analysis reveals the effect of each parameter for disease transmission. Usually in epidemiological

diseases error involves in data collection and in the prediction of parameter values. In order to determine the
robustness of model predictions to parameter values, the sensitivity analysis have often been used [13]. The
estimation of the normalized forward sensitivity index of a variable to a parameter has been carried out by
the ratio of the relative change in the variable to the relative change in the parameter. Partial derivatives may
alternatively use for sensitivity index when the variable is a differentiable function of the parameter [42],
[43]. Since the reproduction number is a threshold quantity for epidemic model, the sensitivity analysis have
been used to determine the parameters that have a high or low effect on R.

Definition 3.1. [13], [42] The normalized forward sensitivity index of a variable R that depends differentiably
on a parameter p is defined by

ψRp =
∂R

∂p
× p

R
. (12)
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Figure 2: Effect of saturation incidence rate. The other parameters are: βh = 8.24 × 10−2, βm = 0.1648, λh = 1,
λm = 15, µh = 3.9 × 10−5,u = 5 × 10−4, µm = 7.14 × 10−2, α1 = 5, α2 = 5, rh = 0.1429, γh = 2.74 × 10−3,
d = 1.452× 10−4.
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Figure 3: Effect of treatment function over Infected human. Others parameters are: βh = 8.24 × 10−2, βm = 0.1648,
λh = 0.01, λm = 0.15, µh = 3.9 × 10−5, µm = 7.14 × 10−2, α1 = 5, α2 = 5, rh = 0.1429, γh = 2.74 × 10−3,
d = 1.452× 10−4.

The expression of R from (3) is used to derive the analytical expressions for sensitivity incidence of R
with respect to the parameter that comprise it. It is noted that the sensitivity index could be constant and do
not depend on any parameter. It could also be complex expressions depending on several parameters of the
model. The sensitivity incidences of R with respect to the model parameters is given by,

ψRβh
= ψRβm

= ψRλh
= ψRλm

= 1
2 , ψ

R
µm

= −1, ψRd = − d
2(rh+µh+d)

, ψRrh = − rh
2(rh+µh+d)

,

ψRµh
= − rh+2µh+d

2(rh+µh+d)
.

Using the parameter values from Table 2, the sensitivity indices of R with respect to the parameters is
given in Table 3.
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Table 3: Sensitivity indices of R to the model parameters.

Parameter Sensitivity indices
βh 0.5
βm 0.5
λh 0.5
λm 0.5
µh −0.50013628
µm −1
d −0.00050739
rh −0.49935632

From Table 3, it is found that βh , βm, λh, and λm have the positive sensitivity index and the value is 0.5.
That means increase (or decrease) any of these parameters by 10% will increase (or decrease) the reproduction
number (R) by 5%. On the other hand the parameters µh, µm, d, and rh have negative sensitivity indices.
This indicates the increase (or decrease) of any of these parameters will decrease (or increase) R. It is found
that the sensitivity index of µm is −1. This represents the increase (or decrease) of µm by 10 % will decrease
(or increase) R by 10 %. From the analysis, it is concluded that the most sensitive parameter is the death
rate of mosquito (µm). To validate the result, Figure 4 have been drawn by varying the value of µm and
keeping the other parameters from Table 2 as same. From Figure 4, it is observed that the increased value
of µm decreases the saturation level of the infected human. This suggests that the strategies can be used to
increase the death rate of mosquito in order to decrease the reproduction number as well as the infection.
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Figure 4: Effect of Ih of the variation of µm. The other parameters are: βh = 8.24 × 10−2, βm = 0.1648, λh = 1,
λm = 15, µh = 3.9× 10−5,u = 5× 10−4, α1 = 5, α2 = 5, rh = 0.1429, γh = 2.74× 10−3, d = 1.452× 10−4.

4. CONCLUSION

A simple and relevant mathematical model has been formulated and analyzed that describes the transmission
of dengue with saturated incidence rate for both human and vector populations. A constant treatment function
has been used to investigate the effect of treatment capacity in case of an epidemic scenario. The basic
quantities such as disease free equilibrium, endemic equilibrium, and basic reproduction number have been
calculated. It is found that the endemic equilibrium point exists when the reproduction number is greater
than one. Moreover, the cases for unique and more than one endemic equilibrium have been pointed out.
The local stability of the equilibrium points has been established based on the root of Jacobian matrix, and
Lyapunov functions are constructed for the establishment of global stability. It is noted that the asymptotic
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stability for both disease free and endemic equilibrium points depends on reproduction number. The disease
free equilibrium point is globally asymptotically stable when R ≤ 1. On the other hand, the endemic
equilibrium point is globally asymptotically stable when R > 1. Value of the parameters for infection rate
and disease related death rate has been estimated based on real data collected from several health institutions
of Bangladesh. From the particulars of data, it is noticeable that the outbreak of dengue in Bangladesh
is becoming epidemic day by day. Time series of the compartments have been generated by developing
MATLAB code, and the simulations exhibit that the disease dies out for R < 1 and hang on for R > 1.
Besides, it is observed that the treatment function has an intensive effect on the infected human. The increased
rate of treatment function reduces the infection. This indicates the sufficient treatment facility is needed to be
ensured to disappear the endemic equilibrium and to get rid of the disease, otherwise the infection scenario
will become out of control. From the sensitivity analysis, the highest sensitivity index is found for the
mosquito death rate µm and this parameter has considered as the most sensitive parameter. It is found that
the increased rate of µm gives the maximum fall of reproduction number and no other parameter has that
much effect to reduce the infection. However, if the complete eradication of the infection is desirable in
the community then the mosquito death rates should be increased. It is high time for the policy makers of
Bangladesh to take appropriate steps to increase mosquito death rate and to ensure adequate treatment facility
otherwise the situation can be out of control and a large number of death can be involved by this disease.
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