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Abstract

In this paper, a mathematical model for COVID-19 pandemic that spreads through horizontal transmission
in the presence of exposed immigrants is studied. The model has equilibrium points, notably, COVID-19-free
equilibrium and COVID-19-endemic equilibrium points. The model exhibits a basic reproduction number, R0

which determines the elimination and persistence of the disease. It was found that when R0 < 1, then the
equilibrium becomes locally asymptotically stable and endemic equilibrium does not exists. However, when
R0 > 1, the equilibrium is found to be stable globally. This implies that continuous mixing of exposed
immigrants with the susceptible population will make the eradication of COVID-19 difficult and endemic in
the community. The system is also proved qualitatively to experience transcritical bifurcation close to the
COVID-19-free equilibrium at the point R0 = 1. Numerically, the model is used to investigate the impact of
certain other relevant parameters on the spread of COVID-19 and how to curtail their effect.
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1. INTRODUCTION

The coronavirus belongs to the family of viruses that causes respiratory and intestinal illnesses in humans
and animals ([1], [2]). It leads to coronavirus disease in 2019 with accepted acronym COVID-19 worldwide. It
results to fatality of millions of people and economic meltdown of many countries. The COVID-19 pandemic
has created global anxiety that cut across Africa, Asia, Europe, America and other continents in the world.
Non-African countries have had the worst hit of COVID-19 in the first quarter of the year 2020. It was
estimated that 99.2% of the global total of 3,090,445 million people with COVID-19 lived in continents
outside Africa [3]. People dying more from the disease comes from those with chronic co-morbidities such
as cardio vascular and cerebra-vascular diseases, diabetes, hepatitis B virus and other infections [4]. Findings
about the disease characteristics are rapidly changing and subject to selection bias. Incubation period has
been found to be long as 19 or 24 days, beyond the 14 days window period, which has been a baseline of
case definition [5]. Up till now, the spread and transmission of the disease rely heavily on human to human
contact with human infected droplets, blood and infected objects. Apart from the index case in Wuhan,
exposed immigrants (infected but without symptoms) have been the key drivers of the present COVID-
19 pandemic and past epidemics ([6], [7], [8]). About 44% cases of COVID-19 due to pre-symptomatic
transmission are widely reported [9]. In particular, 201 cases of coronavirus through pre-symptomatic and
asymptomatic transfer were reported in Azad Jammu and Kashmir [10]. No nation in the world today apart
from China has an index case of COVID-19 independent of exposed immigrants.

From the beginning of COVID-19 to date, a couple of mathematical models as indispensable tool have
been constructed and applied in gaining better understanding on the spread and transmissibility, impacts of
preventive and curative strategies of the disease. For example, see [11], [12] for details on general dynamics
of COVID-19. Some works focus on testing and detection [13]. Some implements the use of vaccines [14]
and others focus on influence of infective immigrants [15], quarantine and education ([16], [17]), lockdown,
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contact tracing and isolation ([18], [19]). Research in these areas have presented novel results on preventive
and curable steps to contain the pandemic and have reported better outcomes in terms of completing time
estimation for contact tracing. However, a robot form of models with a justifiable and satisfactory assessment
is needed. In all the authors cited above, none of them has consider the impact of exposed immigrants (who
escapes quarantine undetected at the point of entry) on the spread of COVID-19. It is on this plight that
the present study proposes a mathematical model of COVID-19 transmission dynamics in the presence of
exposed immigrants.

The rest of the paper is organized as follows: In Section 2, we present the model formulation and analysis
of the model in Section 3. Simulations and discussion are given in Section 4. Section 5 deals with the
conclusion of the paper.

2. MODEL FORMULATION

A population size denoted by N(t) at any time t with constant inflow of susceptibles at a rate πs is
examined. The total population is partitioned into four classes of susceptible (S) , exposed (E), Quarantined
(Q1), and isolated/hospitalized (Q2) individuals. Apart from the first case in Wuhan, China, we assume that
all cases of COVID-19 in other countries were as a result of having contact with the exposed immigrants.
Exposed individuals here are either asymptomatic or pre-symptomatic but infectious. Q1 are both locals and
exposed immigrants that follow legal routes (airports) on their arrival while Q2 are infected individuals with
symptoms isolated for treatment. Individuals in classes (Q1) and (Q2) are assumed not to be transmitting
the disease since they are confined for symptoms observation and treatment respectively. Therefore, their
interactions with the general susceptible population is negligible. The study does not consider a separate
class for infectious people since they are placed under class (Q2) as required by the medical guidelines on
COVID-19 prevention and treatment [20]. It is also assumed that exposed individuals do not die of COVID-
19. In all classes, they experience a natural death rate, µ and the COVID-19 induced death rate, δ specified
for the isolated individuals (Q2). The exposed individuals recover at a rate, γ1 by body immune system
while γ2 remains the recovery rate of the hospitalized individuals due to treatment. Furthermore, β is the
rate of exposure to the coronavirus that results to infection and α is the number of exposed individuals
that had contact with the susceptible individuals. As in [22], we introduce the immigrants who are exposed
to the coronavirus as thus: q1mE is the recruitment of exposed immigrants into the quarantine class at
point of entry through legal routes and q2mE is a complementary proportion of immigrants that escapes
quarantine undetected into the exposed class, where m is the rate of influx of exposed immigrants. Apart
from the quarantining of immigrants, individuals who are exposed within the community are also quarantined
internally at rate ν. After being in the quarantine class for 14 days, those individuals without the symptoms
of the disease are released to the susceptible class at a rate, ξ and individuals with clinical symptoms are
isolated at a rate, ω1. The exposed individuals develop symptoms of the disease are therefore isolated at rate,
ω2. We assumed that isolated individuals recover to gain susceptibility at a rate, γ2. It is also assumed that
the interactions between susceptible and exposed individual follows a standard incidences function as given
in the flow diagram of the model. In view of these assumptions and schematic diagram in Figure 1, we derive
the following differential equations in System (1).

dS

dt
= πs + ξQ1 + γ1E + γ2Q2 −

βαES

N
− µS,

dE

dt
=

βαES

N
+ q2mE − (µ+ ν + γ1 + ω2)E,

dQ1

dt
= (q1m+ ν)E − (µ+ ξ + ω1)Q1,

dQ2

dt
= ω1Q1 + ω2E − (µ+ δ + γ2)Q2,

(1)

with
S(0) = S0, E(0) = E0, Q1(0) = Q0

1, Q2(0) = Q0
2

and q2 = 1− q1.
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Figure 1: Schematic diagram of COVID-19 transmission dynamics with exposed immigrants.

Adding the entire equations of the system (1) accounts for the differential equation (2)

dN

dt
= πs − µN − δQ2 +mE, (2)

where N = S +E +Q1 +Q2. For a system free from influx of exposed immigrants (m = 0), Equation (2)
becomes dN

dt ≤ πs − µN. Therefore, as in [12], it can be shown that lim supN(t)t−→∞ ≤ πs

µ . Thus, the
invariant set for model (1) is

Υ = {(N,E,Q1, Q2) ∈ R4
+ : N + E +Q1 +Q2 ≤ πs

µ
,N > 0, E ≥ 0, Q1 ≥ 0, Q2 ≥ 0}.

Without loss of generality, the system (1) can be rewritten as:

dN

dt
= πs − µN − δQ2 +mE,

dE

dt
= βα(N − E −Q1 −Q2)

E

N
+ q2mE − (µ+ ν + γ1 + ω2)E,

dQ1

dt
= (q1m+ ν)E − (µ+ ξ + ω1)Q1,

dQ2

dt
= ω1Q1 + ω2E − (µ+ δ + γ2)Q2.

(3)

Continuity of the right-hand side of Equation (3) and its derivative implies the model is biologically well
behaved.

3. MODEL ANALYSIS

3.1. Basic reproduction number (R0)

To obtain a COVID-19-free equilibrium, it is expected that the entire population is to be occupied by
susceptibles and devoid of the other classes (i.e. all other classes go to extinction after some time). Following
the work in [22], we set S = N and E = Q1 = Q2 considered to be zero in a situation where few infectives
dominate the population. This is then substituted into the differential coefficient of exposed class to obtain

dE

dt
= [βα+ q2m− (µ+ ν + γ1 + ω2)]E. (4)
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Since Equation (4) is a variable separable differential equation, we get by integration

E(t) = E0exp[(βα+ q2m− (µ+ ν + γ1 + ω2))t].

If βα + q2m − (µ + ν + γ1 + ω2) < 0, then the number of exposed diminishes exponentially with time.
Therefore, exposure to COVID-19 at infinity (i.e. t −→ ∞) becomes minimal.

Interestingly, if
βα+ q2m− (µ+ ν + γ1 + ω2) < 0,

⇔ βα+ q2m

µ+ ν + γ1 + ω2
< 1 ⇔ R0 =

βα+ q2m

µ+ ν + γ1 + ω2
.

Then, E can be given in terms of R0 as:

E(t) = E0exp(
R0 − 1

T
)t, (5)

where T = 1
µ+ν+γ1+ω2

is the time people remain exposed to the COVID-19 pandemic, while R0 is the
average number of secondary COVID-19 cases produced by a single exposed individual being a local or
an immigrant when introduced in the entire susceptible population. It is clear that R0 is an increasing
function of inflow rate (m) of exposed immigrants since ∂R0

∂m = q2T > 0. Thus, an increase in m above
the bound, say µ+ν+γ1+ω2−βα

q2
can cause R0 > 1. When this happens, the number of exposed individuals

increase exponentially, and invariably increases the COVID-19 cases. Also, when R0 < 1, the exposed
people varnishes with time, as a consequence of the available control strategies in the study. Note that, R0

is expressed as a function of number of contacts of exposed with the susceptible population and the influx
rate of immigrants. Therefore, to achieve minimal level of the spread of COVID-19 worldwide, preventive
mechanisms and strict quarantine of exposed immigrants at the point of entry be enforced.

3.2. Impact of doubling time, td on COVID-19 pandemic
Following the approach in [22], let t = td, E = 2E0, then Equation (5) becomes

2E0 = E0exp((
R0 − 1

T
)td).

Taking the natural log of both sides and simplifying, we get

td = (
T

R0 − 1
) ln 2.

3.3. Equilibrium points of the model
In this sub-section, we determine the equilibrium points: COVID19-free equilibrium and COVID-19 en-

demic equilibrium states of Model (3) by setting the derivatives to zero as represented

0 = πs − µN − δQ2 +mE,

0 = βα(N − E −Q1 −Q2)
E

N
+ q2mE − (µ+ ν + γ1 + ω2)E,

0 = (q1m+ ν)E − (µ+ ξ + ω1)Q1,

0 = ω1Q1 + ω2E − (µ+ δ + γ2)Q2.

(6)

Solving simultaneously the equations in System (6), we obtain the following equilibrium points

(P1) C0
19 =

(πs

µ
, 0, 0, 0

)
,

(P2) C̄19 =
(
N̄ , Ē, Q̄1, Q̄2

)
,
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where

N̄ =
βαLσĒ

(µ+ ν + γ1 + ω2)(R0 − 1)
,

Q̄1 = (
q1m+ ν

µ+ ξ + ω1
)Ē,

Q̄2 =
( (q1m+ ν)ω1 + ω2(µ+ ξ + ω1)

(µ+ δ + γ2)(µ+ ξ + ω1)

)
Ē,

with
Lσ = 1 +

(q1m+ ν)(µ+ δ + ω1 + γ2) + ω2(µ+ ξ + ω1)

(µ+ ξ + ω1)(µ+ δ + γ2)
,

Ē =
πs

µβαLσ

(µ+ν+γ1+ω2)(R0−1) +
δ(q1m+ν)+δω2(µ+ξ+ω1)

(µ+ξ+ω1)(µ+δ+γ2)
−m

.

Note that COVID-19-free equilibrium and COVID-19-endemic equilibrium points are given in (P1) and (P2)
respectively.

3.4. Local stability analysis
The general Jacobian matrix of the model (3) is given by Equation (7)

J(N,E,Q1, Q2) =


−µ m 0 −δ

βαE
(

E+Q1+Q2

N2

)
J22 −βαE

N −βαE
N

0 q1m+ ν −(µ+ ξ + ω1) 0
0 ω2 ω1 −(µ+ δ + γ2)

 , (7)

where
J22 = βα+ q2m− (µ+ ν + γ1 + ω2)− βα(

2E +Q1 +Q2

N
).

Lemma 3.1. The COVID-19-free equilibrium for the model (3) is locally asymptotically stable provided
R0 < 1.

Proof: At disease-free equilibrium point, C0
19, the matrix in Equation (7) becomes

J(N0, E0, Q0
1, Q

0
2) =


−µ m 0 −δ

0 (R0−1)
T 0 0

0 q1m+ ν −(µ+ ξ + ω1) 0
0 ω2 ω1 −(µ+ δ + γ2)

 . (8)

Clearly from Equation (8), λ1 = −µ, λ2 = (R0−1)
T , λ3 = −(µ + ξ + ω1) and λ4 = −(µ + δ + γ2) are the

eigenvalues. It is quite understood that

λ2 =
(R0 − 1)

T
< 0

if R0 < 1. This implies that βα+ q2m < (µ+ ν+ γ1 +ω2) and the proof of Lemma 3.1 is thus justified.

Lemma 3.2. The COVID-19-endemic equilibrium, C̄19 for the model (3) is locally asymptotically stable
when R0 > 1.

Proof: At endemic equilibrium point, the matrix in Equation (7) in terms of Ē
N̄

takes the form

J(N̄ , Ē, Q̄1, Q̄2) =


−µ m 0 −δ

(R0−1)
T

Ē
N̄

−βα Ē
N̄

−βα Ē
N̄

−βα Ē
N̄

0 q1m+ ν −(µ+ ξ + ω1) 0
0 ω2 ω1 −(µ+ δ + γ2)

 , (9)
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with the following characteristic equation

x4 + b1x
3 + b2x

2 + b3x+ b4 = 0, (10)

where

b1 = 3µ+ ξ + δ + ω1 + γ2 + βα
Ē

N̄
,

b2 = βα
Ē

N̄
(3µ+ ξ + δ + ω1 + ω2 + q1m+ ν + γ2) + (µ+ ξ + ω1)(µ+ δ + γ2)

+ µ(2µ+ ξ + δ + ω1 + γ2)−m
(R0 − 1)

T

Ē

N̄
,

b3 = βα
Ē

N̄

[
(q1m+ ν)(µ+ δ + ω1 + γ2) + (µ+ δ + ω2 + γ2)(µ+ ξ + ω1)

+ µ(2µ+ ξ + δ + q1m+ ν + ω1 + ω2 + γ2)
]
+ µ(µ+ δ + γ2)(µ+ ξ + ω1)

+
(R0 − 1)

T

Ē

N̄

[
δω2 −m(2µ+ δ + ξ + ω1 + γ2)

]
,

b4 = µβα
Ē

N̄

[
(q1m+ ν)(µ+ δ + ω1 + γ2) + (µ+ δ + ω2 + γ2)(µ+ ξ + ω1)

]
+

(R0 − 1)

T

Ē

N̄

[
δω1(q1m+ ν) + (µ+ ξ + ω1)(δω2 −m(µ+ δ + γ2))

]
.

Therefore, by Routh-Hurwitz criteria on local stability [25], the COVID-19-endemic-equilibrium is locally
asymptotically stable if these conditions bi > 0, i = 1, 2, 3, 4 and b3(b1b2 − b3) > b21b4 are met.

3.5. Global stability analysis
We will first show the stability of C0

19 at the global level for the system free of exposed immigrants
(m = 0) and being subjected to the condition βαµ

πs
≤ (µ+ γ1).

Theorem 3.3. If βαµ
πs

≤ (µ+γ1), then C0
19 is globally asymptomatically stable in Υ (Note that βαµ

πs
≤ (µ+γ1)

implies that R0 < 1).

Proof: It should be noted from Equation (2) that N < πs

µ in Υ for all t > 0. Applying the following
Lyapunov function [26]

H = E +Q1 +Q2,

Derivative of H at time, t after substitution of Equations (3) simplifies to

dH

dt
= (

βα

N
+m− (µ+ γ1))E − βα(E +Q1 +Q2)

E

N
− (µ+ ξ)Q1 − (µ+ δ + γ2)Q2.

Since N ≤ πs

µ at m = 0, we have

dH

dt
= (

βαµ

πs
− (µ+ γ1))E − βαµ(E +Q1 +Q2)

E

πs
− (µ+ ξ)Q1 − (µ+ δ + γ2)Q2.

Thus, dH
dt < 0 if βαµ

πs
≤ (µ+ γ1), and dH

dt = 0 if E = Q1 = Q2 = 0. Therefore, the only trajectory of the
model on which dH

dt = 0 is C0
19. Hence, by LaSalle invariance principle [27], C0

19 is globally asymptotically
stable when R0 < 1. This theorem signifies that strong body immunity could be sufficient in ending COVID-
19 globally when influx rate of exposed immigrants are restricted.

For the global stability of the model at endemic equilibrium C̄19, we prove Theorem 3.5 which depends
on Theorem 3.4.
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Theorem 3.4. The feasible region

G = {(N,E,Q1, Q2) : 0 < N ≤ N∽, 0 < E ≤ E∽, 0 < Q1 ≤ Q∽
1 , 0 < Q2 ≤ Q∽

2 }

is attractive for βα+ q1m > µ+ ν + γ1 + ω2

with

N∽ =
πs +mE∽

µ
,E∽ =

πs

µ

(
1 +

q2m− (µ+ ν + γ1 + ω2)

βα

)
,

Q∽
1 =

(q1m+ ν)E∽

µ+ ξ + ω1
, Q∽

2 =
ω2(µ+ ξ + ω1) + ω1(q1m+ ν)

(µ+ ξ + ω1)(µ+ δ + γ2)
E∽.

Theorem 3.5. The COVID-19-endemic equilibrium, C̄19 for the model (3) is feasible when R0 > 1, and
globally asymptotically stable in the region G, if the following inequalities are met( ω1√

ω2

)2

<
2

3

( (µ+ ξ + ω1)(µ+ δ + γ2)

q1m+ ν

)
, (11)

Max{T11, T12} < p1, (12)

where

T11 =
3

2

( δ2ω2N̄

µβα(µ+ δ + γ2)

)
,

T12 =
3

2

( N̄

µβα

)(βαp1(E∽ +Q∽
1 +Q∽

2 )

N̄N∽
+m

)2

.

Proof: Following the approach in [22], we use the positive definite function around C̄19 as defined below

W =
(N − N̄√

2

)2

+ p1

(
E − Ē − Ē ln

(E
Ē

))
+ p2

(Q1 − Q̄1√
2

)2

+ p3

(Q2 − Q̄2√
2

)2

, (13)

where the constants p1, p2 and p3 can be determine later.
Therefore, differentiating Equation (13) with respect to time, we get

dW

dt
=

∂W

∂N

dN

dt
+

∂W

∂E

dE

dt
+

∂W

∂Q1

dQ1

dt
+

∂W

∂Q2

dQ2

dt

from which we obtain

dW

dt
= (N − N̄)

dN

dt
+ p1

(E − Ē

E

)dE
dt

+ p2(Q1 − Q̄1)
dQ1

dt
+ p3(Q2 − Q̄2)

dQ2

dt
.

After a rigorous manipulation, we obtain

dW

dt
= −µ(N − N̄)2 − βαp1

N̄
(E − Ē)2 − p2(µ+ ξ + ω1)(Q1 − Q̄1)

2

− p3(µ+ δ + γ2)(Q2 − Q̄2)
2 − δ(N − N̄)(Q2 − Q̄2)

−
(
p3ω2 −

βαp1
N̄

)
(E − Ē)(Q2 − Q̄2) + p3ω1(Q1 − Q̄1)(Q2 − Q̄2)

+
(βαp1(E∽ +Q∽

1 +Q∽
2 )

N̄N∽
+m

)
(N − N̄)(E − Ē)

+
(
p2(q1m+ ν)− βαp1

N̄

)
(E − Ē)(Q1 − Q̄1).

(14)
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Now, rewriting Equation (14) as the sum of quadratics, gives

dW

dt
= −a11

(N − N̄√
2

)2

+ a12(N − N̄)(E − Ē)− a21

(E − Ē√
2

)2

− a11

(N − N̄√
2

)2

+ a13(N − N̄)(Q1 − Q̄1)− a33

(Q2 − Q̄2√
2

)2

− a21

(E − Ē√
2

)2

− a33

(Q2 − Q̄2√
2

)2

+ a22(E − Ē)(Q1 − Q̄1)− a31

(Q2 − Q̄2√
2

)2

− a21

(E − Ē√
2

)2

− a31

(Q1 − Q̄1√
2

)2

+ a23(E − Ē)(Q2 − Q̄2)− a33

(Q2 − Q̄2√
2

)2

+ a32(Q1 − Q̄1)(Q2 − Q̄2),

(15)

where
a11 = µ, a12 =

βαp1(E
∽ +Q∽

1 +Q∽
2 )

N̄N∽
+m, a13 = −δ, a21 =

2βαp1
3N̄

,

a22 = p2(q1m+ ν)− βαp1
N̄

, a23 = p3ω2 −
βαp1
N̄

, a31 = p2(µ+ ξ + ω1), a32 = p3ω1,

and
a33 =

2p3(µ+ δ + γ2)

3
.

Thus, dW
dt becomes negative definite if the following conditions hold:{

a212 − a11a21 < 0, a213 − a11a33 < 0, a222 − a21a31 < 0,

a223 − a21a33 < 0, a232 − a31a33 < 0.
(16)

Carefully choosing p2 = βαp1

(q1m+ν)N̄
and p3 = βαp1

ω2N̄
in Eq. (16) satisfies the inequalities in Equations (11)

and (12). Hence, W is a Lyapunov function with respect to C̄19 whose domain of attraction is in G.

3.6. Transcritical bifurcation
Here, we study the local bifurcation near the disease-free equilibrium point of the system as done in the

theorem below using Sotomayor’s theorem [28]. System (3) can be rewritten in the form dX
dt = f(X), where

X = (N,E,Q1, Q2)
T and f = (f1, f2, f3, f4)

T with fi, i = 1, 2, 3, 4 are represented in the right hand side
of System (3).

Theorem 3.6. Let β = β∗ be a bifurcation parameter. Then the system (3) experiences a transcritical
bifurcation near the COVID-19 free equilibrium C0

19 at the point R0 = 1.

Proof: Assume R0 = 1, then β = (µ+ν+γ1+ω2)−q2m
α = β∗. Therefore, Jacobian matrix (8) at β = β∗

has a zero eigenvalue with the following representation

J(C0
19) =

−µ m 0 −δ
0 0 0 0
0 q1m+ ν −(µ+ ξ + ω1) 0
0 ω2 ω1 −(µ+ δ + γ2)

 . (17)

Let V and W be the two eigenvectors respectively corresponding to the eigenvalue λ2 = 0 for the matrices
J(C0

19) and J(C0
19)

T . Then the solutions to the equations J(C0
19)U = 0 and J(C0

19)
TV = 0 gives respectively

V =

v1
v2
v3
v4

 =

a3v2
v2
a1v2
a2v2

 ,W =

w1

w2

w3

w4

 =

 0
w2

0
0

 ,

where
a1 =

q1m+ ν

µ+ ξ + ω1
, a2 =

ω2 + ω1a1
µ+ δ + γ2
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and a3 = m
µ − δa2 with v2 and w2 as non-zero real values.

Note that, since

fβ(X,β) =
(
0,

αE

N
(N − E −Q1 −Q2), 0, 0

)T

,

then
fβ(C

0
19, β

∗) =
(
0, 0, 0, 0

)T

.

This satisfies the condition
WT fβ(C

0
19, β

∗) = 0.

Therefore by Sotomayor’s theorem, System (3) has no saddle-node bifurcation near C0
19 at β = β∗. Also,

since

Dfβ(C
0
19, β

∗) =

0 0 0 0
0 α 0 0
0 0 0 0
0 0 0 0

 ,

then,
WT

[
Dfβ(C

0
19, β

∗)V
]
= αv2w2 ̸= 0.

Thus, the variational matrix of the second partial derivatives of fi, i = 1, 2, 3, 4 at C0
19 and β = β∗ is given

by

D2f(C0
19, β

∗)(V, V ) =

 0
−2β∗ α

N0 v1v3 − 2β∗ α
N0 v2v4 − 2β∗ α

N0 v
2
2

0
0

 ,

which shows that

WT
[
D2f(C0

19, β
∗)(V, V )

]
= −2β∗ α

N0

(
1 + a2 + a3a1

)
v22w2 ̸= 0.

Hence, by Sotomayor’s theorem, System (3) undergoes a transcritical bifurcation near C0
19 at β = β∗ when

R0 = 1.

4. SIMULATION

In this section, numerical simulations are carried out to demonstrate the significance of some parameters
on COVID-19 transmission dynamics. This is done using these parameters values πs = 1252 [21]; β = 0.7
[21]; δ = 0.392 [21]; q1 = 0.3; m = 0.01 ; γ1 = 0.0164 [21]; γ2 = 0.1 [21]; α = 1; ω1 = 0.0101 [11];
ω2 = 0.125 [21]; µ = 0.000036593 [21]; ν = 0.00020138 [21]; ξ = 0.0002 [11]. The parameter values
without citations are assumed.

Figure 2 shows the variation of basic reproduction number R0 against doubling time with isolation rate.
We observe that if R0 > 1 then, the pandemic is said to be growing and otherwise for R0 < 1, the pandemic
is diminishing. If R0 is just above 1, then there is slow growth of the disease. In this instance, the doubling
time gets longer. More so, an increment in R0 leads to the decrease in doubling time which indicates the
rapid growth of COVID-19 cases. This is in line with the result interpreted in [23]. In Figure 3, we observed
that the influx of immigrants increases the susceptibility of the people and rises the profile of the exposed
and infected people living in a community, where entry and exist points are porous (not closed). The impact
of quarantine strategy at point of entry as demonstrated in Figure 4 actually limits the spread of COVID-19
cases compared to the scenario where the exposed immigrants enter the community without being screened.
This result conforms to the works of [13], [18] that suggested that lockdown and border closure will help
to curtail the spread of COVID-19. In a similar fashion, it is noted in Figure 5 that strong body immune
system has an encouraging response towards the mitigating of the pandemic. This is so because it reduces the
tendencies of exposure to the virus and further diminishes COVID-19 cases being quarantined and isolated.
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Figure 2: Impact of varying the rate of isolation rate, ω2 on R0 against doubling time, td.

Figure 3: Impact of influx of exposed immigrants on (a) susceptible, (b) exposed individuals, (c) Quarantined and (d)
Isolated population dynamics.
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Figure 4: Impact of quarantine (q1 = 0.6) at the point of entry on the exposed individuals.

Figure 5: Impact of recovery rate due to body immune system on (a) susceptible, (b) exposed individuals, (c) Quarantined
and (d) Isolated population dynamics.
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5. CONCLUSION

In the study, a non-linear mathematical model is proposed and analyzed to study the transmission dynamics
of COVID-19 in the presence of exposed immigrants. The model assumes strongly that any immigrant is
suspected to be exposed to the virus and thus quarantined at the point of entry, and all symptomatic individuals
of COVID-19 can not travel. By analyzing the model analytically, we computed a basic reproduction number,
R0. We noted that when R0 < 1 (i.e. the product of transmission rate and number of contacts is less than the
sum of natural death rate and recovery rate due to good body immune system) then the disease is eliminated.
However, as long as exposed immigrants continue joining the population without being screened, the COVID-
19-free equilibrium will always be unattainable, since the parameter m > 0 with immigrants force R0 > 1.
When R0 > 1, COVID-19 becomes endemic and remain in the community. In addition, the system experiences
transcritical bifurcation near the COVID-19-free equilibrium when R0 = 1. By simulation, it is shown that
controlling the influx of exposed immigrants (by closing all borders through quarantine) will effectively
reduce the number of exposed people who are infectious and placing immigration ban on immigrants during
COVID-19 will limit the level of susceptibility of individuals in the community. The ban will also reduced
the rate of infection of COVID-19 among the people. It is also revealed in the study that in the presence of
isolation rate, the doubling time for COVID-19 gets longer and that slows the spread of the disease.
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