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Abstract

Trigona sp. is a stingless bee species that is widely distributed in tropical countries. It has castes in the
colony, i.e. queen, worker, and male bee. Despite its size, Trigona sp. can produce high-quality commodities
such as honey, propolis, and bee pollen. However, it is a vulnerable species since it’s pretty easy to be predated
by several predators and has a relatively short lifespan. In addition, there are still few mathematical studies
that discuss the population dynamics of Trigona sp. Thus, in this study, we construct a mathematical model
of the Trigona sp. population in the form of a dynamical system. The model is a nine-dimensional non-linear
differential equation that is constructed based on the stages in the bee population, namely the stages of eggs,
larvae, and adult bees from each colony except the queen colony. Coexistence analysis, stability of equilibria,
and also the death parameter sensitivity analysis are carried out in two scenarios. The first scenario is a situation
where none of the workers die so that the food supply at the larval stage is sufficient. Meanwhile, the second
scenario is a more common situation where some worker bees die from exhaustion resulting in an insufficient
food supply for the larvae stage. Stable coexistence of all sub-structures and structural dependence on the
foraging behavior of the workers are shown. All the results will be presented in numerical simulation. From
the results of the coexistence and stability analysis, bee farmers can maintain food availability by increasing
the number of workers in a colony, or providing food sources with high contains nectar and propolis at a
relatively close distance to reduce the death of worker bees.
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1. INTRODUCTION

Trigona sp. is a stingless bee species with a very small size that can produce high-quality commodities
such as bee pollen, propolis, and honey [10], [6] that useful in the health sector and for direct consumption.
Trigona is commonly found in tropical and subtropical areas such as the United States, Africa, Australia,
and Southeast Asia [17], [16]. This bee makes nests on tree branches, bamboo trunks, between rocks, even
on the ground [7], [13]. Like other bees in general, this species live by forming colonies consisting of 300
to 80,000 bees and includes 3 castes, i.e. queen bees, worker bees, and male bees (drones) [20], [8].

The queen bee is the largest in the colony [2], its size about 3 times the size of a worker bee, and is
in charge of leading the colony and laying most eggs throughout its life with the ability to lay between
1,000-2,000 eggs per day. Queen bees can live for 3-5 years. In every egg-laying period, there will be young
queen bee (virgin queen/gynes) eggs that hatch in small numbers [5], then there will be competition between
the queen and the gynes to determine who will lead the colony.

Male bees (drones) are classified into two types, haploid and diploid. Haploid male bees come from the
eggs of worker bees that have been through the process of parthenogenesis and eggs of the queen bee those
are not successfully fertilized by haploid male bees [5], and most haploid bees come from the eggs of the
queen bee [9]. Meanwhile, diploid male bees come from the eggs of the queen bee those are successfully
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fertilized by haploid male bees and have weak characteristics due to their genetic burden [9]. Haploid male
bees are in charge of mating with the queen bee and will die immediately after mating with the queen. Most
of the diploid male bees will be killed or removed from the hive by worker bees when the season is bad or
food supplies run low because they are considered pests [1].

Worker bees are all females whose reproductive organs do not function properly [6], [19]. This type comes
from the eggs of a queen bee which are fertilized by an adult haploid male bee. Workers can also produce
eggs that will become a haploid male bee [19], [12]. However, the queen bee will still affect the quantity and
quality of eggs produced by workers [12]. Worker bees have a really important task in the colony, workers
are guarding the colony (armed with resin and bites), looking for bee pollen and nectar (which is done by
scattering) [4], taking care of the hive (forming propolis poles, making new honey pots, maintaining the
temperature of the hive, reducing honey moisture content, removing the remaining egg shells), and feeding
the larvae. The life span of worker bees is about 2 months, and they have a risk of death from being attacked
by predators while looking for bee pollen and nectar. [1].

The mating period of the queen bee lasts for 3-7 days, and a queen bee will choose around 7-12 haploid
male bees to mate with [1]. The worker bee will then make an egg sac and produce trophic eggs which are
consumed by the queen bee, and fill egg sacs with royal jelly as food. The queen bee lays eggs in the egg
sac after confirming the availability of feed in the bag [12]. The proportion of male and female eggs is 61:67,
and the diploid male proportion of about 50%. The incubation period of egg, larval, and pupal stages was
described by Salmah et. al. [15]. Estimated age (in days) for each stage i.e. 0-4.2 for the egg stage, 4.2-14.6
for the larval stage, and 14.6-46.5 for the pupal stage.

Several studies on honey bees have been conducted before, such as [14] which explains that the growth of
bee colonies is highly dependent on the availability of food and social inhibition, their model is implemented
as a series of difference equations operating at discrete time steps to model changes in bee population day
by day and base the rate equations on the analytic models of Khoury et al.[11], and go further by simulating
colony growth across three years to capture seasonal and annual growth cycles. Russel suggests that colonies
may be especially sensitive to compromised forage situations, shifting seasons, or agents that reduce the
survival of both nurse and forager bees. Another research conducted by [3] which models the effect of pollen
on honeybee colony dynamics explains that pollen and nectar are foods that are needed by the colony, The
model is implemented as a series of difference equations operating at discrete time steps to model changes
in bee population day by day. Other research on modeling is also presented in [18] which models honeybee
population dynamics by analyzing the increase in larval mortality and the effect of food scarcity so that it
disrupts honeybee colonies, their transient model based on differential equations accounts for the effects of
pheromones in slowing the maturation of hive bees to foraging bees, the increased mortality of larvae in
the absence of sufficient hive bees, and the effects of food scarcity. However, there is still no information
available on the modeling of the Dynamic Analysis of Stingless Bee (Trigona sp.). In this paper, we construct
a Trigona bee colony model in two different cases, then we examine the positivity of each compartment of
the equilibrium point, and we analyze its stability in several cases. To provide clearer illustrations, we present
numerical simulations in the form of a simulation graph for each discussion.

2. MATHEMATICAL MODELING

To formulate the mathematical model, we use several assumptions such as there is only one Queen Bee
in the colony, the growth rate of eggs turns into larvae is the same in each bee compartment and its period
is uniformly distributed, the age of haploid male bee is 30 days, and the age of diploid male bee is 20 days.
Besides that, Worker Bees produced 20 eggs/day, kill 1 diploid male bee/day, and there are no predators so
Worker Bees only experience natural death or death due to work exhaustion. We will use 9 compartments
such as eggs (Ew, Em, and Ed), larvae (Lw, Lm, and Ld), and adult bee compartments (Tw, Tm, and Td)
representing worker, haploid male, and diploid male, respectively. We then construct a differential equation
model by considering all the factors involved in each compartment and its interactions, and then normalization
is carried out based on the number of eggs in the model.

In the egg compartments, the number of eggs will continue to increase from the queen’s egg yield according
to their respective proportions. In addition, Em will increase from the egg yield Tw by ϕ. After that, all eggs
will develop into larvae for 6 days so that all larval compartments will increase in egg development results.
All larvae will be fed by Tw so Tw will die if they don’t get enough food from Tw. All larvae will develop
into adult bees for 42 days. Adult Bees will experience natural death and death due to other factors such as
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Tw will experience death due to exhaustion, Tm will experience death due to mating with the queen, while
Td will experience death due to it being killed by Tw because it is considered a pest.

dEw

dt
= αpr − αEw,

dEm

dt
= α(1− p) + ϕTw − αEm,

dEd

dt
= α(1− r)p− αEd,

dLw

dt
= αEw

(
1− σ(Lw + Lm + Ld)

e+ Tw

)
− γLw,

dLm

dt
= αEm

(
1− σ(Lw + Lm + Ld)

e+ Tw

)
− γLm, (1)

dLd

dt
= αEd

(
1− σ(Lw + Lm + Ld)

e+ Tw

)
− γLd,

dTw

dt
= γLw − µwTw − η(Lw + Lm + Ld)Tw

e+ Tw
,

dTm

dt
= γLm − µmTm − βTm

c+ Tm
,

dTd

dt
= γLd − µdTd −

δTwTd

d+ Td
.

We have 15 parameters in Model (1), those are p (success fertilization probability), r (eggs proportion of
Lw), e (feeding frequency of larva), c (mating frequency of Tm and queen bee), d (The frequency of Td

killed by Tw), α (1/egg period), β (Tm number needed by the queen bee), γ (1/larval period), δ (the number
of Td killed by Tw), η (Tw fatigue level), µw (1/age Tw), µm (1/age Tm), µd (1/age Td), ϕ (eggs production
of Tw per unit time), and σ (larval death because not being fed by Tw). In Model (1), the decreasing rate
of Tm follows Holling type II functional response because Tm will die after mating with the queen bee, so
that when Tm goes to infinity then the number of Tm that will mate the queen is limited to a number of β

η .
It is also applied to the Td compartment, where Tw will kill Td because Td is considered as pest that does
not have a significant role in the colony. The Holling type II functional response aims to limit the number of
Td killed by Tw by δ

ζ for Td close to infinity. The funcion σ(Lw+Lm+Ld)
1+eTw

in 4th to 6th Model (1), shows the
effect of Tw on feeding the larvae. When Tw goes to infinity, then the function will go to 0 which can be
interpreted as the larvae getting enough food. From Model (1), we analyze the existence of each compartment
of the coexistence point and its stability.

3. RESULT AND DISCUSSION

In this section, we have three discussions, i.e. the coexistence of the population that can be seen from
its equilibrium point, the stability of the equilibrium point which can be seen from the eigenvalue that is
obtained from Jacobian matrix, and the numerical simulations in the form of graphics. In each discussion, we
classify the matters into two cases: special case (σ = η = 0) where there is sufficient food for the larvae and
no worker bee’s death caused by exhaustion, and general case (σ ̸= 0 and η ̸= 0) where there is insufficient
food for the larvae and worker bee’s death caused by exhaustion. It is divided into two parts because σ and
η influence each other.

3.1. Equilibrium Point and Its Stability Analysis
1) Special Case: E1 = (Ew1

, Em1
, Ed1

, Lw1
, Lm1

, Ld1
, Tw1

, Tm1
, Td1

) is the equilibrium point of Model
(1) for special case with Ew1

= pr, Em1
= pϕr+(1−p)µw

µw
, Ed1

= (1−r)p, Lw1
= αpr

γ , Lm1
= α(pϕr+(1−p)µw)

γµw
,

Ld1 = αp(1−r)
γ , and Tw1 = αpr

µw
. While Tm1 and Td1 are obtained in quadratic form and respectively can be

seen in Equation (2) and (3).

µmµwT
2
m1

+ (−αpϕr − αµw(1− p) + cµmµw + βµw)Tm1 − αc(pϕr + µw(1− p)) = 0, (2)
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µdµwT
2
d1

+ (αδpr − αpµw(1− r) + dµdµw)Td1 − (1− r)αpdµw = 0. (3)

Both Tm1 and Td1 have positive second-order coefficient and negative constant, which guarantee that Tm1

and Td1 have positive real root. Because each compartment has one positive value in this special case, then
the existence of equilibrium point E1 is guaranteed.

By doing linearization around the equilibrium point, we obtained the Jacobian matrix for E1 as in Equation
(4).

J1 =



−α 0 0 0 0 0 0 0 0
0 −α 0 0 0 0 ϕ 0 0
0 0 −α 0 0 0 0 0 0
α 0 0 −γ 0 0 0 0 0
0 α 0 0 −γ 0 0 0 0
0 0 α 0 0 −γ 0 0 0
0 0 0 γ 0 0 −µw 0 0
0 0 0 0 γ 0 0 J − µm 0

0 0 0 0 0 γ − δTd1

d+Td1
0 K − µd


, (4)

with J =
βTm1−β(c+Tm1 )

(c+Tm1
)2 and K =

δTw1Td1
−δTw1 (d+Td1

)

(d+Td1
)2 . From Equation (4), we get nine negative

eigenvalues in Equation (5) which shows that E1 is stable for the special case.

λ1 =
[
−α −α −α −γ −γ −γ −µ −µm(Tm1+c)2+βc

(Tm1
+c)2 −µdµw(Td1

+d)2+αdδpr

µw(Td1
+d)2

]
. (5)

2) General Case: E2 = (Ew2
, Em2

, Ed2
, Lw2

, Lm2
, Ld2

, Tw2
, Tm2

, Td2
) is the equilibrium point of model

(1) for general case with Lw2
=

αpr(σµw+η)Tw2

γ(ασpr+ηTw2
) , Lm2

=
(σµw+η)(ϕTw2

+α(1−p))Tw2

γ(ασpr+ηTw2
) , Ew2

= pr, Em2
=

ϕTw2
+α(1−p)

α , and Ed2
= (1 − r)p. While Ld2

, Tw2
, Tm2

, and Td2
are obtained in quadratic form and can

be seen in Equation (6), (7), (8), and (9), respectively.

−
(ϕ(σµw + η) + γµw)T

2
w2

+ (αpr(σµw + η − γ) + eγµw + α(σµw + η)(1− p))Tw2
− αeγpr

γ(αprσ + ηTw2)
= 0, (6)

(ϕ(σµw + η) + γµw)T
2
w2

− (α(γpr − σµw − η)− eγµw)Tw2
− αeγpr = 0, (7)

µm(αprσ + Tw2
η)T 2

m2
− (ϕ(σµw + η)T 2

w2
+ (α(σµw + η)(1− p)− η(cµw + β))Tw2

−αprσ(cµm + β))Tm2
− Tw2

(σµw + η)(Tw2
ϕ+ α(1− p))c

= 0, (8)

µd(αprσ + Tw2η)T
2
d2

+ ((µw(ϕσ + γ) + η(δ + ϕ))T 2
w2

+ (αprσ(δ + µw)+
α(η + σµw)(1− p) + αpr(η − γ) + dηµd + eγµw)Tw2 + αpr(dσµd − eγ))Td2+

d((ϕ(σµw + η) + γµw)T
2
w2

+ (αpr(σµw + η − γ) + α(σµw + η)(1− p) + eγµw)Tw2
− αeγpr)︸ ︷︷ ︸

constant

= 0.

(9)
From Equation (7) and (8), we can see that Tw2 and Tm2 have positive second-order coefficient and negative
constant respectively, which guarantee that Tm2 and Td2 have positive real root. While in Equation (9), we
can see that the coefficient of T 2

d2
is positive, but we need a negative constant from Equation (9) to guarantee

the existence of Td2
.

Suppose that A is the simplification of the constant of Equation (9). Because d > 0, we can write it as

A = (ϕ(σµw + η) + γµw)T
2
w2

+ (αpr(σµw + η − γ) + α(σµw + η)(1− p) + eγµw)Tw2
− αeγpr. (10)

Suppose that Tw2,1
and Tw2,2

are the roots of Equation (10). Since Equation (10) is a quadratic equation with
a graph that opens up and has a positive discriminant, it is obtained that the Equation (10) will be negative
when Tw2,1

< Tw2
< Tw2,2

, so the constant of the Equation (9) will be negative. Thus, there is a positive
Td2 when Tw2,1 < Tw2 < Tw2,2 . Note that Equation (10) is the opposite of the numerator of Equation (6),
so Ld2 will be positive as Tw2,1 < Tw2 < Tw2,2 . Because each compartment has one positive value in this
general case, then the coexistence of equilibrium point E2 is guaranteed.
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Using the same method as the special case, we can obtain the eigenvalues in the general case using the
Jacobian matrix from the equilibrium point E2 contained in Equation (11).

J2 =



−α 0 0 0 0 0 0 0 0
0 −α 0 0 0 0 ϕ 0 0
0 0 −α 0 0 0 0 0 0
B 0 0 CEw2

− γ CEw2
CEw2

EEw2
0 0

0 B 0 CEm2
CEm2

− γ CEm2
EEm2

0 0
0 0 B CEd2

CEd2
CEd2

− γ EEd2
0 0

0 0 0 γ −D −D −D −µw −F + F
e+Tw2

0 0

0 0 0 0 γ 0 0 G 0

0 0 0 0 0 γ − δTd2

d+Td2
0 H


, (11)

with B = α
(
1− σ(Lw2+Lm2+Ld2

)

e+Tw2

)
, C = − ασ

e+Tw2
, D =

ηTw2

e+Tw2
, E =

ασ(Lw2+Lm2+Ld2
)

(e+Tw2
)2 , F =

η(Lw2+Lm2+Ld2
)

e+Tw2
,

G = β
c+Tm2

(
Tm2

c+Tm2
− 1

)
− µm, and H =

δTw2

d+Td2

(
Td2

d+Td2
− 1

)
− µd. Based on the Jacobian matrix of

equilibrium point in model (1), we obtain five negative eigenvalues analytically in Equation (12)

λ2 =
[
−α −α −γ −µm(Tm2+c)2+βc

(Tm2
+c)2 −µd(Td2

+d)2+Tw2dδ

(Td2
+d)2

]
. (12)

We obtain the remaining eigenvalues from the characteristic equation in Equation (13)

A4λ
4
2 +A3λ

3
2 +A2λ

2
2 +A1λ2 +A0 = 0, (13)

with
A4 =(αprσ + ηTw2

)(e+ Tw2
),

A3 =η(ϕσ + α+ 2γ + µw)T
2
w2

+ ((ασ + e(2γ + α))η + αpϕrσ2 + prα(2γ + µw + α)σ)Tw2

+ α2prσ2 + αepr(2γ + µw + α)σ + αeηpr,

A2 =(ϕ(γ + α)σ + 2αγ + αµw + γ2 + 2γµw)ηT
2
w2

+ ((α(pϕr + α+ γ)σ + γe(γ + 2α))η + αpϕr(γ + µw + α)σ2 + prα(2αγ + αµw + γ2 + 3γµw)σ)Tw2

+ (α2prσ + αepr(2γ + α))ηα2pr(γ + µw + α)σ2 + prα(−αγpr + 2αeγ + αeµw + eγ2 + 2eγµw)σ,

A1 =(αϕη2 + (αϕ(γ + µw)σ + γ(αγ + 2αµw + γµw))η)T
2
w2

+ ((α(αpϕr + γpϕr + αγ)σ + γ2αe)η + αpϕr(αγ + αµw + γµw)σ
2 + γαpr(αγ + 3αµw + 2γµw)σ)Tw2

+ (α2pr(γ + α)σ + γαepr(γ + 2α))η + α2pr(αγ + αµw + γµw)σ
2

+ γαpr(α(2eµw − αpr − γpr + eγ) + eγµw)σ,

A0 =(αγϕη2 + (αγϕσµw + αγ2µw)η)T
2
w2

+ 2α2γ(pϕrσ2µw + ηpϕrσ + γprσµw)Tw2

+ (α3γprσ + α2eγ2pr)η + α3γprσ2µw + γ2α2pr(−αpr + eµw)σ.

Since Equation (13) is difficult to reduce, so we substitute all parameter values except σ and η to the
equation. After obtaining a simpler polynomial function, an analysis are carried out using the criteria Routh-
Hurwitz, where if B = A1A2 − A0A3 > 0 and C = BA3 − A2

1A4 > 0 then we get that all the eigenvalues
of Equation (13) have negative values. Based on the substitution of the parameter values and Tw2

> 0, we
obtained B = A1A2 − A0A3 > 0. Moreover, C = BA3 − A2

1A4 will have a positive value with sufficient
condition η ≤ 0.85. Then, by using the Routh-Hurwitz criteria [22], all the eigenvalues of Equation (13)
will have negative values. Based on the analysis above, we obtain that all the eigenvalues of E2 from the
Equation (11) are negative, or in another word E2 is a stable equilibrium point.
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3.2. Numerical Simulation
For numerical simulation, we used the parameter values as in Table 1.

Table 1: Parameters of Model.

Parameter Description Value Unit Reference

p Success Fertilization Probability 0.7 - [9]
r Eggs Proportion of Lw 0.7 - [9]
e Feeding frequency of Larva 1 1/day Assumed
c Mating frequency of Tm and Queen bee per day 1 1/day Assumed
d The frequency of Td killed by Tw 1 1/day Assumed
α 1/egg period 0.167 1/day [1]
β Tm number needed by the Queen Bee 0.006 1/day [1]
γ 1/larval period 0.0238 1/day [1]
δ The number of Td killed by Tw 0.0005 1/day Assumed
η Death of Tw due to exhaustion per day 0 & 0.01 1/day Assumed
µw 1/age Tw 0.0167 1/day [1]
µm 1/age Tm 0.033 1/day Assumed
µd 1/age Td 0.05 1/day Assumed
ϕ Eggs production of Tw per unit time 0.01 1/day Assumed
σ Larval death (not being fed by Tw) per day 0 & 0.01 1/day Assumed

1) System Stability on a Pair of Trigona Compartments Based On σ & η: The value for each compartment
of the equilibrium points E1 and E2 can be seen in Table 2.

Table 2: Equilibrium Point Value for E1 and E2.

E1 Value E2 Value

Ed1
0.21 Ed2

0.21
Em1

0.5934131737 Em2
0.4097491047

Ew1
0.49 Ew2

0.49
Ld1

1.473529412 Ld2
1.434108305

Lm1
4.163865546 Lm2

2.798212352
Lw1

3.438235294 Lw2
3.346252711

Td1
0.6815399558 Td2

0.6752479825
Tm1

2.949135524 Tm2
1.978046419

Tw1
4.9 Tw2

1.832810048

Figure 1 is two-dimensional numerical simulation results for Tw, Tm, and Td compartments in each given
case. The graphs show that each sub-population is coexistent for both special and general cases where each
compartment goes to one equilibrium point. Moreover, the size of the population was greater when σ = η = 0
than σ = η = 0.01 which is caused by the effect of larval death due to the insufficient food and Tw death
due to fatigue, which affected the decreased of the population number. But it shows that the sub-population
in one colony will continue to exist (coexist) and never experience extinction.

Next, we will show the stability of the adult Trigona population. In the second case, we will use the same
initial values for the egg and larval populations.

{Ew1
, Em1

, Ed1
, Lw1

, Lm1
, Ld1

} = {0.49, 0.59, 0.21, 3.43, 4.16, 1.47},

{Ew2
, Em2

, Ed2
, Lw2

, Lm2
, Ld2

} = {0.49, 0.40, 0.21, 3.34, 2.79, 1.43},

whereas for Tw, Tm, and Td will be varied with

{Tw1
, Tm1

, Td1
} = {(4.86, 4.86, 4.915, 4.92), (2.84, 2.91, 2.84, 2.91), (0.62, 0.64, 0.74, 0.73)} ,

{Tw2
, Tm2

, Td2
} = {(1.8275, 1.84, 1.84, 1.8275), (1.93, 1.93, 1.88, 1.88), (0.67, 0.68, 0.67, 0.68)} .
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Figure 1: Numerical Simulations of Tw and Tm with (a) σ = η = 0 and (b) σ = η = 0.01, Tw and Td with (c)
σ = η = 0 and (d) σ = η = 0.01, Tm and Td with (e) σ = η = 0 and (f) σ = η = 0.01.

2) The Effect of σ and η Parameter’s Value: In this section, the sub-population density of each Trigona
bee against σ on a certain interval, and a value of η, and vice versa are shown. A graph is presented in
each case and shows the effect of σ and η on the Trigona bee sub-populations. Both parameters of σ and
η affect the Trigona population. The greater the value of σ or η, the smaller the population density of Tw,
Tm, and Td. However, we can see in Figure 2 that the changes of σ value have more significant effects on
the population than the ones of η value.

Based on Figure 2, we obtain that if the η value is higher, the number of adult bee populations (Tw, Tm,
Td) decreases. It means that if the Tw fatigue level is higher, the Tw population becomes lower so that the
larvae do not get enough food. This will also result in a decrease in the number of Tw, Tm, and Td because
the number of larvae decreases because they do not get enough food from Tw. Likewise, if the value of σ is
higher, the population will decrease. It means that if the mortality of larvae due to insufficient food is higher,
there will be fewer larvae that will develop into Tw, Tm, and Td. So the adult bee population will decrease.



158 Zai, F.N., Setyowisnu, G.E., Faradiyah, A.R., Suandi, D. and Rayungsari, M.

Figure 2: The Effect of σ and η Towards Trigona (a) η = 0 for σ ∈ [0, 1], (b) η = 0.01 for σ ∈ [0, 1], (c) σ = 0 for
η ∈ [0, 1], (d) σ = 0.01 for η ∈ [0, 1], with Black, Red, and Blue Curve interpreted by Tw, Tm, and Td Compartment,
Respectively.

3) Trigona Bee Population Density Comparison Based on Time: In this section, we present some solution
graphics in Figure 3 which show the behavior of the population at the time interval t ∈ [0, 500] for each
sub-population in two cases for each graph. In Figure 3, we can see the comparison between solutions in
the special and the general case clearly. The entire subpopulations of Trigona bees have a more significant
decrease in the general case. This was due to the death of the larvae because their food source from Tw

is not enough for all larvae. In addition, the decreased amount of bees in the Trigona population was also
caused by the death of Tw caused by exhaustion. This means that in general, there is a significant effect of
the σ and η parameters on Trigona sp.’s population growth. It shows that Tw gets the greatest impact in the
colony since Tw dies of exhaustion causing the larvae don’t get enough food to develop into adults bee. On
the other hand, Tm also gets a quite big influence. The decrease of Tw amount will cause Lw’s death because
their food source from Tw is not enough, and cause the eggs of Tm, that is Em, to decrease. Meanwhile,
the population density of Td is not much different in the two cases, because eventhough Tw decreases the
number of Ld because their food source from Tw is not enough, the death of Td caused by the Tw kills per
time unit is also decreased.

Initial values in Figure 3 are {Tw, Tm, Td} = {4.9, 2.86, 0.68}, and the others are zero because we will
only review the differences of Tw, Tm and Td at Special and General case based on time.
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Figure 3: Comparison of Each Trigona’s Compartment (a) Tw (b) Tm (c) Td Towards Time t ∈ [0, 500] on Special and
General Case in Black and Blue Curve, Respectively.

4. CONCLUSION

From the results and discussion, we conclude that the model of the Trigona bee population has stable
coexistence equilibrium points for both special and general cases. It shows that the Trigona bee’s colony will
remain and continue to grow since there is no change in stability for there is no bifurcation in Model (1)
for both cases. Moreover, based on the simulation results, we found that the greater the σ, the lower the
number of bees and vice versa. This is also applied to the value of η. From the results, it can be seen that
the higher the ability of Tw to feed the larvae, the higher the bee population number. The fatigue level of
Tw (η) also affects the number of bees because Tw plays an important role in feeding the larvae. Then, we
suggest to the bee farmers to keep maintain food availability by increasing the number of workers in a colony
or providing food sources with high contains nectar and propolis at a relatively close distance to reduce the
death of worker bees.
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