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Abstract

Despite availability of strategies against viral hepatitis, it is still a serious disease, which millions of
people are already infected with, hence it yet needs to be focused on. As an attempt, we formulated a single
mathematical model describing behaviour of all strains of viral hepatitis, presented in the literature. The basic
reproduction number(Ry) at disease free equilibrium point is computed, feasible region has been determined.
For local stability of the model, Ry has been taken into account and for global stability of the model Lyapunov
method is followed. The model is then applied to the data available for Afghanistan for the year 2020. Based
on the data, values of the parameters are estimated, using Minimum Mean Absolute Error (MAE) method.
Numerical simulation is performed to support the model and then the results are plotted and represented
graphically. One-at-a-time sensitivity analysis (OAT) method is used for sensitivity analysis and involved
parameters have been examined for the propose of sensitivity analysis, it indicated that infection rates of acute
and chronic states of viral hepatitis are the most sensitive and critical parameters. It has been observed that
large number of populations can become infected followed by small increment of infection rates. It has also
been noticed that, entire population of Afghanistan could become infected, if no prevention measures were
taken. The model presented in this paper is useful for forecasting outbreak by viral hepatitis and it can further
be modified by including prevention measures.
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1. INTRODUCTION

Viral hepatitis is still one of life-threatening disease, which causes inflammation of liver, its all known
five strains cause viral infection [2], [26], [14]. According to reports by world health organization (WHO),
millions of people are infected with viral hepatitis, among them 354 million are suffering from chronic
hepatitis B virus (HBV) and hepatitis C virus (HCV) globally, where 1.5 million and 1.575 million are new
cases respectively in 2020 [26], [28]. Viral hepatitis is still a major public health burden, which is affecting
millions of people with long-term complications [12], if it prolongs and be untreated then it could lead to liver
cancer (Cirrhosis, liver fibrosis and hepatocellular carcinoma) and end-stage disease [1&]. In highly endemic
regions, most burden of HBV infection occurs in children with age less than equal to five years and those
of individuals who are infected after age of five years develop to chronic infection [30]. Global mortality
from viral hepatitis exceeds that of human immunodeficiency virus (HIV), tuberculosis (TB) and Malaria,
both HBV and HCV are the most common cause of deaths with 1.3 million lives lost each year [27], [28].
Viral hepatitis is still a burden on world and threatens life of millions.

Many authors have investigated each strain and its dynamics individually, Mwaijande and Mpogolo [15] in-
troduced a mathematical model for transmission dynamics of HAV with combined vaccination and sanitation,
they incorporated direct and indirect transmission among humans with bi-linear incidence rate, revealed usual
qualitative analysis and carried out sensitivity analysis of susceptible, exposed and infected individuals. They
noted that vaccination and sanitation play important roles in minimizing future infection of viral hepatitis.

James et. al. [10] introduced a mathematical model on HBV and analysed its transmission dynamics in
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Nigeria, they appraised vaccination in the model, executed qualitative analysis at disease free equilibrium
(DFE) and endemic points, as well as they studied impact of vaccination on population, eventually they
recommended that every effort should be taken to reduce infection rate of the disease among population.
Khatun et. al. [1 1] also worked out a mathematical model of HBV infection incorporating immune response,
the model they introduced is SIV which is similar to SIR model. Further they incorporated the model with
another equation for immune response z(t), they concentrated on studying dynamics of HBV among body
cells and response of lymphocytes against hepatitis B pathogens.

Scott et. al. [20] introduced a deterministic SIS model with treatment for understanding transmission
of HCV and effect of treatment on people who were injecting drugs. As well as Miller-Dickson et. al.
[13] introduced a mathematical model on HCV as an indirectly transmitted infection, Bruno and Celso [4]
developed a mathematical model for understanding analysis of Hepatitis Delta Virus (HDV) in vivo, they
performed qualitative analysis, they discussed super-infection and co-infection which occur with existence of
HBV. Yang et. al. [29] investigated feasibility of controlling hepatitis E virus(HEV) in Jiangsu province of
China, they considered three routes of transmission of HDV in their model. They also estimated values of
parameters, using curve fitting method and revealed the process of sensitivity of the model.

There are many other models, that study each strain individually, but there is no model for discussing
all known strains of viral hepatitis. In the era of Covid19, viral hepatitis is ignored and the fact is that it
is hazardous as Covid19. It still threatens life of millions of people and more than million people die each
year because of it. This motivates us to catch up attention of responsible agencies, work hard for a safe
and hepatitis free world, thus as an attempt we introduced a mathematical model focusing on dynamical
behaviour of all known strains of viral hepatitis. Next generation matrix is calculated for determining its
basic reproduction number (Ry), local and global analysis at DFE point have been investigated, Minimum
Mean Square Error (MMES) method is applied for obtaining values of involved parameters of the model.
The estimation is based on the relevant data of viral hepatitis of Afghanistan for year 2020. Simulation of the
model has been carried out, its numerical solution is plotted and One-at-a-time (OAT) sensitivity analysis is
executed. We concluded that, sensitivity is due to infection rate of acute and chronic states of viral hepatitis,
without any prevention measure, viral hepatitis could infect more than millions of people in the period of
one year.

2. MODEL FORMULATION

In a typical model of dynamics of viral diseases, classes of population are considered. However, some
practical assumptions are also made for simplifying the model. In our case, we compartmentalize the
population, keeping various assumptions in view and formulating the dynamics of viral hepatitis.

Table 1: Compartments and the corresponding variables.

Variables ~ Compartments

S(t) Susceptible individuals (Age < 5)
Y (t) Susceptible individuals (Age > 5)
L(t) Latent individuals

A(t) Acute individuals

C(t) Chronic individuals

R(t) Removed individuals

In this paper, two-age classes of susceptible population are considered as compartments S(¢)&Y (t), this
classification is based on immunity. Many age-structure models are formulated with Partial Differential Equa-
tions(PEDs), because of two continuous independent variables(age and time). However it can be formulated
as ODE by considering anyone of the two variables as discrete. For further details of age-structure models,
we referred section 7.5 of Mathematical Models in Population Biology and Epidemiology [!]. Age-structure
models can also be formulated with the help of time-delay systems, further explanation can be found in [22]
where the authors introduced a two-age-classes dengue transmission model, using time-delay systems.

In our case, age has been considered as discrete hence the dynamical behavior in each class is formulated
with ODE, also it is assumed that the birth and death rates in S(¢) and the death rate in Y (¢) are constants,
where the compartment S(t) includes those susceptible individuals, who are aged five years or less i.e.
S(t) <5 and Y (t) includes susceptible individuals, who are aged greater than five years i.e. Y (¢) > 5.
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Table 2: Parameters and meaning.

Parameters ~ Description

b Recruitment rate

g Rate of individuals who joins Y from S

o Death rate caused naturally

p1 Death rate caused by hepatitis

71 Infection rate by contacts between acute infectives and S
N2 Infection rate by contacts between acute infectives and Y
51 Infection rate by contacts between chronic infectives and S
B2 Infection rate by contacts between chronic infectives and Y
Y1 Recovery rate of latent individuals

Y2 Recovery rate of acute infectives

v3 Recovery rate of chronic infectives

P Rate of latent individuals who become acute infectious

p1 Severity reduction rate of chronic infectives

w Rate of acute infectives who develop to chronic stage

h Probability of latent individuals showing symptoms

! Probability of acute infectives who develop to chronic stage

Parameters introduced in Table 2 are constants.

(4 + py)C
3

c(t)

uR

b

Figure 1: Flow chart of the model [2], [14], [16], [26].

Since the model focuses on all strains of viral hepatitis but the transmission routs are different for each
strain, HAV and HEV are waterborne diseases they transmit via contaminated food and water. HBV, HCV
and HDV have same transmission rout, they transmit via blood, semen and other body fluids, they can
also be transmitted via pregnancy(Vertically). Since the model forecast outbreaks by viral hepatitis, so the
transmission routes will not affect the outcome, hence for avoiding the complexity of vertical transmission,
we assumed newborns as susceptible individuals and added into compartment .S(t). As it is known, all strains
of viral hepatitis have different incubation periods, so a compartment L(t) is considered for those individuals
who are latent to the disease [30]. It is known, that viral hepatitis can be either acute or chronic [16], [14],
[26], hence two compartments A(t) and C(t) are considered for acute and chronic individuals respectively,
a compartment R(t) is considered for those individuals who recover from the infectious disease.

As stated above, the compartment S(¢) contains individuals with age five years or less, these individuals
grow up with constant rate g and are moving to compartment Y (¢). It is obvious that, both infections either
acute or chronic of viral hepatitis can cause new infections and the incidence rate in this paper is assumed
to be bi-linear, therefore 17,5 A4+0;SC of individuals from compartment S(t) are exposed by contacts with
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acute and chronic infectives, hence this dynamical behaviour is formulated in the differential equation below

ds

a =b— (mSA+ p1SC) — (u+9)S, )]
where b is birth rate, ;4 is natural death rate and it is assumed to be constant for all compartments.
Similarly, 72Y A 4+ $2Y C individuals form Y become exposed by contact with acute and chronic infectives
of viral hepatitis, so this dynamic is formulated as

% =gS — (MY A+ BYC) — pY. ()

Those susceptible individuals who became in contact with acute and chronic infectives are considered as

latent and are added to L, some of these latent individuals may have good immune system against the disease,

so they recover by themselves and those who develop symptoms are removed from it with constant rate p

and probability h, so phL is the number of latent individuals who become acute infectious. Probability of

those individuals who have good immune system is (1 — h) and they are assumed as recovered, then in this
case the dynamic can be shown as

dL

o (mS 4+ mY)A+ (825 + B2Y)C — (471 + hp) L. (3)
Individuals who become infectious are added to compartment A, as at the initial stage they are suffering
from acute hepatitis, after a fixed course of treatment or vaccination individuals recover with constant rate
72, also probability of those individuals who develop to chronic stage is [ and are added to C' with constant
rate w, so the dynamical behaviour in this case is formulated as

dA
— = hpL 4 p1C = (p+72)A = lwA. )
Those of acute infectives who do not receive treatment or vaccine, develop to chronic stage with constant
rate w. In this stage, deaths caused by disease occur with constant rate 11, as well in case of complete course
of treatment, the risk of severity reduces and chronic infectives switch back to acute stage with constant rate
p1, so mathematically this dynamical behaviour is expressed as

dcC
EZMA—(M‘FM +p1+73)C. ®)
Recovered individuals from latent, acute and chronic stages are v; L, 2 A and v3C' respectively, so this can

be formulated as
dR

yr (I =h)mL+y2A+vC — pR. (6)
Dynamical behaviour of viral hepatitis, which is depicted in Figure (1) is formulated in Equations (I - 0)
and all these equations together form a system of non-linear differential equations, where it is the expected
model.
Total population size of the model is N = S+Y + L+ A+C+ R, where S >0,Y >0,L >0, A>0,
C >0 and R > 0. As it may vary in time, hence rate of change of the population of above model is given
as differential equation below.

d
T(SHY + L+ A+C+R)=p(S+Y + L+ A+ C+R) = nC—hnl. 7)

In the absence of disease, total population size of the model converges to the equilibrium point x(, where it
is known as DFE (see [24]).

b bg

zo = (S* Y* L* A* C* R*) = (——, —2
( ) (u+g w(p+g)

,0,0,0,0). 8)
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3. BASIC REPRODUCTION NUMBER (Rj)

Since z( in (8) is the DFE point of the system, hence the basic reproduction number(Ry) at xy can be
found by next-generation matrix introduced by Driessche and Watmough [25] and its application can be found
in [21]. As R does not have role in infection of population, then it is ignored and the first five equations of
the system are considered for further analysis.

Let X = (L, A,C,S,Y)T, then Equations (I - 6) can be considered as X’ = f(X). Now distinguishing
newly infected individuals from all others in population, therefore
X
X' = i F(z) —V(x),
where F (X) is the rate of newly infected individuals, V (X) = V™ (X) — V* (X) is rate of transfer of
individuals in compartments and they are given as

(mS +mY)A+ (615 + B2Y)C (w+v1 +hp)L
0 —hpL — p1C + (p+ 72+ lw)A
F(z) = 0 & V(r)= —lwA+ (p+ p1+ p1 +73)C
0 —b+ (MSA+ B1SC) + (u+ g)S
0 —gS + (MY A+ BYC)+puY

Here VT (X) is the rate of transfer of individuals into compartments and V= (X) is the rate of transfer of
individuals out of compartment.

Let X ={x>0]|20=0, :=1,2,3,4,5} be set of all disease-free states. Since, z( is DFE of the system
and f(X) satisfies the conditions below.

1) Fi(xo), V™ (m0), VT(xg)>0fori=1,2,...,nif zg >0 and n = 5.
2) V(z9) =0and F;(zg) =0fori=1,2,...,mif zg =0 and m = 5.
Hence the derivatives DF (X() and DV (Xj) can be partitioned as
F 0 }

DF (Xo) = { 0 o

& DV(XO):[V 0 ]

Ji I

where F' and V are 3 X 3 matrices, as the system has three disease states. Furthermore, F' is nonnegative, V'
is nonsingular M -matrix and Jo has eigenvalues (u, 1 + g), where p, g > 0, given as

F= [6}7 (xo)} & F = [g;?] (xo)} , with i =1,2,3 and j = 1,2, 3, hence we have

0X;
0 b(m(nJrgf)n) b(#[?l +g§32)
nlptg m(p+g
F=1o0 0 0 : )
0 0 0
1+ hp 0 0
V= —hp w4 v+ lw —p1 .
0 —lw HA p A+ p1 3

Assuming, that all exposed individuals are showing symptoms and become infected, moreover none of
chronic infected individual turn back to acute stage, as they acquire treatment, then

w+ hp 0 0
Vz( —hp  pt+ye+lw 0 >, (10)
0 —lw K p1 Y3
then
1
1 ) .
- P
Vo= (nthp) (n+lw+2) ptlwtyz 0 : an
hlpw Lpw~+hlpw 1

(nthp)(ptHlwt+y2)(ptys+pr)  (pthp)(ptHlw+y2) (ptys+pi)  (p+ys+un)
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r
0 ) , 12)
0

_ bhp(lpwbBy + glwBs + (pm + gn2) (4 + s + 1))
1(g + )+ hp)(p + lw + 2) (1 + 73 + 1)
_ bUpewp + glwBs + (pm + ge) (1 + 73 + 1))
(g + )+ lw +72) (1 + 73 + )
b(pBr + gB2)
(g + )+ s+ p)

The basic reproduction number at DFE point is the spectral radius of next generation matrix, which is the
entry p in Matrix (12), it is usually denoted as Ry, given below;

_ bhp(lpwpy + glwPs + (um + gn2) (b + 3 + 1))
11(g + ) (e + hp) (e + lw +72) (1 + 3 + 1)

where [ and h are probabilities of acute infectives who develop to chronic stage and latent individuals showing
symptoms respectively with 0 <[ <1 and h = 1 as all exposed are assumed to show symptoms but for
general case h must be 0 < h < 1. If Ry < 1, then on average a hepatitis infected individuals infect less
than one individual from population over the course of its infectious period, thus infection is under control
and stable. Also, if Ry > 1, then hepatitis invades population and more than one individual can be infected
over course of infection period.

For asymptotic local stability of the system, recalling the definitions of Z-matrix and M-matrix, given by
[7], and proving the below result given in [21], [25].

Next generation matrix of the system is
p q
Fv=t=(10 0
0 0

where

)

Ry 13)

Theorem 3.1. Considering model (1 - 6) of viral hepatitis, if xo be DFE point of the model, then it is locally
asymptotically stable if Ry < 1 but unstable if Ry > 1, where Ry is defined in (13).

Proof: To prove locally asymptotically stability of the DFE point, using matrices (9) and (10) respectively
as P =F — V. Since V is Z-matrix with eigenvalues whose real parts are non-negative, it is non-singular
M-matrix, F'is also non-negative and V' — F' = —P has Z-pattern too, then

1. Let s(P)<0.
Since spectral abscissa s(P) < 0, it implies that —P is a non-singular M-matrix. Let —PV ! =
I — FV~1, since —P has Z-pattern and it is non-singular M-matrix, hence —PV ~! is non-singular
M-matrix and moreover I — FV 1 is non-singular M-matrix, it is clear that F i given in (12) is
a non-negative matrix and all its eigenvalues have magnitude less than or equal to p(FV 1), also
we know that maximum eigenvalue of Matrix (12) is known as basic reproduction number(Ry), i. e.
Ro = p(FV~1). Since I — FV~! is a non-singular M-matrix, so it implies that;

p(FV~—! 1) <0,
p(FV™) = p(I) <0,

p(FV™1) -1 <0, -+ (I is identity matrix.)
p(FV™1) <1,
Ry <1,

It can be concluded that, s(P) < 0 iff. Ry < 1.
2. Let s(P)=0.
Since spectral abscissa s(P) is zero, it implies that —P is a singular M-matrix, therefore I — F'V 1
is a singular M-matrix too, thus p(FV~1) =1, i.e. Ry = 1 hence s(P) = 0 iff. Ry = 1.
3. Let s(P)>0.
By above two cases, it follows that s(P) > 0 iff. Ry > 1, which is as given in (13).
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Now for global stability, it is necessary to determine feasible region of the system. ]

3.1. Feasible Region

Feasible region is the set of all &)ossible solutions of a system of equations, to determine it for model (1 -

6), adding equations ‘fi—f, ‘%, %, d—’f and %, we get

d
%(S—i-Y—&-L—&-A—i-C):b—u(S+Y+L+A+C)—,ulC—WlL—VgA—ng.

Here v, = 0, as it has been assumed that all the latent individuals are with symptoms, also for short time
period epidemic, loss of temporary immunity can be assumed to be negligible, so the equation turns down
to inequality below.

d
£(8+Y+L+A+C) <b-—p(S+Y+L+A+C).
For determining upper bound of the region taking limsup, ,. (S+Y + L+ A+ C) < %, so we obtain
feasible region of the model (1 - 6) as
b
= {(S,Y,L,A,C) ER+ :S+Y+L+A+C< M,S>O,Y>0,LZO,A>O,C’>O}. (14)

For global stability of the introduced model, we refer to a similar result obtained by Zada et. al. [30] as
below.

Theorem 3.2. Model (1 - 6) is globally asymptotically stable at disease free equilibrium point, if there is
at least continuously differentiable function V : ¢ — R, such that V be positive definite and V' be negative
definite (semi definite) function in ¢, otherwise it is unstable.

Proof: In order to prove global stability of the model , constructing a simple Lyapunov function V' :
¢ — R as
V(t)=St)+Y(@)+ L(t)+ At) + C(2). 15)
Using definition of positive definiteness [17] to verify that V' is a positive definite function, now by derivative
of V, we get
AV _9Vds VY oVdL  oVdA oV dC
dt  9Sdt 9y dt  OLdt O0Adt 0C dt’
dv._dS dYy ~dL dA dC

=t +—. 1
Taw - a T a Ta T T a (16)
Therefore,
. dv
Vi r = [0t uS+pY + (pt )L+ (n+72) A+ (i + o +73)Cl.

Using definition of negative semi definiteness, the definition makes it is easy to verify that V'’ is negative semi
definite at zy, hence by LaSalle’s theorem [17], it implies that the model (I - 6) is globally asymptotically
stable at disease free equilibrium point and unstable if there is not at least one positive definite function V.

|
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4. SIMULATION

In this section, relevant data of Afghanistan for the year 2020 is represented, visualized in Figure 2, where
Figure 2(a) shows morbidity and mortality by each strain of viral hepatitis in 2020 and Figure 2(b) shows
total number of infectives in consideration with age of individuals, number of acute and chronic individuals.

10771

10000

8000 +

6463
Infectives
6000 - a
B Deaths
3794
4000}
o 863 |905 7
o ke [d [d 9
0
HRV HBV HE\’.’ H ;V HE;
(a) Total number of infctives and deaths, caused by each strain.
15917
15000, 14335
10000 | @ Total infected indiviuals
[ Acute individuals
5971 5808 @ Chronic individuals
5000 +
1582
163
0 5 )
Age < 5 years Age >E years

(b) Total number of infected individuals according to age and disease severity.

Figure 2: Viral hepatitis relevant data, available for Afghanistan in the year 2020. [19].

4.1. Estimation

For convenient calculation, it is assumed that no chronic individual becomes acute back, either they recover
or die, so p; = 0 and all of latent individuals declare symptoms, so v; = 0. For estimation of parameters
b, g, 1, p1,M1,M2, 1 and Po, see Appendix A. For remaining parameters of the model, we have compared
estimations that have been optimized using two different estimators; the Minimum MSE (Mean Squared
Error) Estimator and the Minimum MAE (Mean Absolute Error) Estimator. The algorithm has been applied
on % for estimating the unknown involved parameters p,y2 and w, where the algorithms are given as
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A. MMSE Estimator:
1) Input changes of confirmed cases of acute infectives at time t (Monthly) i.e. %.

2) Assigning initial values of the parameters at their respective ranges 6 = [p, 72, w]
3) Computing values of

—

dA
o = PLpC = (nty2)A - A,

using arbitrary initial values 0.

4) Comparing the values of % with computed values in the equation, by computing MSE as;

— L\ 2
dA 1~ (dA dA
MSE|— | =— — - — .
( dt ) n ; < dt dt )
5) Computing the gradient of the M SE jointly for all parameter estimates by solving the equation

dA
vO MSE <dt> = 010 = [p,’)/Q,OJ]T,

so we obtain new estimates of 6.
6) Repeat steps 4 - 6, until M SFE converges to a desirable small value.

B. MMAE Estimator: In this method, all the mentioned steps of MMSE method can be followed with
small change in step 4 as;

dA 1<A|dA  dA
MAE | 22 ) = =2y |22 - &2
(dt) n; dt dt

The MMAE estimator gives accurate and desirable result than MMSE estimator, hence the remaining param-
eters are estimated using MMAE method with the help of R-programming, where R-code of the function is
available in Appindex B and the estimated values of the parameters are given in Table 3.

Table 3: Values of the parameters 2, estimated from data given in Figure 2.

Parameters Estimation Unit Source

b 0.124913 Month™T Assumed
g 0.1244 Month~!  Estimated
I 0.000513 — Cited [9]
1 0.04255 Month™'  Estimated
1 0.00214 Month~?! Estimated
M2 0.000458 Month™!  Estimated
B1 0.000141 Month™'  Estimated
B2 0.0000456  Month™'  Estimated
Y1 0 — Assumed
2 0.9983 Month™!  Estimated
Y3 0.456 Month~*! Estimated
P 0.442 Month™*t Estimated
p1 0 — Assumed
w 0.0006162 Month™ Estimated

Since h = 1 and 0 <[ < 1, then basic reproduction number Ry given in (13), is between 0.113206 and
0.112649, i.e. Ry < 1, hence by Theorem 3.1 viral hepatitis is asymptotically stable and was under control.
The system of Equations (I - 6) was then solved numerically, using Wolframe Mathematica (command:
NDSolve), which chooses appropriate method and giving interpolating functions as output, to estimate the
effect on total number of both acute and chronic individuals of viral hepatitis.

Since the solution changes with the value of [, therefore solutions at different values of [ are shown in the

o)

figures below. If [ = 0, then transmission of the disease would be as shown in Figure 3, that implies that
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there would be no new infection of chronic individuals and current infected individuals will either die out or
attain recovery, as shown in Figure 4.

3.0x107
25x107
2.0x107
1.5%107
1.0x107

5.0x108

1500

1000

500

Figure 3: solution at [ = 0.

Figure 4: Total number of chronic infectives when [ = 0.

Number of infected individuals have been observed to increase and the value of [ changes in the range
0 <1 < 1. If value of [ = 0.5, then variation can be seen in Figures 5 and 6. Also total chronic individuals

are estimated to be about 8000.

3.0x107
25x107
2.0x107
15%107
1.0x107

5.0x 108

Figure 5: Solution at [ = 0.5.
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8000;
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MR
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Figure 6: Total number of chronic infectives when [ = 0.5.

Moreover, the interaction between all the compartments and variations at [ = 1 can be observed in Figure
7, total chronic individuals are at peak and are estimated to be about 15000, which is shown in Figure 8.

3.0x107 F
— 5
25x107 [
_Y
2.0x107 F
L
1.5x107 | - A
1.0%107 | —2=C
5.0%108 / R
0 2 4 6 8 10 12
Figure 7: Solution at [ = 1.
15000 -
10000 -
5000 -
. . . . ‘ ‘ ‘
0 2 4 6 3 10 12

Figure 8: Total number of chronic infectives when [ = 1.

It is obvious that viral hepatitis is an infectious disease and in the Figures 3, 5 and 7, it is also visible that
without any prevention strategy, the whole population is exposed. From simulation, it can also be observed
that the infection rate depends on number of acute and chronic infections, it increases if total number of acute
and chronic infectives increases. To take control over infection rate and avoid new infections, it is suggested
to concentrate on the routes through which they spread.
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4.2, Sensitivity Analysis

It is known that, each model has factors of sensitivity. Investigation of such factors is known as sensitivity
analysis, that is useful in determination of parameters of models which are the most responsible for changes
in dynamics of the systems. There are various methods of sensitivity analysis, which include differential
sensitivity analysis, One-at-a-time sensitivity analysis (OAT method), Subjective sensitivity analysis and so
on. Each method of sensitivity analysis focuses on different aspects of dynamics of the phenomena [8], these
methods are brought into use by various researchers, a valuable application of differential sensitivity analysis
can be found in the literature by Tay et.al. [23], and Fakhruddin et.al. [5]. In our case we executed OAT
method, in which a single parameter is taken into consideration at a time to see its effect on output, which
is helpful in determination of effect on dynamics of viral hepatitis by each parameter. For the considered
model of viral hepatitis each parameter is varied for investigating variability and impact on output of the
model, we have considered the parameters p and w as the most sensitive parameters of the model, where
these parameters represent rate of latent individuals who become acute infectives and rate of acute infectives
transforming to chronic stage respectively. Our analysis shows that these are significant sensitivity parameters,
as it can be seen in the Figs 9 and 10.
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Figure 9: Graph of acute infectives represented by parameter p at values 0.2, 0.4, 0.6, 0.8 and 1.
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Figure 10: Graph of chronic infectives represented by parameter w at values 0.2, 0.4, 0.6, 0.8 and 1.

5. CONCLUSION

Many authors have investigated behaviour of various strains of viral hepatitis individually and some of
them investigated super infection and co-infection of HBV-HDV, but there is no any model to predict overall
number of infections by viral hepatitis (All known strains). In this paper we formulated transmission dynamics
of all the known strains of viral hepatitis in one frame and proposed a deterministic model. Qualitative analysis
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of the model at disease free equilibrium point has been performed. For simulation, data of viral hepatitis
of Afghanistan for the year 2020 is taken into focus, values of all the parameters are estimated based on
probabilities, as well as by using the method of Minimum MAE estimator in comparison with Minimum
MSE estimator, it has been concluded that MAE estimator gives accurate and desirable small values of
parameters. Numerical solution is plotted and calculations of the model are carried out with the help of
Wolfram Mathematica. One- At- a — Time (OAT) method of sensitivity is applied for determining significant
parameters, it has been noticed that sensitivity of the model depends on infection rates of acute and chronic
viral hepatitis. As output of the model suggests, that entire population of Afghanistan could become affected
if no prevention measures were taken by responsible agencies. Total number of infected individuals caused
by viral hepatitis is considerably high but ignored by responsible agencies. To know severity of viral hepatitis
and engage the agencies for its prevention, so this model can help us predict outbreak by all strains of viral
hepatitis.
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Appendix A

Parameters b, g, u, p41,11, 12, 81 and (5 are estimated as;

_ Total number of childern who aged <5 years 1316159 01244 M1
9~ Total number of children with birtdays x Time _ 881671 x 12M '
6.16

= Tooox1aar = 0-000513 M ~1is cited from [9]. Recruitment rate b in compartment S is
assumed to be equal to the exit rate from S, so the parameter is estimated as b = p + g = 0.124913 M 1.

Total number of deaths by disease 891 1
= = = 0.04255 M
i Total number of chronic infectives x Time 1745 x 12M
= Number of acute infected inqividuals (.A) _ 20143 0.00214 M1
Number of contacts by A with S x Time  784384(assumed) x 12M
B = Number of chronic infected i1.1dividuals .(C) _ 1745 0000141 M~!
Number of contacts by C' with S x Time 1030690(assumed) x 12M
Number of acute infected individuals (A 20143
1y = umber of acute infecte 1n. ividuals (. ) _ 0000458 M1
Number of contacts by A with Y x Time  3665029(assumed) x 12M
Number of chronic infected individuals (C) 1745 1
= = = 0.0000456 M
P2 = ~umber of contacts by C with Y x Time  3188961(assumed) x 12M
Appendix B

1) R-code of MSE function :
##H# params < — [rho, gamma2, omega] \
MSE < — function(params){
dA_ hat < — params[1]*VL + rhol*vC - (mu + params[2]*VA - [*params[3]*VA
return(sum((dA - dA_ hat)™ 2))

initial < — ¢(0.1, 0.1, 0.1)
optim(initial, MSE, method = "BFGS”)

Output: [0.07793074,  0.12221979,  0.02110990]
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2) R-code of MAE function :

MAE < — function(params){
dA_ hat < — params[1]*VL + rhol*vC - (mu + params[2]*VA - 1¥*params[3]*VA
return(sum((dA - dA_ hat)” 2))

initial < — ¢(0.1, 0.1, 0.1)
optim(initial, MAE, method = "BFGS-B”, upper = 1)

Output: [0.4420848964,  0.9983098068,  0.0001612701]

Same algorithm and the above R-code can be used for other equations and involved parameters.
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