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Abstract

In this paper, a deterministic SIR plant mathematical model is proposed and analysed with the application
of pesticides as a control measure. The primary purpose of this model is to study the role of pesticides
in controlling disease prevalence in plant populations. The total plant population is subdivided into three
categories: susceptible, infected, and recovered. Pesticides are considered to be applied to both susceptible
and infected populations to prevent the spread of infection to unaffected plant populations. It is considered
that plant populations can be recovered only through the use of pesticides. To ensure the biological validity
and well-defined nature of the model, the positivity, boundedness, uniqueness and existence of solutions are
analysed. The basic reproduction number (R0) of the infection is determined and observed that the disease-free
equilibrium state is locally asymptotically stable whenever (R0) is less than unity and unstable otherwise. The
sensitivity analysis of the basic reproduction number is carried out, and it is observed that the value of R0

decreases as the value of the death rate and the recovery rate of plants increases. Moreover, it is revealed that
above a critical parameter value of the infective induce rate, the population starts oscillating periodically, and
the endemic equilibrium state becomes unstable. Finally, numerical simulations are conducted in MATLAB
software to compare the analytical findings. Overall, the results obtained from this analysis are both novel and
significant, making them an intriguing and potentially valuable contribution to the field of theoretical ecology.
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1. INTRODUCTION

A plant is considered susceptible to infection when environmental factors alter its physiological processes,
resulting in disruption of structure, growth, function, or other parameters. Plant diseases are classified into
infectious and non-infectious according to the type of pathogen. Symptoms of the disease depend on its
cause, nature and location of the affected area. Plant disease-causing factors can be both biotic and abiotic
in nature. Non-infectious diseases are caused by unfavourable growing conditions. They are not transferred
from diseased plants to healthy plants. On the other hand, infectious diseases can multiply inside or on the
surface of plants, so infections can spread from one susceptible host to another [31].

Various infectious diseases that are frequently brought on by fungi, viruses, or bacteria affect plant
ecological populations. These diseases can range in severity from minor leaf or fruit damage to death, and as
a result, the plant populations lose their fertility, which causes a reduction in their population size. Some of
the most prominent plant diseases are Algal leaf spot of tea: (Cephaleuros virescens), Pineapple mealybug:
(Dysmicoccus brevipes), Brown Spot: (Helminthosporium oryzae), Cedar Apple Rust (Gymnosporangium
juniperi-virginianae Schwein), Red rot: (Glomerella tucumanensis) and so on. Crop damage due to pests is a
major cause of concern worldwide. According to a recent report released by the U.N. Food and Agriculture
Organization in 2021, about 40 percent of the world’s agricultural crops are lost to pests each year. Therefore,
it is important to study plant infectious diseases in the ecosystem and find ways to control these diseases.
One of the significant ways of combatting pests is the utilisation of pesticides which in the 21st century has
become more and more necessary. In India, the production of pesticides began in 1952 with the construction
of the BHC manufacturing plant near Calcutta, and India is presently the second largest producer of pesticides
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in Asia after China and is ranked 12th in the world (Mathur, 1999) [29]. Pesticides are compounds that are
intended to control various pests and disease carriers such as mosquitoes, ticks, mice and rodents. Although
the use of pesticides has both a positive and negative impact, one cannot deny the significance it has in the
agricultural sector [24]. In recent times, the use of pesticides has become significantly important in farming
as it helps farmers in controlling weeds, insect invasion and any other diseases that can cause damage to the
crops.

“Mathematical Biology” [11], [2], [21] is a rapidly evolving, well-defined field of study and the most excit-
ing application of mathematics today. Biology as a science helps human health in many ways, so expanding
the scope of biomathematics is inevitable. It helps to increase food production, fight disease and also helps
to protect and preserve our environment. Mathematical modelling has been used extensively in successfully
defining the Biological system. It also provides guidelines for scientists, physicians or policymakers to make
informed decisions. There are a number of problems in the biological system, especially in ecosystems and
epidemics, that still need to be identified where mathematical modelling can make a difference. Eykhoff (1974)
defines a mathematical model as a “representation of the essential elements of an existing system (or system
to be constructed) that present the information of that system in a practical way”. An ecosystem is a system of
a community or group of living organisms that live and communicate with each other in a given environment
at a specific time. An ecosystem consists of biotic (living) and abiotic (non-living) and is of different types
such as Plant Ecosystem, Forest Ecosystem, Desert Ecosystem, Grassland Ecosystem, Mountain Ecosystem,
Marine Ecosystem, Freshwater Ecosystem and so on. An Epidemic describes diseases that may occur in that
ecosystem at a given time. Hence an Eco-epidemic model is a mathematical representation that describes the
ecosystems of interacting populations when there is the presence of disease in that population [3], [4], [8],
[14], [15].

According to Indiati et al. [16], one way to control pests in plants is by spraying pesticides with the right
amount of dose. The inappropriate use of pesticides may have a serious negative impact on the environment
and can be hazardous to human health [16]. In India, an excessive amount of pesticide is used during culti-
vation whereby some part of it is mixed with surface and underground runoff, eventually reaching the water
bodies, and the soil absorbs the other part, and hence this pollutes both soil and groundwater [24]. Considering
this scenario, Kumar et al. [24] studied the harmful effect of pesticides on groundwater contamination during
cultivation. As pest control is now a global problem due to population growth, appropriate techniques are
needed to control pest populations, and farmers’ agricultural awareness is equally important in pest control
[18]. Effective pest control strategies, therefore, have a significant impact on society. Hence, effective use of
predators and appropriate use of chemicals or pesticides are highly recommended to control pest populations
[18]. Irham et al. [17] developed a mathematical model to observe the interactions between two predators
and infected prey, and the prey is controlled by the use of pesticides. They considered a functional response
Holling type II, where they found out that upon utilisation of pesticides, if the pest growth is lower than
the death rate, then all predators and prey will become extinct and be locally asymptotically stable. On the
other hand, if the pest growth is higher than the death rate, then only vulnerable pests remain alive, while
other pests will die and are asymptotically stable. All of these populations affected by pesticide control and
predation rates can survive.

In recent years, various research has been conducted in the study of infectious disease in plant populations
through the use of control measures such as pesticides and natural predators with the aim of controlling crop
damage against pests [36], [37], [9], [5]. In this study, we have paid attention to the utilisation of pesticides
and the harmful effects of pests on plants. Harmful insect pests consist of caterpillars, grasshoppers and
locusts, which devour the leaves, seeds and culmination of crops. At times, locusts can shape a large plague
of several million that could cause big damage to plants and cause famine. Other insects, together with aphids,
thrips and weevils, suck the sap from plants, which can affect plant boom and improvement and make plants
greater susceptible to disease. During the literature survey, it was observed that negligible importance is given
to plant population models with the application of pesticides. The existence of plant infections often results in
the necessity of applying pesticides. However, the decision to use pesticides relies on various biotic factors and
the farmer’s overall management practices. Farmers may opt for pesticide usage to control pathogen spread
in certain cases. Sometimes contagious pathogen-based diseases can only be eradicated using pesticides, e.g.,
Colorado potato beetle (Leptinotarsa decemlineata). This beetle is a common and highly destructive pest that
feeds on potato plants and can cause significant damage to the crop. Pesticides specifically formulated to target
Colorado potato beetles, such as insecticides containing active ingredients like imidacloprid or spinosad, can
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be applied to control their population and prevent widespread infestation [20]. In such a scenario, farmers
are indirectly forced to use pesticides to control the disease. Assuming this indirect effect, we introduced a
new factor, namely infective induced rate of pesticides which work as a source in the pesticide compartment.
Our work contributes to the field by introducing this new term and offers new avenues for future research in
SIR modelling.

The structure of the paper is as follows: Section 2 addresses the formulation of a mathematical model and
associated assumptions. In section 3, the theoretical analysis of the proposed model is presented. The positivity
and boundedness of the model, along with the uniqueness and existence of solutions, have been discussed
therein. The conditions for the existence of all possible equilibrium points, along with the basic reproduction
number and the stability analysis, have thoroughly been studied. With the help of sensitivity index analysis,
the rate of change of the basic reproduction number towards its parameters and Hopf bifurcation of the
system have also been discussed in section 3. In section 4, numerical simulations that clarify the analysis
results obtained are discussed along with comparisons of susceptible, infected, recovered, and pesticides vs
time with control. Finally, brief conclusions and discussions were given in section 5. Analytical computations
and numerical simulations were carried out with the help of advanced software like Mathematica, Matlab,
and MatCont 7.3.

2. MODEL FORMULATION

To form the mathematical model, the following assumptions are taken into consideration:
1) In the absence of disease, the plant population grows logistically with an intrinsic growth rate r > 0

and environmental carrying capacity k > 0.
2) In the presence of the disease, the plant population is divided into three compartments: the susceptible

population S(t), the infected population I(t) and the recovered population R(t). Therefore, for any
time t, the total plant population is given by S(t) + I(t) +R(t) = N(t). Then the growth rate of the
susceptible plant population is given by rS

(
1− N

k

)
or rS

(
1− S+I+R

k

)
.

3) The susceptible population becomes infected when they come into contact with infected populations.
This contact process is assumed to follow the kinetics of simple mass action using β > 0 as the
conversion factor.

4) Only the susceptible population S(t) can reproduce and the death rate of plants due to pests is assumed
to be µ > 0. The natural mortality rate of plants is ignored from the incubation period to the death
of the plants. However, the infected population I contributes with S to population growth towards the
carrying capacity k > 0.

5) As a control measure, we assume that a general pesticide P (t) is used to minimize diseases in the
population. Due to the application of pesticides, plants within the infected compartment transition
to the recovered compartment and eventually return to a susceptible compartment within a specific
timeframe. Pesticides are used in both susceptible and infected populations, and it is assumed that
the use of pesticides has negative impacts on both the susceptible and the infected populations. The
negative impact of pesticides is ignored for the plant population in the recovered compartment, as they
have already been exposed to the pathogen or pest and have developed immunity or resistance against
it. Also, the recovered population eventually reverts to a susceptible state after a certain time. For
instance, Propiconazole and Tricyclazole are two common fungicides primarily targeted at controlling
fungal diseases like blast disease and dirty panicle disease in rice crops. They are not intended to
harm non-infected rice plants [22]. Still, their residues and potential for phytotoxicity emphasize the
importance of responsible and precise application, that can range from mild stress symptoms to severe
damage and plant death.

6) The amount of pesticides used is just one of several factors that can influence the contact rate between
plants populations and pesticides. Let the amount of pesticide used to be α > 0. The contact rate
between susceptible plants and pesticides is assumed to be d̃1(α) > 0. Similarly, the contact rate
between infected plants and pesticides is assumed to be d̃2(α) > 0. Here we consider d̃i(α) =
di, i = 1, 2, where di are constants. Therefore, the term −d1SP represents the removal of plants from
susceptible plant compartment due to the application of pesticides. The term −d2IP represents the
removal of plants from infected plant compartment due to the application of pesticides.

7) The presence of plant infections can often lead to the application of pesticides. However, the decision to
use pesticides depends on various factors, including the severity of the infection, the type of pathogen
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involved, the crop being grown, and the overall management practices employed by the farmer. When
plants are infected by pathogens, it can lead to the development of plant diseases, which can impact
the health and productivity of the crop. In some cases, farmers may choose to use pesticides to control
the spread of the pathogens and mitigate the damage caused by the disease. Pesticides specifically
formulated to target the pathogens causing the infection may be employed as a means to suppress or
eliminate them. Therefore we assumed that the infections in plants indirectly forces the farmers to
apply pesticides. The term θI , θ > 0 denotes the infective induced rate of pesticides.

8) The application of pesticides enhances the recovery rate of the infected plants. Let g > 0 be the
recovery rate of the infected plants due to the application of pesticides.

9) Let ν > 0 be the rate of infected plants which have recovered and returned to the susceptible class
[27], [1].

Table 1: Notations and definition of model variables.

Variables Definitions Units

S(t) Susceptible population [Stems]
I(t) Infected population [Stems]
P (t) Pesticides [SI unit]
R(t) Recovered population [Stems]

Table 2: Notations and definition of model parameters

Parameters Definitions Units

r Intrinsic growth rate of the plant population Per day
k Environmental carrying capacity Per sq. meter
β Contact rate between susceptible and infected plants Per day
d1 Contact rate between susceptible and pesticides Per day
d2 Contact rate between infected plants and pesticides Per day
µ Death rate of plants due to pests Per day
ν Rate of infected plants which have recovered and returned to the susceptible class Per day
g Recovery rate of infected plants Per day
θ Infective induce rate of pesticides Per day
α Amount of pesticides used Per day

In accordance with the above assumptions and the descriptions of variables and parameters, the present
model will be governed by the following system of equations:

dS

dt
= rS

(
1− S + I +R

k

)
− βSI − d1SP − µS + νR,

dI

dt
= βSI − (g + µ)I − d2IP,

dP

dt
= θI − αP,

dR

dt
= gI − (µ+ ν)R,

(1)

with initial conditions:

S(0) = S0 > 0, I(0) = I0 > 0, P (0) = P0 > 0 and R(0) = R0 > 0. (2)

Here dS
dt ,

dI
dt ,

dP
dt and dR

dt represents the rates of change of the quantities S(t), I(t), P (t) and R(t) respectively.
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3. MODEL ANALYSIS

3.1. Positivity and Boundedness
Theorem 3.1. (Positivity): All solutions of the system represented by (1) with initial conditions (2) are positive
for all t ≥ 0.

Proof: Let S(t), I(t), P (t), R(t) be the solutions of System (1) with initial conditions (2). Integrating
both sides of the first equation of (1) from 0 to t, gives,

dS

dt
= rS

(
1− S + I +R

k

)
−βSI−d1SP−µS+νR ≥ −

{
βSI + d1SP + µS − rS

(
1− S + I +R

k

)}
,

or ∫ t

0

dS

S
≥
∫ t

0

−
{
βI + d1P + µ− r

(
1− S + I +R

k

)}
dt,

or

S(t) ≥ S(0) exp

[ ∫ t

0

−
{
βI + d1P + µ− r

(
1− S + I +R

k

)}
dt

]
,

=⇒ S(t) > 0.

From the second equation of System (1), we get

I(t) ≥ I(0) exp

[ ∫ t

0

{βSI − (g + µ)I − d2IP} dt
]
,

=⇒ I(t) > 0.

From the third equation of System (1), we get

P (t) ≥ P (0) exp

[ ∫ t

0

−αPdt

]
,

=⇒ P (t) > 0.

From the fourth equation of System (1), we get

R(t) ≥ R(0) exp

[ ∫ t

0

{−(µ+ ν)R} dt
]
,

=⇒ R(t) > 0.

Hence, the theorem is proved.

Theorem 3.2. (Boundedness): All solutions of System (1) that start in R4
+ are uniformly bounded in the so-

lution set Ω =
{
(S, I, P,R) : 0 ≤ S ≤ rk

4µ , 0 ≤ I ≤ rk
4µ , 0 ≤ R ≤ rk

4µ , 0 ≤ P ≤ rkθ
4αµ , 0 ≤ S + I +R ≤ rk

4µ

}
.

Proof: Let S(t), I(t), P (t), R(t) be the solution of System (1).
Let W = S + I +R

dW

dt
=

dS

dt
+

dI

dt
+

dR

dt

= rS

(
1− S

k

)
− µ(S + I +R)− d1SP − d2IP − rS

(
I +R

k

)
,

=⇒ dW

dt
+ µW ≤ rS

(
1− S

k

)
.

Let f(S) = rS
(
1− S

k

)
.

Therefore, df
dS = r − 2rS

k and d2f
dS2 = − 2r

k .
Now, df

dS = 0 =⇒ r − 2rS
k = 0 =⇒ S = k

2 .
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Then d2f
dS2 = − 2r

k < 0, which gives a maximum value for S.
Therefore dW

dt + µW ≤ rk
4 =⇒ W ≤ rk

4µ +
(
W0 − rk

4µ

)
e−µt.

As t → ∞, e−µt → 0 =⇒ W → rk
4µ =⇒ W (t) ≤ rk

4µ and hence W is bounded.
Clearly I(t) is bounded above by rk

4µ . Therefore, the third equation of System (1) becomes

dP

dt
+ αP ≤ rkθ

4µ
,

=⇒ P ≤ rkθ

4αµ
+

(
P0 −

rkθ

4αµ

)
e−αt,

where P0 is the initial amount of pesticide used.
As t → ∞, e−αt → 0 =⇒ P → rkθ

4αµ =⇒ P (t) ≤ rkθ
4αµ and hence P is bounded for any initial value and

for all t. Therefore S(t), I(t), P (t), R(t) are uniformly bounded.

Note: From Theorem 3.2, it is clear that each population is bounded above. So the total population N(t) is
also bounded above whenever time t → ∞.

3.2. Existence and Uniqueness of Solution for the SIPR Model
In this section, we formulate the existence and uniqueness theorem of System (1). Following the method

used by Samuel et al. [33], we perform the proof of the following theorems.
The general first-order ODE is in the form:

x′ = f(t, x), x(t0) = x0. (3)

One could be interested in asking the following questions:
1) Under what conditions the solution of Equation (3) exists?
2) Under what conditions Equation (3) has a unique solution?
To answer the above question, we use the following theorem.

Theorem 3.3. (Uniqueness of Solution): Let D denote the region:

|t− t0| ≤ a, ∥x− x0∥ ≤ b, x = (x1, x2, x3, . . . , xn), x0 = (x10, x20, x30, . . . , xn0). (4)

Suppose the function f(t, x) satisfies the Lipschitz condition:

∥f(t, x1)− f(t, x2)∥ ≤ M∥x1 − x2∥, (5)

and whenever (t, x1) and (t, x2) belong to the region D and M represent a positive constant. Then, ∃ a
constant δ > 0 such that there exists a unique continuous vector solution x(t) of the system 3 in the interval
|t− t0| < δ.

Remark 1. It is important to note that condition (5) is satisfied by the requirement that:

∂fi
∂xj

, i, j = 1, 2, . . . n,

is continuous and bounded in the region D.

Lemma 3.4. If f(t, x) has continuous partial derivative ∂fi
∂xj

on a bounded closed convex domain R (i.e.,
convex set of real numbers), where R is used to denotes real numbers, then it satisfies a Lipschitz condition
in R.
Our interest is in the domain

1 ≤ ϵ ≤ R. (6)

So, we look for a bounded solution of the form 0 < R < ∞. We now prove the following existence theorem.

Theorem 3.5. (Existence of solution): Let D denote the region defined in (4) such that (5) and (6) holds.
Then, there exists a solution of the equations of System (1) which is bounded in the region D.
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Proof: From System (1), Let,

f1 = rS

(
1− S + I +R

k

)
− βSI − d1SP − µS + νR, (7)

f2 = βSI − (g + µ)I − d2IP, (8)
f3 = θI − αP, (9)
f4 = gI − (µ+ ν)R. (10)

We show that ∂fi
∂xj

,i, j = 1, 2, . . . , n are continuous and bounded. We consider the following partial derivatives
for all the model equations:
From Equation (7):∣∣∣∣∂f1∂S

∣∣∣∣ = ∣∣∣∣r(1− 2S + I +R

k

)
− βI − d1P − µ

∣∣∣∣ < ∞,

∣∣∣∣∂f1∂I

∣∣∣∣ = ∣∣∣∣−(r + βk)S

k

∣∣∣∣ < ∞,∣∣∣∣∂f1∂P

∣∣∣∣ = ∣∣∣∣− d1S

∣∣∣∣ < ∞,

∣∣∣∣∂f1∂R

∣∣∣∣ = ∣∣∣∣−rS

k
− ν

∣∣∣∣ < ∞.

From Equation (8): ∣∣∣∣∂f2∂S

∣∣∣∣ = |βI| < ∞,

∣∣∣∣∂f2∂I

∣∣∣∣ = |βS − (g + µ)− d2P | < ∞,∣∣∣∣∂f2∂P

∣∣∣∣ = | − d2I| < ∞,

∣∣∣∣∂f2∂R

∣∣∣∣ = 0 < ∞.

From Equation (9): ∣∣∣∣∂f3∂S

∣∣∣∣ = 0 < ∞,

∣∣∣∣∂f3∂I

∣∣∣∣ = |θ| < ∞,∣∣∣∣∂f3∂P

∣∣∣∣ = | − α| < ∞,

∣∣∣∣∂f3∂R

∣∣∣∣ = 0 < ∞.

From Equation (10): ∣∣∣∣∂f4∂S

∣∣∣∣ = 0 < ∞,

∣∣∣∣∂f4∂I

∣∣∣∣ = |g| < ∞,∣∣∣∣∂f4∂P

∣∣∣∣ = 0 < ∞,

∣∣∣∣∂f4∂R

∣∣∣∣ = | − (µ+ ν)| < ∞.

We have clearly established that all these partial derivatives are continuous and bounded in D. Hence, by
Theorem (3), there exists a unique solution of the system (1) in the region D.

Hence, the positivity (Theorem 3.1), boundedness (Theorem 3.2) and the uniqueness existence (Theorem
3.3) of System (1) implies that the model is biologically valid and well behaved.

3.3. Equilibrium points
For finding the equilibrium points, we set the right-hand side of System (1) equals to zero as follows:

dS

dt
= rS

(
1− S + I +R

k

)
− βSI − d1SP − µS + νR = 0,

dI

dt
= βSI − (g + µ)I − d2IP = 0,

dP

dt
= θI − αP = 0,

dR

dt
= gI − (µ+ ν)R = 0.
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On solving the above equations, then three equilibrium points in the coordinate (S∗, I∗, P ∗, R∗) are obtained
and are given as follows:

(i) The trivial equilibrium point T0(0, 0, 0, 0).
(ii) Disease-free equilibrium point T1

(
k(r−µ)

r , 0, 0, 0
)

. It is seen that the equilibrium point T1 consistently
exists if and only if r > µ.

(iii) The disease-endemic equilibrium point T2(S
∗, I∗, P ∗, R∗) which is explicitly expressed in term of I∗

as follows:
S∗ = 1

αβ [d2θI
∗ + α(g + µ)], P ∗ = θ

αI
∗, R∗ = gI∗

µ+ν and I∗ is a positive root of the following equation

Ψ1(I
∗)2 +Ψ2I

∗ +Ψ3 = 0, (11)

where,

Ψ1 =
αd2θ(r + β) + kd1d2θ

2

α2β
+ r

(
d2θ

αβ

)2

− αβrgd2θ

µ+ ν
,

Ψ2 =
αβ[α(α+ β)(g + µ) + kµθ + kd1θ(g + µ)] + αθd2[(r + 1)(g + µ)− βr]

(αβ)2
+

αβg[αβkν − αr(g + µ)]

µ+ ν
,

Ψ3 =
(g + µ)[kµ+ α2β(g + µ− βk)]

β
.

Equation (11) implies,
I∗2 +M1I

∗ +M2 = 0, (12)

where M1 = Ψ2/Ψ1, M2 = Ψ3/Ψ1.
From Equation (12), I∗ > 0 if one of the following conditions holds:

(a) M1 < 0, M2 < 0,
(b) M1 < 0, M2 > 0 and M2

1 − 4M2 > 0,
(c) M1 > 0, M2 < 0.

Real and positive solutions of I∗ give S∗ > 0,P ∗ > 0, R∗ > 0. Due to the complexity of the model, it is
hard to determine the analytical solutions. So we proceed our discussions using numerical techniques.

3.4. Basic Reproduction Number R0

In this section, we determine the basic reproduction number R0. This can be characterised as the average
number of secondary infections caused by typical cases of infection in the general population, which is
vulnerable to everyone. R0 is basically used to measure the potential for transmission of a disease.

Theorem 3.6. The basic reproduction number of the system (1) is given by R0 = βk(r−µ)
r(g+µ) .

Proof: The Basic reproduction number R0 is calculated with the help of the next generation matrix
method which is given by G = FV −1 [19], where F is the newly formed infection matrix, V is the
transmitted infection matrix and V −1 is the inverse of V . So,

Fi =

(
βSI
0
0

)
, Vi =

(
(d2P + g + µ) I

αP − θI
R(µ+ ν)− gI

)
, where i = 1, 2, 3.

Therefore

F =

(
βS 0 0
0 0 0
0 0 0

)
, V =

(
d2P + g + µ d2I 0

−θ α 0
−g 0 µ+ ν

)
.

At the disease-free equilibrium T1, we have

F =

 βk(r−µ)
r 0 0
0 0 0
0 0 0

 , and V =

(
g + µ 0 0
−θ α 0
−g 0 µ+ ν

)
=⇒ V −1 =


1

g+µ 0 0
θ

α(g+µ)
1
α 0

−g
(g+µ)(µ+ν) 0 1

µ+ν

 .
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Therefore G = FV −1 =

 βk(r−µ)
r(g+µ) 0 0

0 0 0
0 0 0

 and the basic reproduction number is the dominant eigenvalue

of G which is given by:

R0 =
βk(r − µ)

r(g + µ)
. (13)

Remark 2. The local dynamics of the SIPR model is analysed by the reproduction number R0. From the
dynamics of the system, if R0 < 1, the number of infections in the plants population will decrease and
eventually the disease will disappear. If R0 > 1, the disease is more likely to be transmitted between different
plants in the population and there will be a possibility of an outbreak of the disease. R0 = 1 acts as a
disease threshold, that is, the disease remain active and stable, but the chances of an outbreak or epidemic
of the disease are very limited [7].

3.5. Stability Analysis

In order to study the stability properties, the general Jacobian matrix J of the system (1) is reported as
follows:

J =

 J11
−(r+βk)S

k −d1S
kν−rS

k
βI J22 −d2I 0
0 θ J33 0
0 g 0 J44

 , (14)

where,

J11 = r

(
1− 2S + I +R

k

)
− βI − d1P − µ,

J22 = βS − (g + µ)− d2P,

J33 = −α,

J44 = −(µ+ ν).

1) Stability of trivial equilibrium point:

Theorem 3.7. The trivial equilibrium point T0(0, 0, 0, 0) is stable if r < µ and unstable if r > µ.

Proof: The Jacobian matrix of System (1) at T0 is given by

JT0
=

 r − µ 0 0 ν
0 −(g + µ) 0 0
0 θ −α 0
0 g 0 −(µ+ ν)

 .

The eigenvalues of the above matrix are:

λ1 = r − µ, λ2 = −(g + µ), λ3 = −α and λ4 = −(µ+ ν).

Clearly, λ2, λ3, λ4 < 0. If r − µ < 0, then λ1 < 0 and the equilibrium T0 is stable and unstable otherwise.
Hence, T0 is stable if r < µ and unstable if r > µ.

2) Local stability of the disease-free equilibrium:

Theorem 3.8. The disease-free equilibrium T1

(
k(r−µ)

r , 0, 0, 0
)

is locally asymptotically stable if R0 < 1

and unstable if R0 > 1.



ECO-EPIDEMIOLOGICAL SIR MODEL UNDER PESTICIDE APPLICATION 135

Proof: The Jacobian matrix of System (1) at T1 is given by:

JT1
=


−(r − µ) −(r+βk)(r−µ)

r
−d1k(r−µ)

r ν − (r − µ)

0 βk(r−µ)
r − (g + µ) 0 0

0 θ −α 0
0 g 0 −(µ+ ν)

 . (15)

Eigenvalues of the above matrix (15) are:

λ1 = −(r − µ), λ2 =
βk(r − µ)

r
− (g + µ), λ3 = −α and λ4 = −(µ+ ν).

Clearly, λ1, λ3, λ4 < 0.
Now, for System (1) to be stable at T1, we must have λ2 < 0, i.e.,

βk(r − µ)

r
− (g + µ) < 0

=⇒ βk(r − µ)

r
< (g + µ)

=⇒ βk(r − µ)

r(g + µ)
< 1

=⇒ R0 < 1.

Thus, λ2 < 0 if R0 < 1, which implies all the eigenvalues of the characteristic equation (15) have a negative
real parts. Hence the equilibrium T1 is locally asymptotically stable.

3) Local stability of the endemic equilibrium:

Theorem 3.9. The endemic equilibrium T2(S
∗, I∗, P ∗, R∗) is locally asymptotically stable if the following

condition holds [34]:

A1 > 0, A3 > 0, A4 > 0 and A1A2A3 > A2
3 +A2

1A4,

where,

A3 = r

(
2S∗ + I∗ +R∗

k
− 1

)
− β(S∗ − I∗) + (d1 + d2)P

∗ + (3µ+ g + α+ ν),

A2 = G1 + α(µ+ ν)− (α+ ν + µ)G2 +
β(r + βk)S∗I∗

k
,

A1 = α(µ+ ν)G3 + (α+ µ+ ν)

(
G1 +

β(r + βk)S∗I∗

k

)
+ d1βθS

∗I∗ − d2θI
∗ − gβ(kν − rS∗)I∗

k
,

A0 = α(µ+ ν)

(
G1 +

β(r + βk)S∗I∗

k

)
− (µ+ ν)(d2θI

∗ − d1βθS
∗I∗)− αβg(kν − rS∗)I∗

k
.

Here

G1 = (βS∗ − d2P
∗ − g − µ)

(
r − µ− βI∗ − d1P

∗ − (2S∗ + I∗ +R∗)r

k

)
,

G2 = β(S∗ − I∗) + (r − g − 2µ)− (d1 + d2)P
∗ − (2S∗ + I∗ +R∗)r

k
,

G3 =
(2S∗ + I∗ +R∗)r

k
+ 2µ+ g + (d1 + d2)P

∗ − β(S∗ − I∗)− r.

Proof: The characteristic roots corresponding to the equilibrium T2 are given by the equation:

ξ4 +A3ξ
3 +A2ξ

2 +A1ξ +A0 = 0. (16)
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By Routh-Hurwitz criterion, the equation will have negative roots if

A1 > 0, A3 > 0, A4 > 0 and A1A2A3 > A2
3 +A2

1A4. (17)

Hence T2 is locally asymptotically stable if the above conditions are satisfied and unstable otherwise.

3.6. Sensitivity analysis of the basic reproduction number
The basic reproduction number R0 is a function of five parameters β, k, r, µ, g. To understand the contri-

bution of each of the parameters in the Reproduction number R0 as given by (13), a sensitivity analysis [35]
is being conducted which let us know how significant each parameter is to a disease transmission.
Sensitivity index of the system is given as:

SR0

h =
h

R0

∂R0

∂h
. (18)

The sensitivity indices of the reproduction number with respect to β, k, r, µ, g are given by:

SR0

β = 1, SR0

k = 1, SR0
r =

µ

r − µ
, SR0

µ =
−µ(g + r)

(r − µ)(g + µ)
, SR0

g =
−g

g + µ
.

The index table is shown in Table 3:

Table 3: Sensitivity index table.

Parameters Sensitivity index Sensitivity index values

β 1 1/day
k 1 1/m2

r µ
r−µ

0.029/day
µ −µ(g+r)

(r−µ)(g+µ)
-0.938/day

g −g
g+µ

-0.091/day

From Table 3, it can be seen that the sensitivity indices changes in values with the change in values of
parameters r, µ, and g except for β, k which has value 1, a constant value i.e., it is independent of any
parameter. The sensitivity index SR0

r is positive i.e., the value of R0 increases as the value of r increase and
the sensitivity indices SR0

µ and SR0
g are negatives i.e., the value of R0 decreases as the value of µ and g

increases. The remaining sensitivity indices SR0

β and SR0

k are constants i.e., for any increase or decrease in
values of β and k, the value of R0 remain constant throughout. Figure 1 and 2 describes that the number of
infected plants decreases with an increase in values of a specific parameter: µ and g.

3.7. Hopf bifurcation analysis
In the mathematical theory of bifurcation, the term Hopf bifurcation refers to the local emergence or

disappearance of periodic solutions or limit cycle (self-excited oscillations) from equilibrium when a parameter
exceeds a critical value. This is the simplest bifurcation that does not involve only equilibria and belongs
to what is sometimes called dynamic (rather than static) bifurcation theory. In differential equations, Hopf
bifurcations usually occur when the complex conjugate pairs of eigenvalues of the linearized flow at a fixed
point are purely imaginary. This means that the Hopf bifurcation can only occur in this two-dimensional
or higher system. When a stable limit cycle surrounds an unstable equilibrium point, the bifurcation is
called a supercritical Hopf bifurcation. If the limit cycle is unstable and surrounds a stable equilibrium
point, then the bifurcation is called a subcritical Hopf bifurcation A Hopf bifurcation is also known as a
Poincaré–Andronov–Hopf bifurcation and is named after Henri Poincaré, Aleksandr Andronov and Eberhard
Hopf [25].
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Figure 1: Impact of the variation of g in the number of infected plant population (difference not visible).

Figure 2: Impact of the variation of µ in the number of infected plant population.

According to Routh-Hurwitz theorem, the endemic equilibrium T2(S
∗, I∗, P ∗, R∗) is locally asymptotically

stable if A1 > 0,A3 > 0,A4 > 0 and ∆ = A1A2A3 − A2
3 − A2

1A4 > 0. Wei-Min Liu [28] introduced an
equivalent condition for simple Hopf bifurcation without determining eigenvalues. According to the theorem
by Liu, the endemic equilibrium T2 undergoes a simple Hopf bifurcation if

CH1 :A1(θ
H), A2(θ

H), A3(θ
H), A4(θ

H) > 0 and ∆(θH) = 0,

CH2 :
d∆(θH)

dθ
̸= 0.

Considering ∆ as a function of θ, it is obtained that for the parameters in Table 4 with d1 = 0.5, at θ = θH ≈
0.805340, ∆ = 0 (Figure 3). At the point θ = θH ≈ 0.805340, (d∆(θH))

dθ ≈ −0.572197 ̸= 0 (Figure 3). Also,
A1 > 0, A2 > 0, A3 > 0, A4 > 0 at the point θ = θH (Figure 4). Hence conditions CH1, CH2 are satisfied
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and the disease-endemic equilibrium undergoes a simple Hopf bifurcation at θ = θH . At θ = θH , eigenvalues
of the Jacobian matrix at the disease-endemic equilibrium are −0.874414,−0.110232,±1.05103i, which also
confirms the existence of Hopf bifurcation. In Figure 5, the phase portraits are drawn for θ = 0.78/day and
θ = 0.84/day, which clearly depicts the existence of limit cycles.

Figure 3: Plot of ∆ = A1A2A3 −A2
3 −A2

1A4 and d∆
dθ

as functions of θ (Parameters are taken from Table 4).

Figure 4: Plot of A1, A2, A3, A4 as functions of θ (Parameters are taken from Table 4).

4. NUMERICAL SIMULATIONS

In this section, the proposed model is analysed numerically to observe the behaviour of the spread of disease
and the role of control measures on the decline of the disease. Numerical analysis is done in MATLAB R2015a.
For numerical simulations, we set S(0) = 2, I(0) = 0.9, R(0) = 0.5 and P (0) = 0.7 and the estimated values
of parameters are shown in Table 4. It is observed that the trajectories of the system (1), initiating from the
mentioned initial points, approach to the disease endemic equilibrium E∗ = (8.3238, 3.1797, 7.9527, 0.2891)
(Figure 6). From Figure 6, it can be observed that initially the populations of the infected plants is dominant
over the susceptible, but with an increase in the amount of pesticides use, the infected plants population
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Figure 5: Phase portrait of the system 1 for θ = 0.78/day and θ = 0.84/day (other parameters are considered as
mentioned in Table 4 with d1 = 0.5).

Table 4: Parameter values used for Simulation.

Variables Definitions Value

r Intrinsic growth rate of the plant population 3.5/day
k Environmental carrying capacity 25/ sq. meter
β Contact rate between susceptible and infected plants 0.3/ day
d1 Contact rate between susceptible and pesticides 0.1/ day
d2 Contact rate between infected plants and pesticides 0.3/ day
µ Death rate of plants due to pests 0.1/ day
ν Rate of infected plants which have recovered and returned to the susceptible class 0.01/day
g Recovery rate of infected plants 0.01/ day
θ Infective induce rate of pesticides 0.5/ day
α Amount of pesticides used 0.2/ day

decreases with increase in time. Both the plant populations, after a certain time, become stable with the
equilibrium state E∗. For the same parameter set (Table 4) with d1 = 0.5/day ,θ = 0.5/day, the system 1 also
have a disease endemic equilibrium Ē∗ = (4.4438, 1.6229, 4.0786, 0.14832). Starting from the equilibrium
Ē∗ we plot the curve of equilibrium using θ as free parameter. The system (1) undergoes a supercritical Hopf
bifurcation at θH = 0.805340/day. The nature of the Hopf bifurcation is confirmed with the first Lyapunov
coefficient, which is found to be −2.453621 × 10−03. Starting from the Hopf point θH , we plot the Hopf
bifurcation curve varying parameters θ and α (Figure 7), which leads to the detection of Generalised-Hopf
(denoted as GH) and Bogdanov-Takens bifurcations (denoted as BT) at (θ = 0.818986, α = 0.000470) and
(θ = 0.825201, α = 0) respectively. Near the point GH along the curve, the endemic equilibrium displays
varying characteristics, transitioning from a supercritical to a subcritical state. This Hopf curve separates the
θ−α space into stable and unstable. In the unstable region, all the populations of system (1) start oscillating
periodically, i.e., the populations of the susceptible and infected plant oscillate periodically. In Figure 8,
we represent the oscillating populations of the system (1) for θ = 1/day. It is seen that though the plant
population is oscillatory, the susceptible populations is dominant over infected, i.e., the populations of the
susceptible plant oscillates with a higher population than the infected.

Again, starting from the equilibrium point Ē∗, we compute the curve of equilibria with free parameter
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Figure 6: Time evolution of system (1) with the parameters mentioned in Table 4.

Figure 7: Two dimensional projection of Hopf bifurcation curve with free parameter θ and α.

d1 which leads to a supercritical Hopf bifurcation at dH1 = 0.627463/day, where the first Lyapunov
coefficient is −2.227478× 10−03. From this point dH1 , we compute the two-dimensional projection of Hopf
bifurcation curve with free parameters d1 and d2 (Figure 9). Figure 9 represents a parametric region where
the endemic equilibrium shows different stability. For the unstable region, the endemic equilibrium shows
periodic oscillatory behaviour.
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Figure 8: Time evolution of system (1) with the parameters mentioned in Table 4 and d1 = 0.5/day, θ = 1/day. The
dotted line represents the amount of pesticides used.

Figure 9: Two dimensional projection of Hopf bifurcation curve with free parameter d1 and d2.

5. CONCLUSION AND DISCUSSION

In this paper, we proposed and analysed a compartmental plant-pesticide model represented by a system
of ordinary differential equations (ODEs). We divide the plant populations into three compartments: the
susceptible, the infected, and the recovered population. As a control measure, pesticides are applied to all the
plants to reduce disease transmission from infected to susceptible plants. We assumed that pesticides impact
both the susceptible and the infected populations. The necessary mathematical analysis for the biological
validity of the proposed model were presented first. The boundedness theorem (Theorem 3.2) implies that
each plant population is bounded above for t → ∞. The total plant population N(t) is also bounded above
whenever t → ∞, i.e., the system will not be collapsed due to population explosion. Uniqueness and the
existence of solutions are one of the most important parts of mathematical modeling. In our model, unique
solutions exist. If the solutions are not unique then there may exist two different equilibria, e.g., two different
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diseases endemic equilibrium. In that context, different initial populations may lead to different equilibrium
states. In our study, we also determined a domain in which solutions of the system exist. Our proposed system
has three feasible equilibrium points. The first is the trivial equilibrium point T0, which always exists and is
stable if r < µ . If r > µ the equilibrium point T0 becomes unstable resulting the appearance of the disease
free equilibrium (DFE) point T1 and the endemic equilibrium point T2. Using next generation matrix method,
we determined the basic basic reproduction number R0 of the infection. Sensitivity analysis was carried out
to understand the relation between basic reproduction number R0 and the associated parameters. Finally, we
employed a biologically plausible set of parameters to perform numerical simulations, aiming to compare the
analytical findings. Additionally, we employed numerical simulations to generate Hopf bifurcation curves in
various parameter spaces. Summarizing our analysis, the results can be outlined as follows.

1) The disease-free equilibrium (DFE) is locally asymptotically stable whenever the basic reproduction
number of the epidemic is less than unity. It signifies that the disease has been eradicated from the
plants population. On the other hand, when the basic reproduction number exceeds unity, the DFE
becomes unstable, indicating the presence of the disease in the plants population.

2) The endemic equilibrium is found to be locally asymptotically stable under specific conditions which
can be obtained utilising the Routh-Hurwitz Criteria. For the provided parameters all the population
coexists with an endemic equilibrium E∗ = (8.3238, 3.1797, 7.9527, 0.2891).

3) The sensitivity indices of the basic reproduction number R0 are determined and the impacts of
associated parameters have been analysed. R0 tend to change its value as the value of the associated
parameter increases or decreases, and remain constant whenever the value of the associated parameters
are constants. It is observed that the value of R0 increases as the value of r increases and the value
of R0 decreases as the value of µ and g increases.

4) It is observed that initially, the population of infected plants predominates over the susceptible plants,
but as the amount of pesticide increases, the infected plant population decreases over time (Figure 6).
Both plant populations become stable after a certain period of time.

5) The inner dynamics of the system for varying the infective induce rate of pesticides was also discussed.
It was found that the endemic equilibrium undergoes a supercritical Hopf bifurcation at θ = θH ≈
0.805340 i.e., above this critical parameter, all the population starts oscillating periodically and the
equilibrium state becomes unstable.

6) With free parameter d1, the model leads to a supercritical Hopf bifurcation at dH1 = 0.627463/day.
A parametric region in parameters (d1, d2), where the endemic equilibrium shows different stabilities,
is determined. For the parameters d1 and d2, above the curve (Figure 9), all the populations coexist
within the ecosystem, while for parameters below the curve all the populations will start oscillating
periodically. Hence an unstable ecosystem can be observed where populations will fluctuate, never
tending to a stable state.

Previous studies in the literature have examined eco-epidemic models focusing on either prey or predator
populations, where they are divided into susceptible and infected categories. However, this research empha-
sizes the plant populations undergoing an epidemic with a disease and is partitioned into susceptible and
infected. Furthermore, to mitigate the epidemic, the application of pesticides is implemented, resulting in the
recovery of plant populations. Plant epidemics have been documented in various cultivated plants like tea
and pineapples, leading to significant revenue losses [26]. Rice is the most important economic crop in India,
China, East-Asia, South East Asia, Africa and Latin America catering to nutritional needs of 70% of the
population in these countries [13], [23]. Rice diseases caused by fungi are considered the main constraint in
rice production and cause both qualitative and quantitative losses. In particular, rice blast disease caused by
Pyricularia oryzae (Magnaporthe grisea) has been reported as the most significant disease, resulting in yield
losses of up to 50%. Dirty panicle disease or rice grain discoloration may be caused by many fungi, viz.,
Alternaria padwickii, Curvularia lunata, Fusarium moniliforme, and Bipolaris oryzae. Propiconazole and
Tricyclazole are often applied in rice crops as a prevention measure for these fungal diseases. Although they
are not intended to harm non-infected rice plants, their residues and the risk of phytotoxicity underscore the
potential consequences, which can vary and lead to plant fatality [22]. This instance is a suitable illustration
for the proposed model, and the conclusions drawn rely entirely on analytical results. Experimental validation
will indicate any required modifications to underlying assumptions.

The work in this paper can be extended to review several important crop epidemics. Also, there is a scope
for using optimal control theory to optimise the cost-effectiveness of the system [12], [32]. The objective
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will be to minimise the damage caused by the infected plant populations and the cost of application of
pesticides as a control measure. Application of pesticides does not always give immediate recovery of the
infected plants. There is a possible delay in the recovery process. Our studied model can be extended to a
time-delay model using delay differential equations. Over the years, researchers have paid much attention
to the studies of fractional order eco-epidemiological models as well [30], [10], [6]. This work can also be
extended using fractional order derivatives. Furthermore, researchers with a keen interest can explore this
model by examining contact rates between plants and pesticides, which are entirely dependent on the quantity
of pesticides applied. This can be achieved through the utilization of functions that rely on the variable α.
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