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Abstract

The compartmental model stands as a cornerstone in quantitatively describing the transmission dynamics
of diseases. Through a series of assumptions, this model can be formulated and subsequently validated
against real-world conditions. Leveraging the abundance of COVID-19 data presently available, this study
endeavors to reverse engineer the model construction process. Specifically, we analyse the compartmental
model governing two notable variants of COVID-19: Delta and Omicron, utilizing empirical data. Employing
the SINDy method, we extract parameters that define the model by effectively fitting the available data.
To ensure robustness, the obtained model undergoes validation via comparison with real-world data through
numerical integration. Additionally, we conduct fine-tuning in regularization techniques and input features to
refine model selection. The constructed model then undergoes thorough analysis to gain qualitative insights
and interpretations regarding the transmission dynamics of COVID-19.
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1. INTRODUCTION

Respiratory infection from virus is constant threat to society as it causes epidemic many times over past
years [1]. In the end of year 2019, a viral respiratory infection, called Coronavirus Disease 2019 (COVID-19)
was identified with higher reproduction rate and officially labeled as global pandemic [2]. Due to its impact
on global economy, understanding of the infection dynamics become very crucial for future mitigation and
prevention strategies.

In mathematics and statistics, many research have developed and studied techniques to gain insights or
understanding of the condition, forecast future situations, or analyze the dynamics to prepare some measures,
actions, or policies. One simple yet effective way to analyze the disease transmission is considering infection
number as a time series, which allows statistical techniques such as ARIMA (Autoregressive Integrated
Moving Average) to be effectively applied [3]. Recent popular method which uses deep learning approach
such as Recurrent Neural Network (RNN), can also be implemented to predict the number of disease infections
[4], [5], [6]. Apart from probabilistic approach, a more deterministic method using dynamical system can be
used to simulate disease life-cycle within a population [7]. SIR (Susceptible-Infected-Recovered) model, as
one of extensively used dynamical system in epidemiology, has been studied in various aspects of COVID-19
pandemic [8], [9], [10], [11]. The modified version of SIR, such as SEIR (Susceptible-Exposed-Infected-
Recovered) model, is also used in the case of COVID-19 [12], [13].

In spite of its many advantages, SIR model depends on the assumptions used to formulate the governing
equations of the system. In contrast, data-driven paradigm enables a construction of a mathematical model
based on available data. This data A data-driven technique called SINDy (Sparse Identification of Nonlinear
Dynamics) method has been developed to discover governing equations of dynamical system using data by
regularized linear regression [14]. This kind of method is a mixing between mathematical techniques of
differential equation with machine learning, where we can identify various governing physical models based
on data and can modify using some additional techniques like using inductive bias [15], time-delay [16], or
universal linear embedding [17].

This method has been developed and modified to various kind of mathematical model and problems, such
as parametric PDE (partial differential equation) [18], boundary value problems [19], control system [20],
[21], [22], hybrid dynamical system [23], discrete field [24], chaos forecasting [25], [26], Green’s function
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[27], and many others. SINDy also has been used in wide range of applications since then, including fluid
dynamics [28], [29] and epidemiology [30].

The SINDy method is a data-driven technique that combines sparsity-promoting techniques and machine
learning with nonlinear dynamical systems to discover governing equations from noisy measurement data.
It assumes that there are only a few important terms that govern the dynamics, resulting in parsimonious
models that balance accuracy with model complexity to avoid overfitting. This approach has been successfully
applied to a wide range of problems, including linear and nonlinear oscillators, chaotic systems, and fluid
dynamics [14].

The SINDy method has been applied to model and predict the transmission dynamics of COVID-19. For
example, proposed a SINDy-LM modeling method that effectively balances model complexity and prediction
accuracy [31]. They used the SINDy method to discover the nonlinear functional relationship between the
dynamic terms in the model based on observation data of the COVID-19 epidemic. The obtained model was
then optimized using the Levenberg-Marquardt algorithm to improve accuracy [31]. This approach has been
used to review the epidemic situation in different countries and predict the evolution of the epidemic. The
SINDy method can also be applied to analyze the dynamics of the COVID-19 pandemic by comparing and
observing the parameters obtained [32].

Other studies have also explored the use of machine learning methods, such as neural networks and support
vector machines, for predicting the spread of COVID-19 [33]. However, the SINDy method offers unique
advantages in terms of interpretability and model complexity. It allows for the discovery of the underlying
governing equations, providing insights into the fundamental dynamic relationships that drive the spread of
the virus [14]. This can help researchers and policymakers better understand the mechanisms of transmission
and develop more effective control strategies.

In this paper, we use SINDy to analyze the dynamics of the COVID-19 transmission in Indonesia during
two different peak periods corresponding to different variants, Delta and Omicron. Complete SIR model with
additional deceased groups (SIRD model) will be used. Data-constructed model may lose explainability as
a trade-off with the accuracy. In that case, we also analyze the comparison of the dynamics in the terms of
representation of some parameters obtained for explainability of the model.

2. MODEL FORMULATION

2.1. Compartmental model

The target of this study is to obtain and analyze compartmental model of COVID-19 infection based on data
available. Compartmental model is a mathematical approach to describe a population dynamics by dividing
the population in different groups/compartments. In epidemiology, the simplest form of this model is known
as SIR model, where the population is divided to susceptible, infected, and recovered groups. The model
itself is a system of first-order ordinary differential equation which govern how the number of people in each
compartment changes over time. In general form, the SIR model can take following form

dS(t)

dt
= f1(S(t), I(t), R(t)),

dI(t)

dt
= f2(S(t), I(t), R(t)),

dR(t)

dt
= f3(S(t), I(t), R(t)),

(1)

where S, I , and R, are number of people in respective compartment in a given time t. and fi for i = 1, 2, 3
are the functions that define the dynamics of the compartments. One characteristic of compartmental model
is that it must satisfy S(t) + I(t) + R(t) = N(t), where N(t) represents total number of populations. This
characteristic is satisfied if only birth rate and death rate of the populations are assumed to be small so it can
be ignored. In the case of this paper, we only observe a short period of time that birth rate can be neglected.
On the other hand, death values will be regarded as another compartment. The compartment itself can be
added or modified depends on the assumption used in developing the model. For example, in the case where
vaccination affect the spreading of the disease, new compartment V shall be added and gives SIRV model.
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In the case of this study, we set the deceased individuals as a new compartment and symbolize it with D,
giving the SIRD model.

SIR model has many variations based on the case it governs. The standard form only involves one non-linear
term, i.e. the interaction between the susceptible and the infected. Usually, one use a set of assumptions to
formulate the functions fi and describe the dynamics from it. The purpose of this paper is to do the opposite.
Given a set of real data, we want to predict the functions fi by fitting the dynamics resulted from it.

2.2. Data processing
In this study, we use model with 4 compartments, i.e. susceptible (S), infected (I), recovered (R), and de-

ceased (D). Other compartment that can be used in context of COVID-19 are vaccinated, second-susceptibility,
and second-infection. Second-susceptibility and second-infection are different compartments than original
susceptible and infected to accommodate the possibilities of getting re-infected after recovery. However,
due to lack of available data, we exclude these three compartments even thought it may affect the whole
dynamics. We want to see how the compartments affects the dynamics of each other differently during Delta
and Omicron peak period.

We use data obtained independently by Our World in Data platform which contains original 3 features,
i.e. susceptible, infected, and deceased [34]. For the recovery data, we use official data from government.
Initially, we compile the data from the first identification of COVID-19 infection in Indonesia, March 2020,
to the end of Omicron peak period, i.e. May 2022, which comprise of 781 datapoints. Because dealing with
data containing large scale of values, such as population, may cause computational overflow, we take the
normalized version of each compartment with respect to total population.

As susceptible group is relatively dominant compared to other groups, especially in the sense of total
population of Indonesia, the number gap may cause overfitting in the regression process. We apply specific
transformation to susceptible compartment to make sure it stays in roughly the same scale with other
compartments. After that, standard normalization transformation using mean and standard deviation is applied
to all compartments to obtain data with zero mean. As for the target variable, the gradients, we use numerical
differentiation with time interval 0.1 day to obtain the derivatives of each compartment.

2.3. Sparse identification of nonlinear dynamics
The components and parameters within the system are typically predetermined based on a set of assumptions

that form the foundation of the model’s development. These assumptions are intended to be confirmed
later using real-world data. However, an alternative approach is possible through the use of SINDy. By
utilizing available data, we can construct a model that closely aligns with the data through the application
of optimization techniques. This methodology allows us to effectively capture additional terms, particularly
those that contribute significantly to the system’s dynamics, including the nonlinear elements.

In general, if we encapsulate the four variables that characterize each compartment (namely, S, I , R, and
D) into a vector represented as x⃗, the general objective is to perform regression on the subsequent linear
system

dx⃗

dt
≈ W · Pn(x⃗), (2)

where Pn is a vector of n-th order monomial basis formed by x⃗ and W is the matrix of corresponding
parameters. We can choose n arbitrarily depending on how many order of polynomial we want to consider
in the dynamics. Ideally, all of the monomial basis will be use to search all possible polynomial that fit the
data. We want that the model can capture every possible relations between the variables in the presence of the
data. For example, elements of P2(x⃗) are S2, I2, R2, D2, SI , SR, SD, IR, ID, and RD. Some relations,
such as the one interacted with D variable, may gives little sense because the deceased individuals don’t
make contact with other compartment members. Nevertheless, there are many possible explanations in the
relation that we can interpret beyond standard assumption of SIR model, such as psychological effect from
the size of other compartments. For instance, the large number of recovered individual can induce positive
effect on the infected ones, giving them more capability to be recovered. Although we have to minimize
assumptions, to stimulate the appearance of interaction between compartment in the dynamics and to avoid
model tendency to exploit easier deduction, we exclude all self-interaction terms (such as power terms S2).
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From a dataset comprising four distinct groups, we generate supplementary attributes that represent second-
order polynomial elements. If we exclude the intragroup interactions, this results in an extra set of six
attributes. In the presence of these intragroup interactions, we would have an additional four attributes. Each
of these newly created attributes is then treated as input for a linear regression model, with the derivatives
of each group serving as the corresponding output.

Applying a conventional regression technique to the aforementioned linear equation could potentially result
in a matrix W populated entirely with non-zero coefficients. However, it might not be desirable to establish
a compartmental model in which each compartment is intricately linked to every other term and interaction.
In order to attain a set of sparse coefficients, we employ an L1-penalty as a form of regularization, known
as LASSO (Least Absolute Shrinkage and Selection Operator) regression. We also employ L2 penalty, or
Ridge regularization, to later analyze the effect of regularization to the total performance of the regression
model. The combination of LASSO and Ridge is also commonly known as elastic net regularization [35].
The optimization procedure can be formulated as following.

min
w⃗i

(∥∥∥∥dxi

dt
− w⃗i · P2(x⃗)

∥∥∥∥2
2

+ λ2∥w⃗i∥22 + λ1∥w⃗i∥1

)
, (3)

for each i, where λ1 and λ2 is a parameter that represents the strength of the LASSO and Ridge regularization,
respectively. In our case, xi are S, I , R, and D, respectively for i = 1, 2, 3, 4.

2.4. Model analysis

In the context of regression, our objective is to anticipate the fluctuations (derivatives) within each com-
partment, taking into account the current population within each compartment and their interactions. The
model is trained to fit the gradient of the compartment population given some combination of compartments.
However, even thought the gradient is the one we regress as the target feature during model training, it
is not the final intended output. Our primary concern lies in evaluating the compartmental model’s ability
to forecast compartmental quantities over a specific time span, based on initial data. Moreover, the model
parameters after training itself is the one we need to analyze the learned system of SIRD model. To achieve
this, a numerical integration employing the fourth-order Runge-Kutta method must be applied to the resulting
model. We assess the mean squared error between the calculated infection values and the actual data. This
error is additional metrics to evaluate the final model besides the mean squared error obtained during training
and validation between the predicted and the true gradient. The overarching methodology described above
can be visualized in a diagram, depicted in Figure 1.

3. RESULTS AND DISCUSSION

3.1. Data observation

The number of infected people over the time were fluctuating due to many external factors such as people’s
behavior, government regulation, economic condition, etc. These fluctuations imply that the parameters of
the model are changing over time. However, we recognize that the shape of the dynamics are similar during
the peak of two major variants of Delta and Omicron. We take the Delta period to start at June 3rd of 2021
and end at October 1st of 2021. On the other hand, we take the Omicron period to start at January 15th
of 2022 and end at April 19th of 2022. The official date of each variant infection in Indonesia may differ
with the date taken in this paper because officials marked the beginning of spreading of a variant as the first
infection detected. In this paper however, we mark the beginning as the time where the number of infection
increases significantly due to the variants.

We can see the dynamics in Figure 2. Because later we will also use the gradient data of each compartment,
we also plot it in the figure. In a more detailed profile, we also plot in a closer look each period in Figure 3.
It is shown how the shape of the dynamics are similar between Delta and Omicron period. These similarities
indicate that the dynamical system governing them should have similar form, which we will investigate further
in the next sections.
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Figure 1: Methodology diagram used in this paper.

Figure 2: The profile of normalized compartmentalized population and its gradients. The light blue area represents
Delta period and light red area represents Omicron period.

3.2. Model selection
We first select the best model by tuning the regularization strength used in the training. Because bias

and self-interaction terms tends to reduce performance and also has quite low interpretability [32], in the
model selection, we use directly second order polynomial consisting only single variable and interaction
between different variables terms, which gives total 10 features as the only neurons of the model where the
parameters are to be learned. SINDy model does not have complexities and hyperparameters to be tuned
because the model itself is just a simple regressor. What we can tune instead, is the regularization added
in the optimization process. Even thought SINDy require heavily to nonzero LASSO regularization, we also
try to observe the effect of L2 penalty, or called Ridge regularization. The strength values of both L1 and
L2 penalties are tuned in 1000 epochs with a stopper mechanism to break the iteration if the model is not
learning significantly.

We trained the model in combination of two different values of L1, i.e. 0.01 and 0.05, and three different
values of L2, i.e. 0, 0.01, and 0.05. We don’t set L1 to 0 because LASSO regularization is necessary in
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Figure 3: The close-up profile of normalized compartmentalized population and its gradients in two peak periods of
variant Delta and Omicron.

Figure 4: Error comparison of models with different combinations of regularization strength.
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SINDy algorithm to obtain sparse parameters of the model. We also don’t set both regularization values to be
higher because stronger regularization lower the performance [32]. The results of the minimum error obtained
for each combination of regularization are shown in Figure 4. We can see, as expected, that higher values of
regularization tends to have higher error, even thought not in completely monotonic. The case of L1 = 0.05
and L2 = 0.01 in the Omicron data for example (yellow bar), it gives lower result than other three cases
of different L2. From the overall result, we conclude that the best model would be the one trained without
Ridge regularization (L2 = 0) and with the weakest version of LASSO.

3.3. Model evaluation
After obtained the best model, we retrain it in 2000 epochs to make sure it reaches the lowest possible

error. However, it cannot go lower than 0.02 due to the fact that the loss profile become plateau after few
hundred epochs with small fluctuation. The error of 0.02 is good enough in a profile that has total range
around 4 to 6 (see Figure 2). It can be checked by giving back the model the data to be predicted. As shown
in Figure 5, the predicted values are very close to the true values, with a little exception in the case of
deceased compartment of Omicron. The predicted values tends to be smoother than the true values because
short fluctuations are harder to be predicted.

Even thought the results looks good enough, it is still not representing the main results as Figure 5 only
shows the predicted values of the gradients. To compare the results in terms of normalized population values,
we have to use the parameters obtained in the regression model to reconstruct all polynomials that form
the dynamical system of SIRD model. As mentioned in previous section, we will use numerical method of
Runge-Kutta to integrate the system of differential equations of obtained SIRD model. The integration result
is then plotted together with the true values in Figure 6.

Figure 5: The curves of predicted gradient values of each compartment.

In Figure 6, the comparisons between the predicted values and the true values of all compartments are seen
clearly. The prediction fit nicely in the profile of the true values. Despite some small differences it shows,
the shape of the dynamics and the trends the SINDy model predicted agree to the true values, indicating
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Figure 6: Curve of the integration results and the true values of each compartment during peak period of each variant.

that the SIRD system learned is valid. In the practical aspect, this model is then capable to predict the rise
and fall of the pandemics by forecasting the trends of the infection. Significant discrepancies shown in the
Infected curve are possibly caused by the lacks of complete data from other potential compartments used
in the model. The exclusion of some compartments, such as second infection, can reduce model capacity,
because there are some features that cannot be considered by the model. The other possible factor of the
discrepancy is that there may be some higher-order of nonlinear interactions affecting the dynamics.

3.4. Weight analysis
One aspect of SINDy approach that cannot be ignored is its interpretability. The main target of SINDy

is to predict the dynamical system itself, thus the parameter obtained should be sparse enough (but not too
sparse) to have some meaningful interpretation. Previously, we have obtained that the best model is the one
with L1 = 0.01. However, if we plot the parameters of the model in terms of polynomial coefficient of the
system (shown in Figure 7(a)), almost every term is filled, giving less information regarding the system. For
that matter, we retrain the model with different values of L1, but still without Ridge regularization to see
the optimal values of L1 that gives enough sparsity. The complete results can be seen in Figure 7. We use
heatmaps in the figure to easily show the dominant terms in the learned system where the parameter matrices
are set to be sparse.
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(a)

(b)

(c)

Figure 7: Heatmap of the weight parameters of the learned SIRD system with different regularization strengths, where
(a) L1 = 0.01; (b) L1 = 0.02; (c) L1 = 0.05.

As mentioned, the one with L1 = 0.01 is not sparse enough. It may be representing some true complex
systems, but in our case, we know that compartmental model should be simple. On the other hand, the one
with L1 = 0.05 gives too sparse parameters that in the Omicron case, all the terms for the dynamics of R
and D (almost) vanish, which should not be true in our case because we know that they have dynamics and
is not constant all the time. So, we choose the middle value, L1 = 0.02 and obtained just the right sparsity.
We see how, in the Omicron case for example, that death value is affected by terms DI , RI , and IS, or in
simple words the “interaction” between the infected and other compartment, including the deceased itself. It
is quite reasonable because the number of death may cause some kind of pessimism to the infected one and
worsened the disease. The similar interpretation can also be done to other dynamics.

Further more, we can see that roughly some of the parameters that is activated in Omicron is also activated
in Delta in different strength. Even thought there are also many terms that appears in one of the variant but
does not appear in the other, they represent similar dynamics of how the number of infected people rises
in parallel with the dynamics of other compartments. For instance, the increase of the deceased in Omicron
period is relatively small compared to Delta period because Omicron system have negative terms of DI that
balance the positive terms of RI and IS. On the other hand, infected people in Omicron period rise more
quickly than Delta because the infected only depends on two terms where the Delta has some other terms
that balance the increase.
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4. CONCLUSION

This study introduced compartmental model, especially in form of SIRD model, for COVID-19 transmission
dynamics, specifically during peak period of Delta and Omicron variants in Indonesia, constructed from
empirical data. Model selection was based on comparing the mean squared error across various values of
regularization. The resulting model demonstrated a high degree of accuracy in predicting real infection data,
exhibiting only minor discrepancies. Despite its predictive prowess, the data-constructed model suffers from
limited interpretability. Optimal value of regularization should consider the balance of explainability of the
system obtained, represented by the map of its coefficients, and the error of the model. The challenges in
directly interpreting the model stem from a multitude of intricate factors that indirectly impact real-world data.
Hidden variables give rise to numerous nonlinear interactions between compartments, which the constructed
model aims to capture. Enhancing the interpretability of data-constructed compartmental models is a key
focus for future research endeavors. One potential avenue for improvement involves purposefully selecting
a subset of favorable terms as features, as opposed to incorporating all polynomial terms of a given order.
Additionally, the inclusion of supplementary intermediary compartments, such as those representing exposed
individuals, incompletely vaccinated individuals, or hospitalized cases, could be considered contingent upon
data availability.

REFERENCES

[1] Weiss, R. A. and McMichael, A. J., Social and environmental risk factors in the emergence of infectious diseases, Nature Medicine,
10, pp. 70–76, 2004.

[2] Cucinotta, D. and Vanelli, M., WHO declares COVID-19 a pandemic, Acta Bio Medica: Atenei Parmensis, 91(1), p. 157-160,
2020.

[3] Satrio, C.B.A., Darmawan, W., Nadia, B.U. and Hanafiah, N., Time series analysis and forecasting of coronavirus disease in
Indonesia using ARIMA model and PROPHET, Procedia Computer Science, 179, pp. 524-532, 2021.

[4] ArunKumar, K.E., Kalaga, D.V., Kumar, C.M.S., Kawaji, M. and Brenza, T.M., Forecasting of COVID-19 using deep layer
recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells, Chaos, Solitons
& Fractals, 146, p. 110861, 2021.

[5] Rauf, H.T., Lali, M.I.U., Khan, M.A., Kadry, S., Alolaiyan, H., Razaq, A. and Irfan, R., Time series forecasting of COVID-19
transmission in Asia Pacific countries using deep neural networks, Personal and Ubiquitous Computing, pp. 1-18, 2023.

[6] Taj, R.M., El Mouden, Z.A., Jakimi, A. and Hajar, M., Towards using recurrent neural networks for predicting influenza-like
illness: case study of covid-19 in Morocco, International Journal of Advanced Trends in Computer Science and Engineering, 9(5),
2020.

[7] Hethcote, H.W., Three basic epidemiological models, In Applied Mathematical Ecology, pp. 119-144, 1989.
[8] Soewono, E., On the analysis of Covid-19 transmission in Wuhan, Diamond Princess and Jakarta-cluster, Communication in

Biomathematical Sciences, 3(1), pp. 9–18, 2020.
[9] Abdy, M., Side, S., Annas, S., Nur, W. and Sanusi, W., An SIR epidemic model for COVID-19 spread with fuzzy parameter: the

case of Indonesia, Advances in Difference Equations, 2021, pp. 1-17, 2021.
[10] Susanto, H., Tjahjono, V.R., Hasan, A., Kasim, M.F., Nuraini, N., Putri, E.R.M., Kusdiantara, R. and Kurniawan, H., How many

can you infect? simple (and naive) methods of estimating the reproduction number, Communication in Biomathematical Sciences,
3(1), pp. 28–36, 2020.

[11] Cooper, I., Mondal, A. and Antonopoulos, C.G., A SIR model assumption for the spread of COVID-19 in different communities,
Chaos, Solitons & Fractals, 139, p. 110057, 2020.

[12] Feng, S., Feng, Z., Ling, C., Chang, C. and Feng, Z., Prediction of the COVID-19 epidemic trends based on SEIR and AI models,
PloS One, 16(1), p. e0245101, 2021.

[13] Zisad, S.N., Hossain, M.S., Hossain, M.S. and Andersson, K., An integrated neural network and SEIR model to predict Covid-19,
Algorithms, 14(3), p. 94, 2021.

[14] Brunton, S.L., Proctor, J.L. and Kutz, J.N., Discovering governing equations from data by sparse identification of nonlinear
dynamical systems, Proceedings of the National Academy of Sciences, 113(15), pp. 3932-3937, 2016.

[15] Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D. and Ho, S., Discovering symbolic models
from deep learning with inductive biases, Advances in Neural Information Processing Systems, 33, pp. 17429-17442, 2020.

[16] Pan, S. and Duraisamy, K., On the structure of time-delay embedding in linear models of non-linear dynamical systems, Chaos:
An Interdisciplinary Journal of Nonlinear Science, 30(7), 2020.

[17] Lusch, B., Kutz, J.N. and Brunton, S.L., Deep learning for universal linear embeddings of nonlinear dynamics, Nature
Communications, 9(1), p. 4950, 2018.

[18] Rudy, S., Alla, A., Brunton, S.L. and Kutz, J.N., Data-driven identification of parametric partial differential equations, SIAM
Journal on Applied Dynamical Systems, 18(2), pp. 643-660, 2019.



60 Ihsan, A.F.

[19] Shea, D.E., Brunton, S.L. and Kutz, J.N., SINDy-BVP: Sparse identification of nonlinear dynamics for boundary value problems,
Physical Review Research, 3(2), p. 023255, 2021.

[20] Kaiser, E., Kutz, J.N. and Brunton, S.L., Sparse identification of nonlinear dynamics for model predictive control in the low-data
limit, Proceedings of the Royal Society A, 474(2219), p. 20180335, 2018.

[21] Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E. and Kutz, J.N., Chaos as an intermittently forced linear system, Nature
communications, 8(1), p. 19. 2017.

[22] Bramburger, J.J., Kutz, J.N. and Brunton, S.L., Data-driven stabilization of periodic orbits, IEEE Access, 9, pp. 43504-43521,
2021.

[23] Mangan, N.M., Askham, T., Brunton, S.L., Kutz, J.N. and Proctor, J.L., Model selection for hybrid dynamical systems via sparse
regression, Proceedings of the Royal Society A, 475(2223), p. 20180534, 2019.

[24] Qin, H., Machine learning and serving of discrete field theories, Scientific Reports, 10(1), p. 19329, 2020.
[25] Guan, Y., Brunton, S.L. and Novosselov, I., Sparse nonlinear models of chaotic electroconvection, Royal Society Open Science,

8(8), p. 202367, 2021.
[26] Wang, R., Kalnay, E. and Balachandran, B., Neural machine-based forecasting of chaotic dynamics, Nonlinear Dynamics, 98(4),

pp. 2903-2917, 2019.
[27] Gin, C.R., Shea, D.E., Brunton, S.L. and Kutz, J.N., DeepGreen: deep learning of Green’s functions for nonlinear boundary value

problems, Scientific Reports, 11(1), p. 21614, 2021.
[28] Brunton, S.L., Hemati, M.S. and Taira, K., Special issue on machine learning and data-driven methods in fluid dynamics,

Theoretical and Computational Fluid Dynamics, 34(4), pp. 333-337, 2020.
[29] Brunton, S.L., Noack, B.R. and Koumoutsakos, P., Machine learning for fluid mechanics, Annual Review of Fluid Mechanics,

52, pp. 477-508, 2020.
[30] Horrocks, J. and Bauch, C.T., Algorithmic discovery of dynamic models from infectious disease data, Scientific Reports, 10(1),

p. 7061, 2020.
[31] Jiang, Y.X., Xiong, X., Zhang, S., Wang, J.X., Li, J.C. and Du, L., Modeling and prediction of the transmission dynamics of

COVID-19 based on the SINDy-LM method, Nonlinear Dynamics, 105(3), pp. 2775-2794, 2021.
[32] Ihsan, A.F., Data-driven Identification of Compartmental Model of COVID-19, In 2021 International Conference on Data Science

and Its Applications (ICoDSA), IEEE, pp. 91-96, 2021.
[33] Arlis, S. and Defit, S., Machine learning algorithms for predicting the spread of COVID–19 in Indonesia, TEM Journal, 10(2),

pp. 970-974, 2021.
[34] Mathieu, E., Ritchie, H., Rod es-Guirao, L., Appel, C., Giattino, C., Hasell, J., Macdonald, B., Dattani, S., Beltekian, D., Ortiz-

Ospina, E. and Roser, M., Coronavirus pandemic (covid-19), Our World in Data, 2020. https://ourworldindata.org/coronavirus.
[35] Zou, H. and Hastie, T., Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society Series B:

Statistical Methodology, 67(2), pp. 301-320, 2005.

https://ourworldindata.org/coronavirus

	Introduction
	Model formulation
	 Compartmental model
	 Data processing
	 Sparse identification of nonlinear dynamics
	 Model analysis

	Results and discussion
	 Data observation
	 Model selection
	 Model evaluation
	 Weight analysis

	Conclusion
	References

