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Abstract

The gravity model which is based on Newton’s gravitational law, has been widely used as a spatial
interaction model in the past few decades. Spatial interactions are important in epidemic modeling as different
populations in the world are interconnected by them. Human dispersal behaviors are spatial interactions and
they are crucial aspects of infectious disease spread. However, many existing compartmental models model
epidemics in a single area. Hence, a gravity model approach to model epidemics incorporated with a multi-
patch compartmental model is studied here. Both human dispersal behaviors within a patch and between
patches are considered. When the human dispersal behaviors within a patch are modeled, the denominator of
the general gravity model becomes zero. An alternative power-based distance decay function is introduced to
the gravity model to address that research gap. The parameters of the modified gravity model are estimated
using a hybrid method combining ordinary least squares (OLS) and nonlinear least squares (NLS) methods
(Hybrid OLS-NLS method).
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1. INTRODUCTION

In the world, a sudden unexpected increase in the number of infected humans with an infectious disease can
be experienced at any time. According to the Centers for Disease Control and Prevention, such an increment
in the number of infected humans, which occurs in a specific geographical area is considered as an epidemic
[1]. From the Plague of Athens during 430 - 426 B.C.E to COVID-19 since 2019, human society has been
replete with various kinds of epidemics such as the Black Death, Cholera, Russian Flu, MERS, etc [2], [3].
Those occurrences of epidemics make people motivated continuously to study epidemics.

An epidemic occurs in a sudden disease outbreak. A large number of people in a particular population,
region, or community, is affected by an epidemic [4]. Epidemic modeling plays a significant role in providing
insight into the transmission dynamics of communicable diseases [5], [6], [7]. The spread of those diseases
through a community can be described from such epidemic models [8]. Those models consist of a set of
equations that translate the assumptions into a mathematical representation [9].

Human dispersal behaviors play a major role in infectious disease spread. Due to globalization and
transportation development, an increase in human dispersal behavior can be observed. Due to the increment
of human dispersal behaviors, the transmission speed of infectious diseases got faster [10].

The classical compartmental models are not feasible for incorporating the disease spread with spatial
interactions [l 1]. A more accurate model can be obtained by concentrating on spatially distributed sub-
populations [12]. Since the gravity model which is based on Newton’s gravitational laws is a spatial interaction
model, it is motivated to consider a multi-patch model with the gravity model approach incorporating a
compartmental model [13]. The classical epidemic models are mostly based on the assumption that the entire
population is well-mixed, and they live in one area. But usually, humans live in different areas and the
disease spread is affected by spatial heterogeneity [14]. In epidemiology, such areas are called patches. Meta-
populations occur if those patches are connected through human dispersal behaviors [2]. Human dispersal
behaviors play a major role in the COVID-19 spread as it is an infectious disease [15].
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In the early stages of COVID-19, traveling restrictions and lockdowns were some of the pivotal non-
pharmaceutical interventions (NPIs) used to limit human dispersal behaviors and NPIs dropped off the
speed of the spread [16]. Several studies have been conducted to model epidemics with human dispersal
behaviors. A study that is focused on understanding the impact of mobility on COVID-19 spread presents
the relationship between the spatial interactions and the distance between patches. The spatial interaction is
inversely proportional to the distance [16].

According to Newton’s law of gravity, the gravitational force between two masses is directly proportional
to the product of the two masses and it is inversely proportional to the square of the distance between them.
The typical gravity model is based on the Newton’s law of gravity. It can be written as:

— ey

where F' is the gravitational force, m; and my are the masses of two objects, 7 is the distance between them
and G is a constant [17]. Steward, who was a Princeton astronomer, noticed that Newton’s law of gravity
is resembled by the spatial interactions. Then the gravity law is incorporated with the spatial interactions by
Steward during 1940s. He expressed it as:
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where I is the demographic force, P; and P; are the populations of the origin and the destination respectively,
d;; is the distance between them and G is a constant [18].

Various forms of gravity models inspired by Newton’s law of gravity are widely used in different areas
which are incorporated with the spatial interactions. The gravity model has been used in the area of interna-
tional trade, traffic flows, and human mobility [19], [20]. In 1962, Tinbergen introduced the gravity model
concepts into international trade [21]. The gravity model was used for migration flows by Ravenstein in 1889
[22].

The gravity model is developed for human dispersal behaviors. It says that the demographic force is directly
proportional to the size of the populations in the patches and inversely proportional to the distance between
them [18]. Then the gravity model is written as follows:

P"P™
i
Since the gravity model is adapted in various domains, generally it can be written as:
F;; = KP"P;"t,(di;). )

With the various studies which have been conducted, the form of a gravity model for the human dispersal
behaviors has been generalized and modified. It is influenced by a form of distance decay function (f,(d;;))
where the spatial and social interactions increase as the distance between two locations ¢ and j (d;;) decreases
[16]. The distance decay function can be a power law-based function or an exponential law-based function.
However, it depends on the distance between the two locations [23].

Table 1: The description of the gravity model used for calculating human dispersal behaviors.
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To model a compartmental model with a gravity model approach, creating a mobility matrix is a major
concern. If someone uses the gravity model for human dispersal behaviors within a patch, F;; becomes
undefined because the distance from a patch to the same patch d;; is zero. There was a lot of literature
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that tried to overcome that problem. In literature, the gravity model was used to find the number of trips
between two geographical locations. The probability of mobility within a patch was explained with weighted
average methods [24]. In some literature, the volume of interactions (contacts) between patches is given by a
gravity model approach. There they used the typical gravity equation in Equation 2 for modeling the contacts
between two patches. The radius of a circle with an area equal to the area of the patch is used to d;; instead
of the distance to model the contacts within the patch [12].

The researchers are interested in using a gravity model approach to model an epidemic in a patchy
environment. A study on a two-patch system brings out the gravity model to model the rate of change
of the number of humans in a particular patch. That does not model human mobility within a patch [25].
The rate of mobility within and between patches is modeled separately in previous incidences. Therefore,
it is interesting to look for a method that can incorporate the rate of human dispersal behaviors within and
between patches in the same gravity model approach. The gravity model is used as a model to measure
human dispersal behaviors. In a study on the influenza epidemic in the United States of America, the major
aspects of workflows are apprehended using a piece-wise gravity model [26].

The infectious diseases are classified as human-to-human transmitted diseases, food and waterborne dis-
eases, and vector-borne diseases [2]. Since the study is directed to a gravity model approach with human
dispersal behavior, the study is focused on human-to-human transmitted diseases.The recent infectious disease;
COVID-19 which later became a global epidemic is a viral infectious disease that emerged in Wuhan City,
Hubei province, China in December 2019 [27]. It was caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2). It transmits from human to human by direct contact and droplets. It was
spread all over the world with a 2% — 3% fatality rate [28], and resulted in 775,132,086 cases including
7,042,222 deaths globally [29]. Including Sri Langka, 229 countries and territories were burdened by COVID-
19. In Sri Lanka, the first patient found on the 27*" of January 2020 was a Chinese woman, and the first
confirmed local case was reported on the 11*" of March 2020 in Sri Lanka [30]. Then the whole population
was susceptible and 672 754 confirmed cases with 16 889 deaths were reported [31].

Sri Lanka is divided into 9 provinces for administrative purposes which are named Western, Southern,
Central, North Western, North Central, Uva, Sabaragamuwa, Northern, and Eastern. Human dispersal behav-
iors spread through those provinces due to educational purposes, career purposes, freight transportation, and
various other reasons.

In Sri Lanka, the gravity model approach is used to study the apparel exports, exports, trade, and decision
support areas [32], [33]. There is room to research about the transmission of COVID-19 from a Sri Lankan
perspective by a gravity model approach with human dispersal behaviors. To address these gaps, a gravity
model approach to model human-to-human transmitted epidemic with human dispersal behaviors with a
specific focus on studying the spread of COVID-19 within and between different provinces with human
dispersal behaviors in Sri Lanka can be started.

The main objective of this research is to formulate a multi-patch epidemic model via a gravity model
approach by identifying a way to model human dispersal behaviors within a patch using the gravity model.
It incorporates the probability matrix of human dispersal behaviors by using the gravity model concept to
investigate the transmission patterns of an epidemic numerically with human dispersal behaviors.

2. MODEL FORMULATION
2.1. Modified gravity model

The gravity model discussed in Equation 4 is used to create the mobility matrix for human dispersal
behaviors. Since the generalized gravity model discussed in Equation 3 can not express the mobility within
a patch, a need to find a way to express the mobility within a patch is raised. The distance from a patch to
the same patch is zero. The mobility will be undefined if the gravity model in Equation 3 is used. Because a
division of zero occurs then. Hence, a suitable function for the distance decay function (f,(d;;)) mentioned
in Equation 4 must be chosen.

The gravity models can be studied in two ways concerning the type of distance decay functions. The
power-based gravity model and the exponential-based gravity models are the two types. In the power-based
gravity model, an inverse power function is used as the distance decay function. A negative exponential
function is used as the distance decay function for the exponential-based gravity model. In Newton’s gravity
model, the distance decay function is an inverse power function.
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An action at a distance that properly reflects the spatial interaction nature is suggested by the inverse power
function. But a reflection of spatial interactions between distant patches can not be gained by the negative
exponential function [34].

There are two laws of Geography stated as follows by Waldo R. Tobler and G. Arbia.

1) “Everything is related to everything else, but near things are more related than distant things [35].”
2) “Everything is related to everything else, but things observed at a coarse spatial resolution are more
related than things observed at a finer resolution [36].”

These laws are based on the typical gravity model and action at a distance. The inverse proportional
property of the distance and the direct proportional property of the sizes of populations are reflected by the
above laws respectively. But the negative exponential distance decay function refuses it. Also power based
gravity model can express complex networks. Hence, choosing the inverse power function as the distance
decay function is more appropriate than choosing the negative exponential distance decay function [34].

In a study for understanding the impact of human dispersal behaviors on the spread of infectious disease,
the human dispersal behaviors within and between patches are captured based on the relationship between
distance. A model is presented as an inverse power distance decay function by considering that relationship
as,

£ (diy) = o0 )
T (L dyy)
where d;; is the distance between patch ¢ and j and + is a parameter to be estimated [16]. This solves the
problematic scenario of division by zero that occurs in the gravity model discussed in Equation 3. Hence,
the modified gravity model can be written as follows:
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All the symbols that are used in Equation 6 are described in Table 1.

2.2. Parameter estimation

1) Using OLS method: The typical gravity model explained in Equation 1, has its’ population exponents
as 1 and the distance exponent as 2. But in the context of epidemiology, the gravity model concept is used
to capture the human dispersal behaviors. According to many studies, the exponents in the modified gravity
model in Equation 6 rarely be the same as the typical gravity model in Equation 1 [23], [25], [26]. Hence, a
parameter estimation must be executed to find the appropriate values for the parameters n,m,~y, and K in
the modified gravity model (Equation 6).

The most common way to estimate the gravity parameters is the ordinary least squares (OLS) method. To
perform the OLS estimation, the modified gravity model equation must be log-linearised as follows:

InFj;=nK +nlnP,+mlnP; —yIln(1+d;;). @)

Then the mobility data, population data, and the distances related to the nine provinces in Sri Lanka are used
to fit the log-linearised model in Equation 7. The built-in function ‘minimize’ in scipy.optimize in
SciPy python library, is used to minimize the sum of squares of the residual sum. Here initial guesses for
the parameters n, m,~y and K must be provided to complete the procedure.

2) Initial guesses: The initial guesses for n,m, and ~ are guessed from literature. A study of disease
spread with a piecewise gravity model that incorporates workflows gives two sets of values for n, m, and ~
such as (0.30,0.64,3.05) and (0.24,0.14,0.29) [26]. Also, ~ is found to be in the range of (0.5 — 3.0) in
various studies for different data sets [20]. Hence, the initial guesses are chosen as n = 0.27, m = 0.39, and
v = 1.67.

To make an initial guess for the proportionality constant K, the following steps that are widely used in the
area of physics are taken into consideration. First, the modified gravity model in Equation 6 must be written
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in the form of y = mox where F;; acts as the dependent variable (y) and (1;‘70;)7 acts as the independent
ij
variable (z). Then the K starts to work as the slope (mg).
P"P;™
Fj = K~ ®)
—~~ S~ (1+dy)
y MO N\ e’

x

find the value of K, a polynomial with degree 1 which is a line is fitted to the data. The built-in function
‘polyfit ()’ in Python NumPy library is used to do that task. Then In K is given as the initial guess to
the OLS method where In K = 4.83. Therefore, (0.27,0.39,1.67,4.83) are given as the initial guesses for
(n,m,v,In K) in OLS method.

3) Using NLS method: The OLS method for a log linearised model has some drawbacks in estimating
parameters. It can not perform parameter estimation if the dependent variable of the model becomes zero. In
the context of our study, parameter estimation could not be done by OLS if there is zero mobility from patch
i to patch j.(i.e. F;; = 0). Because when we log-linearise the model, then In F;; becomes undefined as In 0
has not been defined. This problem is not encountered with the nonlinear least squares (NLS) method. Also,
it can estimate parameters without log linearising the model. The built-in function ‘least_squares’ in
scipy.optimize in SciPy python library, is used to minimize the sum of squares of the residual sum.
Here also initial guesses for the parameters n, m,y, and K must be provided to complete the procedure.

4) Using the Hybrid OLS-NLS method: The NLS method is sensitive to the initial guesses. Therefore,
it is important to have proper initial guesses for the parameter values to be estimated before using the NLS
method.

Considering all aspects, the hybrid OLS-NLS method is introduced to estimate parameters by combining
OLS and NLS methods. The steps are discussed below.

1) Choose appropriate initial guesses for the parameters to be estimated as discussed in sub-section 2.2.2.

2) Log linearise the modified gravity model as Equation 6.

3) Estimate parameters using the OLS with above mentioned initial guesses.

4) Use the estimated parameters from the OLS, as the initial guesses for the NLS method.

5) Estimate the parameters using the NLS method.

The estimated parameters will be discussed in Section 3.1

2.3. Mobility matrix

In this stage, the parameters in the modified gravity model 6 have been estimated as relevant to the mobility
data of the provinces in Sri Lanka. The gravity model gives the number of people traveling from patch 7 to
patch j. The mobility rate from patch ¢ to j is denoted as p;;. It is calculated by considering the proportion
of patch ¢+ humans who are traveling in patch j. And it gives the probability of moving a human from patch
i to patch j. Also, the mobility matrix which is the probability matrix of human dispersal behaviors can be
denoted as,

™= (Trij)9><97 iy = 172a"'795 )

where ¢ and j are the provinces.
Then the mobility rate from province ¢ to j can be determined by,

F;

= 977
=1

(10)

71'1‘3‘

9
where i, 7 = 1,2, ..., 9. Therefore, Z mi; = 1. Also the diagonal entries of the mobility matrix (), Vi € {1,2, ..., 9}
j=1
provide the probability of moving a human from his residence patch to the same. The calculated mobility
matrix which gives the probability matrix of human dispersal behaviors within and between the 9 provinces
in Sri Lanka will be discussed in the Section 3.1.
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2.4. Residence budgeting time matrix

The residence budgeting time matrix for the nine provinces in Sri Lanka is linked with the mobility matrix
for nine provinces which is given in Equation 9. Most humans in Sri Lanka make short-term movements
within and between provinces because of education and career purposes. Generally, Sri Lankan people have
8 working hours and we assume that it takes 2 hours to travel from home to the workplace and back to
home. Therefore, we assume the proportion of time that a human travels from province ¢ to other provinces
(t;) is 39 Then,

14 1
P=—1Iy+ 0

21 YR an

9 9
where ™ = (7;;)ox9, P = (Pij)ox9, and Ig is the identity matrix of size 9. Also, ij = Zpij =1,
j=1 j=1

Vie {1,2,...,9}.

2.5. Multi-patch SIR model with human dispersal behaviors

The classical SIR model is formulated on a well-mixed population that lives in the same area. However,
in real-world scenarios, the spatial heterogeneity must be included in the model. The spatial interactions
and the connection between different populations in patches occur with the human dispersal behaviors [2].
The movements of individuals that are caused by human dispersal behaviors can be classified as short-term
movements and long-term movements.

When humans spend more time in their residence patch and visit another patch or patches to spend less
time in that patch, such a movement is called a short-term movement. They come back to their residence patch
after spending a certain proportion of time in another patch. Humans settle in another patch which is not their
residence patch and those movements are called long-term movements. The modeling approaches are different
concerning the type of dispersal behavior. The Lagrangian approach which is related to fluid dynamics is used
when it comes to short-term movements and it becomes the Eularien approach with long-term movements
[37]. The study highlights the Lagrangian approach.

First, we assume that the total population consists of N number of patches that are connected with human
dispersal behaviors. Those patches can be geographical locations or any groups of people. We assumed that
any individual in a patch visits another patch to spend some time and return to the residence patch. An
individual can infect another individual in his residence patch or any other patch. Also, a healthy individual
can be infected at his residence patch or any other patch [2].

In each patch, there are three compartments which are susceptible, infected, and recovered classes. The
summation of those three compartments gives the total number of humans in a patch. N; = S; + I, + R; .

N

The total population Nyytq; 1S given by, Niotar = Z N;.
i=1

Table 2: The description of the symbols used in multi-patch SIR model.

Symbol  Description

Si The number of susceptible individuals in patch ¢

I; The number of infected individuals in patch ¢

R; The number of recovered individuals in patch ¢

N; The total population in patch ¢

N Number of patches

Dij The proportion of time that humans in patch ¢ move in patch j
B Transmission rate in patch ¢

Q; Recovery rate in patch ¢
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The multi-patch (meta-population) model represents its model in a large system of ordinary differential
equations [2]. The ODE system can be written as follows [38]:

N
N Zpkjfk

ds; —
T —SiZﬂjpij kNli ) Si(to) =0,
=1 Zpijk

k=1

al (12)
I N > il
7; =5; Zﬂjpij klili —ail;, Ii(to) >0,

=t Zpijk
k=1

dR;
dt = O[i.[i, Rz(tO) 2 Oa

N
where i, j,k =1,2,..,N and Y p;; = 1.
j=1
In Sri Lanka, there are ninej distinct provinces for administrative purposes [39]. They can be considered
as patches that are connected with human dispersal behaviors. A type of multi-patch compartmental model
discussed in the Equation 12, which is a nine-patch SIR model is used to investigate the COVID-19 spread
within and between Sri Lanka. The results calculated by the residence budgeting time matrix are used for
the p;; values in Equation 12.
The transmission rate j3;, captures the risk of infection in patch j. And the infection rate of the patch i is,

9
9 > prili
Zﬁjpz‘j 11):17

—
’ E Prj N
k=1

Here the number of newly infected humans belonging to patch ¢ who got infected while moving within their
residence patch ¢ is given by,
9
> prilk

SiBipii | S——
> prilNi
k=1

The number of new infected humans belongs to patch ¢ who got infected while moving between their residence
patch 7 and the other patches j is given by,

9

9 Zpkj]k
k=1

Si Z Bivij | 95—

J=hit Zpijk
k=1

Also, the proportion of time that residents from patch j spend in patch j is denoted by p;; and p;; denotes
the proportion of time that residents from patch ¢ spend in patch j.
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Here all the infected humans are assumed to be infectious and all the recovered humans are assumed not
to be susceptible again. Since the time duration of the disease is negligible compared to the lifetime of a
human, the total population in the country is assumed to be constant.

2.6. Basic reproduction number (R)

The next generation matrix method which is introduced by Diekmann, is widely used to derive the
reproduction number for models that incorporate the spatial structures [40]. The next generation matrix
G is created as, G = FV !, where F and V are the jacobians of the new infections appearance rate in the
ith compartment (F;(X) ) and the difference of the transfer rate of individuals into the compartment i and
out of the compartment ¢ (V;(X)) at the disease free equilibrium point.

po 0w gy - Vi)
ox j ox j
Here the vector X is denoted as, X = z;,7 = 1,2, .., q where ¢ is the number of compartments in the system
and x; is the size of the i*" compartment or the proportion of individuals in the i** compartment. Then the
dominant eigenvalue of matrix G which is the spectral radius of GG is defined as the reproduction number

(Ro) [41].

3. NUMERICAL RESULTS
3.1. Parameter estimation of the gravity model

The parameter estimation for the modified gravity model in Equation 6 is performed using OLS, NLS,
and hybrid OLS-NLS methods as discussed in Section 2.2. The values described in sub-section 2.2.2 are
given as the initial guesses for the estimation. The following are the estimated values for the gravity model
parameters relevant to each estimation method.

Table 3: The estimated parameter values for the gravity model using OLS, NLS, and hybrid OLS-NLS methods.

OLS method NLS method Hybrid OLS-NLS method

n  0.69994 0.27105 0.38326
m  0.94025 0.39114 0.60072
v 0.83117 1.66548 0.77417
K 1.00007 124.72659 1.00977

From the three types of above estimation methods, three sets of parameters are obtained as the gravity
model parameters. The following set of parameters which is obtained by the hybrid OLS-NLS method, is
used as the parameters of the modified gravity model in Equation 6 in this research. The reason behind
choosing this set of parameters is discussed in Section 4 considering the model evaluation metrics.

n=0.38326, m =0.60072, ~v=0.77417, K = 1.00977 (13)

3.2. The mobility matrix

The gravity model approach is used to create the mobility matrix by following the method discussed in
Section 2.3. The distances between the nine provinces, populations in the nine provinces, and the parameter
values estimated in Equations 13 are provided to the modified gravity model in Equation 6. Then the mobility
matrix 7 is created as the above Figure 1. It shows that the probability within a province takes a higher value
than between provinces.

Generally, the mobility within a patch takes a higher value than between the patches. That aspect is also
captured by this gravity model approach and represented in diagonal values (7;;),Vi € {1,2,...,9} of the
mobility matrix 7.
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Figure 1: The mobility matrix for nine provinces in Sri Lanka obtained by the gravity model approach.

3.3. Visualization of the probabilities between provinces

Here we visualize the pattern of mobility between provinces. Mobility within a province is not included
here.

1) Visualization with distances: Figure 2 shows how the human dispersal behaviors between provinces
behave concerning the distance between the provinces. The values of the x-axis of each plot in Figure 2 are
sorted in ascending order concerning the distance from each province to the other provinces.

The probabilities of human dispersal behaviors are almost reduced with the increment of the distance
between provinces according to Figure 2. However, an increment is observed in the Western province in each
plot though some other provinces have higher distances than the Western Province. According to the Equation
6, the populations of the provinces and the distance between them affect the human dispersal behaviors. The
Western province has the highest population and it is the reason for the above-mentioned observation.
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Figure 2: Human dispersal behaviors with the distances between provinces in each province in Sri Lanka.
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Figure 3: Human dispersal behaviors between provinces with the population size of the destination province in each
province in Sri Lanka.

2) Visualization with population: The behavior of the human dispersal behaviors between provinces
concerning the population of the destination province for each province is shown in Figure 3. The x-axis
values of each plot in Figure 3 are sorted in ascending order concerning the population of the destination
province. The probabilities of human dispersal behaviors are increasing when the population of the destination
province is high. But it is changed due to the effect from distance as discussed through the modified gravity
model in Equation 6.

3) Visualization with distance and population: The effects of both distance and population on the
probability and the human dispersal behavior between provinces are presented in Figure 4. It represents
the relationship between the probability of human dispersal behaviors between provinces with the population
of the destination province and the distances between provinces in each province in Sri Lanka. The values
of the x-axis and the values of the y-axis are sorted in ascending order concerning the distance between the
provinces and the population of the destination province respectively.

3.4. The residence budgeting time matrix

Assuming that a human in i** province spends 10 hours in any other province, the residence budgeting
time matrix can be obtained using Equation 11.

3.5. Parameter estimation of multi-patch SIR model

The multi-patch SIR model in Equation 12, is used to incorporate the human dispersal behaviors into the
COVID-19 disease spread. The calculated number of infectious humans using Equation 12 and the real data
for infectious humans are considered to estimate the transmission rates for each province in Sri Lanka as
shown in Table 4.

1) Fixed parameters: Sri Lanka is a small island with a small crowd of population compared to some other
big countries like India, the USA, Russia, etc. Therefore, the recovery rates («;) of the humans in province
¢ for all nine provinces are assumed to be the same «. Therefore, the recovery rate « for all provinces in Sri
Lanka is considered as a fixed parameter such that a~! = 10.25 days [42].
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Figure 4: Human dispersal behaviors with the population of the destination province and the distances between provinces.
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Southern { 0.002 0.004 0.012 0.003

Figure 5: The residence budgeting time matrix for nine provinces in Sri Lanka obtained by the gravity model approach.

2) Estimated parameters: The estimated parameter values for the §; for each province are shown in the
Table 4. Neither lockdown nor social distancing strategies are considered in the estimation. Those estimations
are done as the methods discussed in follows.

The built-in function ‘least_squares’ in scipy.optimize in SciPy python library, is used to
estimate the /3; values. The non-linear least squares method is used to minimize the sum of squares of the
residual sum. The residuals are the difference between the actual data and the predicted data from the relevant
ODE system.
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The data on the number of infected and susceptible humans, populations in each province, and the residence
budgeting time matrix time obtained in 5 by the gravity model approach is used in the estimating process. Also,
the recovery rates for each province («;) are considered to have the same value «. For this research, Northern,
North Western, Western, North Central, Central, Sabaraganuwa, Eastern, Uva, and Southern provinces are
indexed as 1,2,3,4,5,6,7,8, and 9 respectively.

Table 4: Estimated values for the transmission rates (8;) of each province.

Symbol  Related Province Value
51 Northern province 0.07344980
B North Western province  0.13890953
53 Western province 0.12895880
Ba North Central province 0.02554977
Bs Central province 0.11607572
Be Sabaragamuwa province  0.00473791
B7 Eastern province 0.00972736
Bs Uva province 0.00020758
Bo Southern province 0.11356019

3.6. Impact of human dispersal behaviors into disease spread

The human dispersal behaviors were restricted by imposing lockdowns to decrease the COVID-19 spread
in Sri Lanka. Hence a lockdown variable; L; is introduced to demonstrate the impact of human dispersal
behaviors on disease spread. The lockdown strength of i*” province is given by L; which takes the values
between 0 and 1. When the lockdown strength becomes 1, it denotes no human dispersal behaviors [43].
According to the literature, it causes a new transmission rate in province 7 (3;) such that, 8; = (1 — L;) ;.

Lockdown Strength vs Basic Reproduction Number

=

os o6
Lockdown Strength

Figure 6: Basic reproduction number for different lockdown strengths.

4. DISCUSSION AND CONCLUSIONS

Epidemic modeling by a gravity model approach is getting more attention and it is becoming interesting
to study among the researchers. When it comes to meta-population modeling using compartmental models,
the gravity model used in Equation 3, could not be used to model the human dispersal behaviors within a
patch. It only models the human dispersal behaviors between patches. Because the denominator of the gravity
model Equation 3 becomes zero as explained in Section 2.1, when the human dispersal behaviors within a
patch are considered. By modifying the gravity model as the Equation 6, the barriers to model the human
dispersal behaviors within a patch disappear.

The human dispersal behaviors within a patch are observed to be greater than the behaviors between
the patches in actual molbility data. Choosing the distance decay function f.(d;;) in the gravity model as
At dy) instead of @)
of division by zero discussed in Section 2.1.

effectively captures the above-mentioned scenario and it also solves the problem
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The distances between any provinces ¢ and j which is denoted as d;; is greater than 50km in Sri Lanka.
di; > 50km, Vi, 5 € {1,2,...,9} where ¢ # j). Therefore,
J

1 1
< —, ifi=
1+d;;) 51

By = O
(1+d”)7_7 IZ#J

Vi € {1,2,...,9} where v = 0.77417147.

Hence, f,(d;;) > £,(d;j),Vi,5 € {1,2,...,9} where i # j. Therefore, the magnitude of the effect given
by the distance decay function related to the human dispersal behaviors within a patch is greater than the
magnitude of the effect given by the distance decay function related to the behaviors between patches. That
explanation justifies the reason for capturing the higher human dispersal behavior rates within a patch by the
modified gravity model in Equation 6. That scenario is represented visually in Figure 1.

The parameters of the modified gravity model in Equation 6 are estimated using three different methods
as discussed in Section 3.1. Three different model evaluation metric values are calculated for all those sets
of parameters obtained by above mentioned types of estimation methods. The R-squared, RMSE (Root Mean
Square Error), and MAE (Mean Average Error) values are calculated for each model that carries different
parameter values due to the difference in the estimation method.

Table 5: R-squared, RMSE, and MAE values across different estimation methods.

OLS method NLS method Hybrid OLS-NLS method

R-squared  0.8858 0.7868 0.8963
RMSE 0.0799 0.1091 0.0761
MAE 0.0378 0.0546 0.0365

The lowest R-squared value and the highest RMSE and MAE values can observed in the model that uses the
NLS method to estimate parameters. It occurs because of the high sensitivity to the initial guesses. At the same
time, the hybrid OLS-NLS method discussed in sub-section 2.2.4, provides the highest value for R-squared
and the lowest values for the RMSE and MAE. Therefore, parameter estimation using the hybrid OLS-NLS
method gives better parameter values for the gravity model compared to the other two methods. Therefore,
in this study, the parameters estimated using the hybrid OLS-NLS method are used as the parameters for
the modified gravity model in Equation 6 which are (0.38326244,0.60072182,0.77417147,1.00976875) for
(n,m,v, K).

The parameter estimation method used in this research to estimate the gravity model parameters is the
hybrid OLS-NLS method that combines the OLS and NLS methods. Since the parameters must be estimated
using the OLS method with the log-linearised gravity model, only non-zero mobility included data can be
used for the parameter estimation.

The relationship between the dependent variable I;; and the independent variables P;, P;, and d;; of the
modified gravity model in Equation 6, can be displayed using the double-log functional form of the modified
gravity model. The double-log functional form of it can be written as:

In(F;;) = In K + nln(P;) + mIn(P;) — v 1In(1 + d;j).

Then the n,m, and v are the elasticity coefficients that represent how the dependent variable is affected
by a change in independent variables.

It suggests that a 1% increase in the population of the residence province ¢ causes a 0.38326% increase in
the number of human movements from province 4 to province j. Also, it suggests that a result of a 0.60072%
increase in the number of human movements from province i to j is caused by a 1% increase in the population
of the province j. But a 1% increase in the distance decay function such that, f,(d;;) = m makes

j
a 0.77417% decrease in the number of human movements from province i to j.



GRAVITY MODEL APPROACH TO MODEL EPIDEMIC WITH HUMAN DISPERSAL BEHAVIORS 245

Then the mobility rates can be calculated using the equation introduced in Equation 10. Hence,
PP
(1+di;)”
9 prpm
K
(1+d; j)ﬁ/

j=1

K
Vie {1,2,...,9}.

ﬂ'ij =

Therefore, the proportionality constant K can be canceled off in the stage of the mobility rates calculation
and it does not affect the mobility rates because,

PP

mj=———— Vie{l,2,..,9}.

In Sri Lanka, there is a lack of mobility data. Only the data on buses are available as the mobility data.
But there are many other traveling modes commonly used in Sri Lanka. Therefore, the parameter estimation
for the gravity model is done with a limited number of mobility data.

The variation of the basic reproduction number with the lockdown strength can be observed in Figure 6.
It shows that the reproduction number will be reduced when the lockdown strength of all provinces become
increased which provides the decrease of the human dispersal behaviors. Therefore, the reduction of human
dispersal behaviors causes to the reduction of the basic reproduction number. The disease die out when the
human dispersal behavior become reduced to 80% because Ry < 1 when the lockdown strength is 0.2.

In the initial stages of infectious disease, it is not practical to impose a full lockdown for a long time.
Because it may cause various social and economic problems. Therefore the country is clustered into 3 clusters
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Figure 7: The infected human population over time in no lockdown, high zone lockdown, and high and moderate zone
lockdown.
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namely high-risk zone, moderate-risk zone and low-risk zone based on the number of infected humans in
each province at their peak. The clustering is done using the K-Mean clustering.

Table 6: Clusters.

Zone Provinces

High-risk Western

Moderate-risk ~ Southern, North Western, Central
Low-risk Other provinces

This clustering provides the opportunity to impose separate lockdowns with different strengths into separate
clusters. Figure 7 shows infected curves for different lockdown scenarios for each province.

The infected curves when there is no lockdown are shown in blue colored curves and the orange color
curves represent the infected curves when there is a full lockdown in the high-risk zone. The green-colored
curves provide the infected curves when there are lockdowns with 0.5 and 0.1 lockdown strengths in high-
risk zone and moderate-risk zone respectively. The least peaks for each province are provided by the last
lockdown scenario.

5. FUTURE WORK

Since the gravity model gives an effective insight into modeling the patterns of human dispersal behaviors,
this research can be extended to model the effects of the lockdown on the human dispersal behaviors and
the patterns of human mobility amidst a lockdown incorporating the gravity model.

A transformation of the mobility matrix in Figure | into another mobility matrix which indicates the
lockdown effects on the mobility within and between the provinces will be a new approach to model the
lockdown effects on human dispersal behaviors. The transformation can be considered to be done using
another matrix and multiplying it with the existing mobility matrix. Finding such a matrix that incorporates
the lockdown measures will be an extension of this research.

In this research, a multi-patch SIR model with three compartments: susceptible, infected, and recovered
are used. We can extend the multi-patch SIR model by incorporating another compartment or compartments
such as dead, quarantined, and vaccinated compartments. It would be a more realistic capture of the real-
world scenario of COVID-19 transmission. It will also open the research to a path of an extended version of
epidemic modeling research incorporated with optimal control problems.

6. DATA AVAILABILITY

The population data for each province is taken from the Registrar General’s Department of Sri Lanka
[44]. The distances between the provinces are taken as mentioned in the Road Development Authority [45].
The mobility data is provided by the National Transport Commission of Sri Lanka. The COVID-19 situation
reports from 15" of November 2020 to 10t of December 2020 are used as the data for number of COVID-19
patients [46].
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