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Abstract

The implicit impact of vaccination on susceptible cells (epithelial layer) is studied on the basis of stability
analysis of age-structured epidemic model of susceptible cells, infected cells and cells of lesion tissue (dysplasia
and cancer), human papillomavirus (HPV). The efficacy of the vaccine indirectly influences the coefficients of
the system, thereby determining the types of dynamical regime of the HPV and cellular population. The model
possesses unique disease-free (DFE) and unique endemic equilibria (EE) (Theorem 1). The asymptotically
stable DFE is associated with the resilience of epithelial layer of vaccinated organism to HPV infection
while the asymptotically stable EE is associated with the resilience of the lesion tissue of epithelial layer
to treatment. The analysis of the model reveals independent factors affecting the stability/instability of DFE
and EE (Theorems 2, 3): (i) cell death rate and proliferation rate, (ii) HPV infection rate, budding number
of HPV virions, apoptosis rate of infected cells and HPV death rate (parameters of the implicit influence of
vaccine efficacy), and (iii) DFE value of epithelial tissue size (environmental capacity of HPV depending on
the initial size of the epithelial layer). Thus, HPV vaccine efficacy should be sufficiently high to guarantee the
asymptotic stability of DFE with the epithelial tissue of large possible size, which can be taken into account
when studying the efficacy of new vaccines in control groups in clinical trials.
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1. INTRODUCTION

Human papilloma virus (HPV) is the most common sexually transmitted infection that can affect the
epithelial tissue, leading to the formation of lesion tissue - dysplasia and cancer [11], [12], [21], [28]. The
significance of this medical issue has driven extensive re-search on HPV epidemic models over the past
few decades. These models address the problem at three distinct levels: (i) social level (investigating the
transmission of HPV between individuals and assessing the efficacy of HPV vaccination within populations,
clinical management strategies) [6], [7], [26], [29], [32], (ii) molecular or tissue level which include mathe-
matical study of cell-HPV population dynamics [1], [2], [3], [31], [36], [42], and (iii) microbiological study of
HPV-induced oncogenesis [16], [30], [38] - [40]. This paper is focused on the analysis of HPV transmission
in epithelial tissue of vaccinated organism which consists of susceptible and infected cells, lesion tissue
– precancerous (dysplasia) and cancer cells. The purpose of this study is understanding the conditions of
resistance in a vaccinated organism to HPV infection and conditions leading to disease, specifically related
to lesion epithelial tissue. Thus, we study the interaction and dynamics of healthy (susceptible) cells, HPV
infected cells and lesion cells with HPV and does not separate the lesion cells on precancerous and cancer
cells in contrast to the earlier studies [1] - [3], [31].

The autonomous SILV epidemic model is based on the SIPCV epidemic models [1], [31] and considers
the age-structured dynamics of susceptible, infective, lesion cell populations and dynamics of unstructured
HPV population. In SILV epidemic model we assume that the immune response of vaccinated organism is
tolerant with respect to its own cells and, as a consequence, death rates of infected and lesion cells do not
depend from the HPV abundance [11], [21], [28]. Interaction strength between susceptible cells and HPV is a
product of the Lotka-Voltera incidence rate and result in the growth of infective cells [3]. Interaction strength
between infected and lesion cells is an HPV density-dependent sigmoid or S-function which describes the
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impact of HPV load on malignant transformation of cells. We assume that lesion cells do not apply pressure
on the tissues of organism and have no effect on the proliferation and mortality of other cells. The efficacy
of multivalent HPV vaccine is primary associated with the magnitude of immune response. On one hand, the
humoral immune response (B-lymphocytes) leads to the increase on the level (titer) of antibodies in blood,
which creates conditions for: (i) blocking HPV entry into host cell [27], [39], and (ii) destroying viruses that
are freely moving in the inter cellular space [40]. In the first case, the strength of HPV infection reduces, and
in the second case, the HPV death rate increases. On the other hand, vaccine stimulates cytotoxic activity and
increases the number of T-cells which destruct the infected cells (HPV host cells) and, consequently, slow
down the HPV replication. Thus, from mathematical point of view impact of the efficacy of HPV vaccine are
taken into account implicitly in coefficients of SILV epidemic model: HPV infection rate, budding number of
HPV virions, apoptosis rate of infected cells and HPV death rate [1] - [3]. HPV vaccine efficacy-dependent
coefficients define conditions of existence and asymptotic stability of disease free an endemic equilibrium of
system (DFE and EE, respectively).

Conditions of existence and asymptotic stability of non-trivial equilibria of age-structured epidemic models
of population dynamics are studied in framework of the linear stability theory [3] - [5], [8], [9], [14], [20],
[22] - [25], [34], [35], [41], [43]. In work [3] we studied the local asymptotic stability of EE, which is
associated with the features of the course and possible treatment of an HPV induced disease. Although the
influence of vaccination efficacy on the dynamical regimes of HPV - cellular populations is obvious, the
implicit impact of HPV vaccine efficacy on the local asymptotical stability of DFE was not addressed in
previous works. This paper is focused on the study of conditions of existence and local asymptotic stability
of DFE of SILV epidemic model, which in turn is associated with the resistance of a vaccinated organism to
the HPV induced disease. Asymptotic stability of DFE of epidemic SILV model means that epithelial tissue
(population of susceptible cells) of vaccinated organism, being infected by HPV, eventually recovers and
returns back to the stationary, healthy state. In this case the efficacy of HPV vaccine is sufficiently high and
helps organism to overcome infectious disease and get rid the lesion tissue. The main indicator of the DFE
asymptotic stability, basic reproduction number of infection R0, depends on the vaccine efficacy-dependent
coefficients of the model. Thus, we can relate the vaccine efficacy with dynamical regime of system and
resistance of vaccinated organism to HPV infection. On the other hand, asymptotic stability of EE means
that HPV vaccine efficacy is sufficiently low, epithelial tissue of vaccinated organism is sick and the lesion
tissue is asymptotically stable.

Overall, stability analysis of the autonomous age-structured SILV epidemic model helps us better understand
the relationship between HPV vaccine efficacy-dependent model parameters and the asymptotic stability of
DFE which is associated with vaccine-induced protection and resistance of the organism to infectious disease,
and the asymptotic stability of EE which is associated with low efficacy of vaccine, infectious disease and
cancer.

2. MODEL FORMULATION

We consider a SILV epidemic model that consists of susceptible cells (noninfected cells), infected cells
(cells without changed by HPV morphology, CIN I and CIN II stages), lesion cells (dysplasia, CIN III stage
and cancer cells) [11], [12], [21], [28] and human papilloma virus (HPV) that moves freely between cells. The
age-specific densities of susceptible, infectious and lesion cells are denoted as S(a, t), I(a, t) and L(a, t). The

quantity (size) of susceptible, infected and lesion cells subpopulations are denoted by NS(t) =
ad∫
0

S(a, t)da,

NI(t) =
ad∫
0

I(a, t)da, NL(t) =
ad∫
0

L(a, t)da, respectively, where cell’s maximum lifespan is ad. The dynamics

of cell subclasses (subpopulations) is described by the nonlinear age-structured model with age- dependent
death (apoptosis) rates of susceptible ds(a), infectious dq(a) ≥ ds(a), and lesion cells dl(a) ≥ ds(a) with
the age reproductive windows of non-lesion cells [ar, am] and lesion cells [ac, ag]. Lesion cells differ from
the susceptible cells in their lack of response to normal fertility control mechanism (ac < ar, ag < am) [11],
[12], [21], [28].

We assume that adaptive behavior of the HPV makes the natural immune response of host tolerant with
respect to infectious and lesion cells that is their death rates do not depend from the HPV abundance [11],
[12], [21], [28]. Host organism recognizes lesion cells (dysplasia and cancer) as its own and does not attempt
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to destroy them. Since viruses are not living things and cannot reproduce (multiply) until they enter a host
cell, we use the unstructured model of HPV subpopulation dynamics. The dynamics of HPV quantity V (t)
is governed by non-linear ODE with density-dependent death rate dv(V (t)) = dv0

√
1 + dv1V (t) [3] (where

dv0, dv1 = const > 0). HPV death rate dv(V (t)) is an increasing function of V because increasing of HPV
quantity changes the characteristics of intracellular space that result in the organism immune response through
the activation of cell immunity (T-cells) and humoral immunity (B-lymphocytes) that leads to the elimination
of HPV (i.e. monotone increasing of HPV death rate). On the other hand, the rate of change d(dv(V ))

dV is
a decreasing function of V , approaching zero when V → ∞. That is the immune respond approaches the
maximum value and dv(V (t)) changes slowly when HPV population gets larger.

The interaction strength between susceptible and HPV is a product of the Lotka-Voltera incidence rate
αV (t)S(a, t) (where α = const > 0 is a rate of infection) [1], [3], [31], [35] and result in the growth of
infectious cells, which move partially to the lesion subclass with rate δ(V (t))I(a, t). In our previous works
[1], [3] the progression rate from infected to precancerous cells (dysplasia) is δ = const > 0. However, the
HPV viral load, or the amount of HPV DNA present in the intercellular space, influences the progression of
infect-ed cells to lesion cells because: (i) high HPV load and HPV persistence in tissue increases the expression
of oncoproteins, which accelerate the disruption of infected cell proliferation cycle control and enhance them
transformation to lesion cells [17], [37], (ii) high HPV load overwhelms the both types of immune response
(B-lymphocytes and T-cells), leading to persistent of HPV-infection and increased risk of transformation
from infected to lesion cells [18]. Thus, the progression rate from infected to lesion cells δ(V (t)) should
be an increasing function of HPV quantity δ(V (t)) with saturation which has the zero derivative at origin
(slow start at V (t) = 0). The most suitable function satisfying these conditions is a sigmoid function (or
S-function) δ(V (t)) = δdV

3(t)
h3
d+V 3(t)

with saturation and half-saturation constants δd > 0, hd > 0, respectively.

Model considers also the partial apoptosis of infectious cells with rate n
ad∫
0

dp(a)I(a, t)da, where n is a mean

budding number of HPV virions produced by one host cell (when viruses leave destroyed cells and ready to
infect new susceptible cells), dp(a) is an age- dependent death rates of infectious cells as a result of virus
replication (HPV-induced apoptosis rate of infected cells) [3], [13]. These assumptions lead to the following
age-structured epidemic model in domain Q = {(a, t) |a ∈ (0, ad), t ∈ (0, T )}:

∂S(a, t)

∂t
+
∂S(a, t)

∂a
= −(ds(a) + αV (t))S(a, t), (1)

∂I(a, t)

∂t
+
∂I(a, t)

∂a
= −(dq(a) + δ(V (t)))I(a, t) + αV (t)S(a, t), (2)

∂L(a, t)

∂t
+
∂L(a, t)

∂a
= −dl(a)L(a, t) + δ(V (t))I(a, t), (3)

∂V (t)

∂t
= −dv(V )V (t) + n

ad∫
0

dp(a)I(a, t) da. (4)

Equations (1) - (4) are completed by the boundary conditions and initial values:

S(0, t) =

am∫
ar

βs(a)S(a, t)da, I(0, t) =

am∫
ar

βs(a)I(a, t)da, L(0, t) =

ag∫
ac

βl(a)L(a, t)da, (5)

S(a, 0) = S0(a), I(a, 0) = 0, L(a, 0) = 0, V (0) = V0. (6)

where βs(a) is a fertility rate of the susceptible and infected cells, βl(a) is a fertility rate of the lesion
cells; S0(a) is an initial density of susceptible cells, V0 is an initial value of HPV quantity. The model
contains three sets of efficacy vaccine-dependent coefficients and parameters which are related implicitly to
three factors of HPV vaccine impact on epithelial tissue. First coefficient is the rate of HPV infection α.
Vaccine elicits a strong immune response that reduces the likelihood of HPV infection persistent and leads to
a decrease in the α coefficient. Second pair of coefficients are the HPV death rate constants dv0 and dv1. As
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it was mentioned above, vaccine-induced humoral immune response (B-lymphocytes) destroys viruses that
are freely moving in the inter cellular space, increasing the HPV death rate and constants dv0 and dv1. Third
parameter is a product ndp(a) of the mean budding number of HPV virions produced by one host cell n and
the HPV-induced apoptosis rate of infected cells dp(a). HPV vaccine targets the viral oncoproteins which
plays the key role in HPV ability to replicate and inhibits apoptosis in infected cells leading to decreasing
of value of ndp(a). We assume that all coefficients of System (1) - (6) are twice continuously differentiable
functions and have the partial derivatives of the second order by all their arguments. In the next sections we
analyse the existence and local asymptotic stability of all equilibria (stationary states) of System (1) - (6).

3. EQUILIBRIA OF SYSTEM (1) - (6)
It is easy to verify by direct substitution that trivial equilibrium (TE) (0, 0, 0, 0) of System (1) – (6) always

exists. The disease-free equilibrium (DFE) (S∗
0 (a), 0, 0, 0) is a solution of stationary system (1) - (6):

S∗
0 (a) = S∗

0 (0) exp

−
a∫

0

ds(s)ds

 > 0. (7)

Integrating both sides of (7) with respect to a from 0 to ad, we can obtain another expression of DFE

depending from the equilibrium value of susceptible cell subpopulation size N∗
S0

=
ad∫
0

S∗
0 (a)da:

S∗
0 (a) = N∗

S0

 ad∫
0

exp

−
a∫

0

ds(s)ds

 da

−1

exp

−
a∫

0

ds(s)ds

 . (8)

Plugging boundary condition (5) into (8), multiplying both sides of equation by βs(a) and integrating them
with respect to a from 0 to ad, after a little algebra, we arrive to the condition of existence of DFE:

RS =

am∫
ar

βs(a) exp

−
a∫

0

ds(s)ds

 da = 1. (9)

where RS is a basic reproduction number of susceptible cells subpopulation. Equation (9) is the balance
condition of stationary model which relates the susceptible cells death and fertility rates so that the number
of newborn susceptible cells is equal to the number of dead susceptible cells of reproductive age. If Equation
(9) holds and the initial value of the HPV population V0 = 0, the equilibrium density of susceptible cells is
equal to the initial value S∗

0 (a) = S0(a) and the size of the susceptible sub-population does not change with

time N∗
S0

= NS0
=

ad∫
0

S0(a)da. If V0 > 0 we cannot obtain the exact value of S∗
0 (a), but we can assume

that in this case the equilibrium S∗
0 (a) depends also on the initial values S0(a) and V0. This dynamical

regime of subpopulations will be studied below in numerical experiments. Endemic equilibrium of system
(S∗(a), I∗(a), L∗(a), V ∗), S∗(a) ≥ 0, I∗(a) ≥ 0, L∗(a) ≥ 0, V ∗ > 0 satisfies the stationary system:

dS∗(a)

da
= −(ds(a) + αV ∗)S∗(a), (10)

dI∗(a)

da
= −(dq(a) + δ(V ∗))I∗(a) + αV ∗S∗(a), (11)

dL∗(a)

∂a
= −dl(a)L∗(a) + δ(V ∗)I∗(a), (12)

0 = −dv(V ∗)V ∗ + nd∗p

ad∫
0

d̃p(a)I
∗(a)da, (13)
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S∗(0) =

am∫
ar

βs(a)S
∗(a)da, I∗(0) =

am∫
ar

βs(a)I
∗(a)da, L∗(0) =

ag∫
ac

βl(a)L
∗(a)da. (14)

where d∗p = max
a∈[0,ad]

(dp(a)), d̃p(a) = dp(a)/d
∗
p. Integrating (10) with respect to a, and using (14), we obtain

the integral equation:

S∗(a) = AS exp

−
a∫

0

(ds(s)ds+ αV ∗)ds

 , (15)

AS =

am∫
ar

βs(a)S
∗(a)da. (16)

Multiplying (15) by βs(a), integrating it with respect to a from ar to am, and using (16) we arrive to the
transcendental equation for positive constant V ∗:

W (V ∗) =

am∫
ar

βs(a) exp

−
a∫

0

(ds(s)+αV
∗)ds

 da = 1, (17)

where W (V ∗) is an auxiliary function. Since W (V ∗) > 0 and dW (V ∗)
dV ∗ < 0 for all V ∗ > 0, lim

V ∗→∞
W (V ∗) =

0, the unique positive root V ∗ > 0 of (17) exists if and only if the basic reproduction number of the population
of susceptible cells W (0) = RS > 1 (9). Integrating (11) with respect to a, and using (14), (15), (16), we
arrive to the integral equation

I∗(a) = AI exp

−
a∫

0

(dq(s) + δ(V ∗))ds

+ αV ∗
a∫

0

S∗(z) exp

−
a∫

z

(dq(s) + δ(V ∗))ds

 dz, (18)

AI =

am∫
ar

βs(a)I
∗(a)da. (19)

Multiplying (18) by βs(a), integrating it with respect to a from ar to am, and using (19), we arrive to the
linear equation for unknown constants AI and AS :

(1−RI)AI = αV ∗ASBS , (20)

BS =

am∫
ar

βs(a)

a∫
0

exp

−
z∫

0

(ds(s) + αV ∗)ds

 exp

−
a∫

z

(dq(s) + δ(V ∗))ds

 dzda. (21)

Since AI > 0 and As > 0, the right side of (20) is positive, we obtain another restriction for coefficients of
System (1-6):

RI =

am∫
ar

βs(a) exp

−
a∫

0

(dq(s) + δ(V ∗))ds

 da < 1. (22)

Equation (22) relates infected cell death and fertility rates with infected cell progression to lesion cells
so that the number of newborn infected cells is less than the number of infected cells moved to lesion
subpopulation and dead infected cells of reproductive age. From (20) we obtain constant AI :

AI = αV ∗(1−RI)
−1
BSAS . (23)
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Multiplying (18) by nd∗pd̃p(a), integrating it with respect to a from 0 to ad and plugging it into (12), we
arrive to the second linear equation for constants AI and AS :

dv(V
∗)V ∗ = nd∗pBIAI + αnd∗pV

∗CSAS , (24)

BI =

ad∫
0

d̃p(a) exp

−
a∫

0

(dq(s) + δ(V ∗))ds

 da, (25)

CS =

ad∫
0

d̃p(a)

a∫
0

exp

−
z∫

0

(ds(s) + αV ∗)ds

 exp

−
a∫

z

(dq(s) + δ(V ∗))ds

 dzda. (26)

Plugging (23) into (24) yields

As = dv(V
∗)
(
αnd∗p

)−1
(
(1−RI)

−1
BIBS + CS

)−1

. (27)

Integrating (12) with boundary condition (14), after a little algebra we obtain solution

L∗(a) = (1−RL)
−1
δ(V ∗)

ag∫
ac

βl(a) a∫
0

I∗(z) exp

−
a∫

z

dl(s)ds

 dz

 da exp

−
a∫

0

dl(s)ds


+ δ(V ∗)

a∫
0

I∗(z) exp

−
a∫

z

dl(s)ds

 dz, (28)

RL =

ag∫
ac

βl(a) exp

−
a∫

0

dl(s)ds

 da < 1. (29)

Equation (29) relates the death rates of lesion cells and the fertility rate so that the number of newborn lesion
cells is less than the number of dead lesion cells of reproductive age.

Thus, the basic reproduction numbers of susceptible, infected and lesion cells RS > 1 (Equation (9)),
RI < 1 (Equation (22)) and RL < 1 (Equation (29)) together define the condition of existence of EE which
is given in the following Theorem.

Theorem 3.1. System (1) - (6) posses
(i) unique disease-free equilibrium (DFE) (S∗

0 (a), 0, 0, 0) if RS = 1 (9); (ii) unique endemic equilibrium
(EE) (S∗(a), I∗(a), L∗(a), V ∗) if RS > 1 (9), RI < 1 (22) and RL < 1 (29). Endemic equilibrium is defined
by V ∗ (16), S∗(a) (14), (26), I∗(a) (17), (22), L∗(a) (28), (29).

4. LOCAL ASYMPTOTIC STABILITY OF DFE (S∗
0 (a), 0, 0, 0)

Linearizing System (1) - (6) at the DFE (S∗
0 (a), 0, 0, 0), we arrive to the system for perturbations ψ̄s(a, t) =

ψs(a) exp(λt) for S∗
0 (a), ψ̄i(a, t) = ψi(a) exp(λt) for I∗(a) = 0, ψ̄l(a, t) = ψl(a) exp(λt) for L∗(a) = 0

and ψ̄v(t) = ψv exp(λt) for V ∗ = 0:

dψs(a)

da
= −(λ+ ds(a))ψs(a)− αS∗

0 (a)ψv, (30)

dψi(a)

da
= −(λ+ dq(a))ψi(a) + αS∗

0 (a)ψv, (31)

∂ψl(a)

∂a
= −(λ+ dl(a))ψl(a), (32)
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0 = −(λ+ dv0)ψv + nd∗p

ad∫
0

d̃p(a)ψi(a)da, (33)

ψs(0) =

am∫
ar

βs(a)ψs(a)da, ψi(0) =

am∫
ar

βs(a)ψi(a)da, ψl(0) =

ag∫
ac

βl(a)ψl(a)da. (34)

Integrating (30) and taking into account that RS = 1 (9) we have

ψs(a) = DS exp

−
a∫

0

(λ+ ds(s))ds

− αψv

a∫
0

S∗
0 (z) exp

−
a∫

z

(λ+ ds(s))ds

 dz, (35)

DS = −αψv

1−
am∫
ar

βs(a) exp

−
a∫

0

(λ+ ds(s))ds

 da

−1

×
am∫
ar

βs(a)

a∫
0

S∗
0 (z) exp

−
a∫

z

(λ+ ds(s))ds

 dzda. (36)

Linear Equation (36) relates unknown constants DS and ψv . Since RS = 1, from (36) it follows that λ ̸= 0
because in this case we have a trivial solution of System (30) - (34). Integrating (31) yields:

ψi(a) = DI exp

−
a∫

0

(λ+ dq(s))ds

+ αψv

a∫
0

S∗
0 (z) exp

−
a∫

z

(λ+ dq(s))ds

 dz, (37)

DI =

am∫
ar

βs(a)ψi(a)da. (38)

Multiplying (37) by βs(a), integrating it with respect to a from 0 to ad after a little algebra we arrive to the
linear equation for unknown DI and ψv:

ψvw1(λ)−DIw2(λ) = 0, (39)

w1(λ) = α

am∫
ar

βs(a) a∫
0

S∗
0 (z) exp

−
a∫

z

(λ+ dq(s))ds

 dz

 da, (40)

w2(λ) = 1−
am∫
ar

βs(a) exp

−
a∫

0

(λ+ dq(s))ds

 da. (41)

We assume that the expression in the parentheses of the second term of Equation (39) can’t be equal to
zero with some λ > 0 because in this case we have a trivial solution of System (30) - (34). Multiplying (37)
by nd∗pd̃p(a), integrating it with respect to a from 0 to ad and plugging it into (30) we arrive to the another
linear equation for DI and ψv:

ψvw3(λ)−DIw4(λ) = 0, (42)

w3(λ) = λ+ dv0 − nαd∗p

ad∫
0

d̃p(a) a∫
0

S∗
0 (z) exp

−
a∫

z

(λ+ dq(s))ds

 dz

da, (43)
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w4(λ) = nd∗p

ad∫
0

d̃p(a) exp

−
a∫

0

(λ+ dq(s))ds

 da. (44)

Equating to zero determinant of System (39 - 40) we obtain the characteristic equation for λ:

w1(λ)w4(λ) = w2(λ)w3(λ). (45)

It is easy to verify that wn(λ), n = 1, ..., 4, are monotonic functions which possess the following properties
for all λ ≥ 0:

w1(λ) > 0, w4(λ) > 0, lim
λ→∞

w2(λ) = 1, lim
λ→∞

w3(λ) = ∞, (46)

dw1(λ)

dλ
< 0,

dw4(λ)

dλ
< 0,

dw2(λ)

dλ
> 0,

dw3(λ)

dλ
> 0. (47)

Since w2(λ) and w3(λ) are increasing functions and approach positive values at positive infinity, if
w2(0) ≤ 0 or/and w3(0) ≤ 0 they always have a unique λ-intercept at λ ≥ 0. In this case the right
side of characteristic equation (45) (w2(λ)w3(λ)) has at least one λ-intercept at λ ≥ 0, increases and
approaches positive infinity when λ→ ∞: lim

λ→∞
(w2(λ)w3(λ)) = ∞. Next up, the positive decreasing function

(w1(λ)w4(λ)) and the positive increasing from zero to positive infinity function (w2(λ)w3(λ)) always inter-
sect, characteristic equation (45) always have at least one positive root λ∗ > 0. If w2(0) > 0 and w3(0) > 0
simultaneously, function (w2(λ)w3(λ)) does not have λ-intercept at λ ≥ 0, monotonically increases and
approaches positive infinity when λ→ ∞. Thus, if w1(0)w4(0) ≥ w2(0)w3(0), positive decreasing function
(w1(λ)w4(λ)) and the positive increasing function (w2(λ)w3(λ)) always intersect, characteristic equation
(45) always have the unique non-negative root λ∗ ≥ 0. If w2(0) > 0 and w3(0) > 0 simultaneously and
w1(0)w4(0) < w2(0)w3(0), that is the basic reproduction number of infection [9], [10], [23]:

R0 =
αnd∗p
dv0

am∫
ar

βs(a) a∫
0

S∗
0 (z) exp

−
a∫

z

dq(s)ds

 dz

 da

ad∫
0

d̃p(a) exp

−
a∫

0

dq(s)ds

 da

×

1−
αnd∗p
dv0

ad∫
0

d̃p(a) a∫
0

S∗
0 (z) exp

−
a∫

z

dq(s)ds

 dz

da
−1

×

1−
am∫
ar

βs(a) exp

−
a∫

0

dq(s)ds

 da

−1

< 1, (48)

the positive decreasing function (w1(λ)w4(λ)) and the positive increasing function (w2(λ)w3(λ)) never
intersect, characteristic equation (45) does not have the non-negative root λ∗ ≥ 0.

Integrating Equation (32) we arrive to another characteristic equation for λ:
ag∫

ac

βl(a) exp

−
a∫

0

(λ+ dl(s))ds

 da = 1. (49)

It is easy to verify that non-negative real root λ ≥ 0 of Equation (49) does not exist if RL < 1 (29) while it
exists when RL ≥ 1. The above results lead to the following Theorem.

Theorem 4.1. Let conditions of existence of the DFE (S∗
0 (a), 0, 0, 0) given in Theorem 3.1 (case (i)) hold.

If w2(0) > 0 and w3(0) > 0 simultaneously (33), (41), the basic reproduction number of infection R0 < 1
(48) and RL < 1 (29), then DFE is locally asymptotically stable. Otherwise, if at least one of the following
conditions holds:

(i) w2(0) ≤ 0 (41);
(ii) w3(0) ≤ 0 (43);
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(iii) w2(0) > 0 and w3(0) > 0 simultaneously and basic reproduction number of infection R0 ≥ 1 (48);
(iv) RL ≥ 1 (29);
then DFE (S∗

0 (a), 0, 0, 0) is unstable.

Remark 1. Using equation (10) in (48) yields the another expression of basic reproduction number of
infection R0 depending from the parameter Rvc =

αN∗
S0

nd∗
p

dv0
:

R0 = Rvc

 ad∫
0

exp

−
a∫

0

ds(s)ds

 da

−1 am∫
ar

βs(a) a∫
0

exp

−
z∫

0

ds(s)ds


×exp

−
a∫

z

dq(s)ds

 dz

 da

ad∫
0

d̃p(a) exp

−
a∫

0

dq(s)ds

 da

1−Rvc

 ad∫
0

exp

−
a∫

0

ds(s)ds

 da

−1

×
ad∫
0

d̃p(a) a∫
0

exp

−
z∫

0

ds(s)ds

 exp

−
a∫

z

dq(s)ds

 dz

da
−1

×

1−
am∫
ar

βs(a) exp

−
a∫

0

dq(s)ds

 da

−1

. (50)

Parameter Rvc is the complex model parameter which depends from all vaccine efficacy-dependent coef-
ficients and parameters of the model. The higher the vaccine efficacy value the lower HPV virulence/virus
activity (α), the lower HPV replication (nd∗p) and the higher the HPV death rate (dv0) which means the
decrease in parameter Rvc. Derivative ∂R0

∂Rvc
> 0 for all Rvc > 0. If w2(0) > 0 and w3(0) > 0 simultaneously

and RL < 1 then the more vaccine efficacy the lower the values of Rvc and R0, and when R0 < 1 the DFE
is asymptotically stable. We conclude that organism is resistant to HPV infection, remains healthy and can
rid of the lesion tissue. In this case we can get the threshold value R̄vc of Rvc:

0 < Rvc < R̄vc =

 am∫
ar

βs(a) a∫
0

exp

−
z∫

0

ds(s)ds

 exp

−
a∫

z

dq(s)ds

 dz

 da

×
ad∫
0

d̃p(a) exp

−
a∫

0

dq(s)ds

 da

1−
am∫
ar

βs(a) exp

−
a∫

0

dq(s)ds

 da

−1

+

ad∫
0

d̃p(a) a∫
0

exp

−
z∫

0

ds(s)ds

 exp

−
a∫

z

dq(s)ds

 dz

da
−1 ad∫

0

exp

−
a∫

0

ds(s)ds

 da

 .

(51)

The criterion for local asymptotic stability of DFE, given by inequality (51), is based on a comparison of
rate of HPV infection, HPV replication and HPV mortality (parameter Rvc) with fertility and death (apoptosis)
rates of susceptible and infected cells (parameter R̄vc).

Remark 2. Since ∂R0

∂Rvc
> 0 for all Rvc > 0, basic reproduction number of infection R0 is increasing

function of N∗
S0

. The DFE value of susceptible cell subpopulation size plays the role of the carrying capacity
of susceptible cell environment for HPV subpopulation. If N∗

S0
is low enough, such that R0(N

∗
S0
) < 1,

carrying capacity of environment is insufficient for the development of HPV subpopulation. It means that
starting from initial value V0 > 0 HPV subpopulation eventually disappears and cell population evolves to
the asymptotically stable DFE. If N∗

S0
is large enough, such that R0(N

∗
S0
) ≥ 1 (case (iii) of Theorem 4.1),

carrying capacity of susceptible cell environment is sufficient for development of HPV subpopulation and
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DFE is unstable. From equation (51) we can get a threshold value of the carrying capacity of susceptible
cell environment N̂∗

S0
for which DFE is locally asymptotically stable:

N∗
S0

≤ N̂∗
S0

=
R̄vcdv0
αnd∗p

. (52)

Threshold value N̂∗
S0

depends both from the vaccine efficacy-dependent constants α, nd∗p and dv , and
from fertility and death (apoptosis) rates of susceptible and infected cell populations. Since the exact value
of N∗

S0
cannot be evaluated, we can assume that N∗

S0
depends from initial values S0(a) and V0, and study

the dynamical regimes of system defined by criteria (52) numerically.

5. LOCAL ASYMPTOTIC STABILITY OF EE (S∗(a), I∗(a), L∗(a), V ∗)

Linearizing System (1) – (6) at the endemic equilibrium (EE) (S∗(a), I∗(a), L∗(a), V ∗) we arrive to the
system for perturbations ψ̄s(a, t) = ψs(a) exp(λt) for S∗(a) ≥ 0, ψ̄i(a, t) = ψi(a) exp(λt) for I∗(a) ≥ 0,
ψ̄l(a, t) = ψl(a) exp(λt) for L∗(a) ≥ 0 and ψ̄v(t) = ψv exp(λt) for V ∗ > 0:

dψs(a)

da
= −(λ+ ds(a) + αV ∗)ψs(a)− αS∗(a)ψv, (53)

dψi(a)

da
= −(λ+ dq(a) + δ(V ∗))ψi(a) + (αS∗(a) + δ′(V ∗)I∗(a))ψv + αV ∗ψs(a), (54)

∂ψl(a)

∂a
= −(λ+ dl(a))ψl(a) + δ(V ∗)ψi(a) + δ′(V ∗)I∗(a)ψv, (55)

0 = −(λ+ d̃v(V
∗))ψv + nd∗p

ad∫
0

d̃p(a)ψi(a)da, (56)

ψs(0) =

am∫
ar

βs(a)ψs(a)da, ψi(0) =

am∫
ar

βs(a)ψi(a)da, ψl(0) =

ag∫
ac

βl(a)ψl(a)da. (57)

where d̃v(V ∗) = dv0dv1V
∗

2
√
1+dv1V ∗ + dv0

√
1 + dv1V ∗ > 0, δ′(V ∗) = 3δdV

∗2

(h3
d+V ∗3)2

> 0. Integrating Equation (53)
and using (9), (15) yields:

ψs(a) = ψv

DS exp

−
a∫

0

(λ+ ds(s) + αV ∗)ds

 − αAS

a∫
0

exp

−
z∫

0

(ds(s) + αV ∗)ds


× exp

−
a∫

z

(λ+ ds(s) + αV ∗)ds

 dz

 = ψv

DS exp

−
a∫

0

(λ+ ds(s) + αV ∗)ds


−αAS

λ

exp

−
a∫

0

(ds(s) + αV ∗)ds

− exp

−
a∫

0

(λ+ ds(s) + αV ∗)ds

 , (58)
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DS = (−α)

1−
am∫
ar

βs(a) exp

−
a∫

0

(λ+ ds(s) + αV ∗)ds

 da

−1 am∫
ar

βs(a)

a∫
0

S∗(z)

×exp

−
a∫

z

(λ+ ds(s) + αV ∗)ds

 dzda = (−α)

1−
am∫
ar

βs(a) exp

−
a∫

0

(λ+ ds(s) + αV ∗)ds

 da

−1

× AS

λ

 am∫
ar

βs(a)

exp

−
a∫

0

(ds(s) + αV ∗)ds

− exp

−
a∫

0

(λ+ ds(s) + αV ∗)ds

 da


= −αAS

λ
. (59)

Plugging (59) into Equation (58) yields (λ ̸= 0):

ψs(a) = ψv

(
−αAS

λ

)
exp

−
a∫

0

(ds(s) + αV ∗)ds

 . (60)

Linear Equation (60) is only correct for λ > 0. Integrating Equation (54) yields:

ψi(a) = DI exp

−
a∫

0

(λ+ dq(s) + δ(V ∗))ds

+ ψv
d̃v(V

∗)

nd∗p

(
(1−RI)

−1
BIBS + CS

)f(a, λ), (61)

f(a, λ) = (αAs)
−1

a∫
0

(αS∗(y) + δ′(V ∗)I∗(y) + αV ∗ψs(y))

× exp

−
a∫

y

(λ+ dq(s) + δ(V ∗))ds

 dy =

a∫
0

(1− αV ∗

λ

)
exp

−
y∫

0

(ds(s)ds+ αV ∗)ds


+
V ∗δ′(V ∗)BS

(1−RI)
exp

−
y∫

0

(dq(s)ds+ δ(V ∗))ds

+ V ∗δ′(V ∗)

y∫
0

exp

−
z∫

0

(ds(s)ds+ αV ∗)ds


× exp

−
y∫

z

(dq(s)ds+ δ(V ∗))ds

 dz

 exp

−
a∫

y

(λ+ dq(s) + δ(V ∗))ds

 dy, (62)

DI =

am∫
ar

βs(a)ψi(a)da, (63)
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Integrating Equation (55) yields:

ψl(a) = DL exp

−
a∫

0

(λ+ dl(s))ds

+ ψv

 d̃v(V
∗)δ(V ∗)

nd∗p

(
(1−RI)

−1
BIBS + CS

) a∫
0

f(y, λ)

× exp

−
a∫

y

(λ+ dl(s))ds

 dy + δ′(V ∗)

a∫
0

I∗(y) exp

−
a∫

y

(λ+ dl(s))ds

 dy


+DI

δ(V ∗)

a∫
0

exp

−
y∫

0

(λ+ dq(s) + δ(V ∗))ds

 exp

−
a∫

y

(λ+ dl(s))ds

 dy

 . (64)

Multiplying Equation (58) by βl(a) and integrating it with respect to a from ac to ag , after a little algebra
we arrive to the linear equation for DL which is defined through ψv and DI :

DL

1−
ag∫

ac

βl(a) exp

−
a∫

0

(λ+ dl(s))ds

 da

 = ψv

 d̃v(V
∗)δ(V ∗)

nd∗p

(
(1−RI)

−1
BIBS + CS

) ag∫
ac

βl(a)

×
a∫

0

f(y, λ) exp

−
a∫

y

(λ+ dl(s))ds

 dyda+ δ′(V ∗)

ag∫
ac

βl(a)

a∫
0

I∗(y) exp

−
a∫

y

(λ+ dl(s))ds

 dyda


+DI

δ(V ∗)

ag∫
ac

βl(a)

a∫
0

exp

−
y∫

0

(λ+ dq(s) + δ(V ∗))ds

 exp

−
a∫

y

(λ+ dl(s))ds

 dyda

 . (65)

Since RL < 1 (65) is correct for all λ > 0. Multiplying (61) by βs(a) and integrating it with respect to a
from 0 to ad, after a little algebra we arrive to the linear equation for unknown ψv and DI :

ψv

 d̃v(V
∗)

nd∗p

(
(1−RI)

−1
BIBS + CS

) am∫
ar

βs(a)f(a, λ)da


−DI

1−
am∫
ar

βs(a) exp

−
a∫

0

(λ+ dq(s) + δ(V ∗))ds

 da

 = 0. (66)

Since RI < 1 (64) is correct for all λ > 0. Multiplying (61) by nd∗pd̃p(a), integrating it with respect to a
from 0 to ad and plugging it into Equation (56) we arrive to another linear equation for DI and ψv:

ψv

λ+ dv −
d̃v(V

∗)(
(1−RI)

−1
BIBS + CS

) ad∫
0

d̃p(a)f(a, λ)da


−DI

nd∗p ad∫
0

d̃p(a) exp

−
a∫

0

(λ+ dq(s) + δ(V ∗))ds

 da

 = 0. (67)

Equating to zero determinant of System (64), (65) after a little algebra we obtain the characteristic equation
for λ (λ ̸= 0):
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1−
am∫
ar

βs(a) exp

−
a∫

0

(λ+ dq(s) + δ(V ∗))ds

 da

−1

×
am∫
ar

βs(a)f(a, λ)da

ad∫
0

d̃p(a) exp

−
a∫

0

(λ+ dq(s) + δ(V ∗))ds

 da

+

ad∫
0

d̃p(a)f(a, λ)da =

(
λ+ d̃v(V

∗)

d̃v(V ∗)

)(
(1−RI)

−1
BSBI + CS

)
. (68)

Characteristic Equation (68) is pretty complex for theoretical analysis of existence of positive roots and
will be studied numerically in the next section. We arrive to the theorem.

Theorem 5.1. Let conditions of existence of the EE (S∗(a), I∗(a), L∗(a), V ∗) given in Theorem 4.1 hold. If
characteristic equation (68) has at least one real positive root λ > 0 the EE is unstable, whereas it is locally
asymptotically stable every time if Equation (68) does not have real positive root.

Remark 3. In contrast to characteristic equation (45) (DFE) characteristic equation of EE (68) does not
depend from parameters of HPV replication n, d∗p, and depends from parameters of HPV activity (virulence)
α and HPV death rate dv . So, if vaccine does not sufficiently block HPV replication, DFE is unstable and
system moves to the EE which means the formation of lesion tissue. In this case the medicine or therapeutic
vaccine can reduce the HPV activity α, increase HPV death rate dv , decrease the basic reproduction number
of lesion subclass RL < 1 and stabilizes the endemic equilibrium. The further treatment may include the
surgical removal of lesion tissue.

6. SIMULATION

Three numerical experiments given in this section illustrate the theoretical results obtained in Theorems
3.1, 4.1, 5.1. We do not aim to cover all possible scenarios driven by the results obtained above, but we are
going to model the dynamical regimes which exhibit the correctness of obtained theoretical results and may
be interesting in practice. For simulation of the dynamical regimes of autonomous model (1) - (6), we use
the explicit formulae of method of characteristics published in works [1], [2].

Experiment I. Locally asymptotically stable DFE. We consider vaccinated and HPV-infected (initial value
V0 > 0) organism. Parameters of system satisfy conditions of Theorems 3.1 (case (i)) and 2: RS = 1,
w2(0) > 0 and w3(0) > 0 simultaneously, RL < 1, R0 < 1 (that is Rvc < R̄vc, NS0 ≤ N̂∗

S0
). In this case

HPV vaccine efficacy is pretty high and HPV environmental carrying capacity is pretty small. It means that
organism is resistant toward HPV infection and remains healthy. Results of numerical experiments are shown
on Figures 1 – 4.

The size of susceptible cell population which can be treated as epithelial tissue declines from initial value
to the stationary state N∗

S0
< NS0

(Figure 1a) because the basic reproduction number of susceptible cell
subpopulation RS = 1 (9) and initial value of HPV V0 > 0. The quantity of infected cells (Figure 2), lesion
cells (Figure 3) and size of HPV subpopulation (Figure 4) evolve eventually to zero and system approaches
the DFE. Numerical results of Experiment I confirm the results obtained in Theorems 3.1 and 4.1.

Experiment II. Unstable DFE. We consider vaccinated and HPV-infected (initial value V0 > 0) organism.
Parameters of system satisfy conditions of Theorems 3.1 (case (i)) and Theorem 4.1 (case (iii)): RS = 1,
w2(0) > 0 and w3(0) > 0 simultaneously, RL < 1, R0 > 1 (that is Rvc > R̄vc, NS0

>> N̂∗
S0

). In this case
HPV vaccine efficacy is pretty high (the same as considered above in Experiment I) but HPV environmental
carrying capacity is pretty large NS0 >> N̂∗

S0
. In fact, we use here the same set of coefficients of system as

in Experiment I (considered above) and just enlarge the initial value of susceptible cell subclass size NS0
>>

N̂∗
S0

. It means that we consider the larger epithelial tissue in comparison with previous experiment. Results
of numerical experiments are shown on Figures 5 – 8. HPV subpopulation gets the larger environmental
carrying capacity, virus replicates and destroys the epithelial tissue. Since the basic reproduction number of
susceptible cell subpopulation RS = 1 and the basic reproduction number of infection R0 > 1, susceptible
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Figure 1: Exp.I. Graph of NS(t). Figure 2: Exp.I. Graph of NI(t).

Figure 3: Exp.I. Graph of NL(t). Figure 4: Exp.I. Graph of V (t).

cells cannot proliferate in sufficient quantity in time to recover their subpopulation and the size of their
sub-population evolves eventually to zero with time (Figure 5). Since the death rate of infected cells is
dq(a) ≥ ds(a) and the basic reproduction number of lesion cell subpopulation RL < 1 the size of infected,
lesion cell subpopulations and, as a consequence, size of HPV subpopulation evolve eventually to zero with
time (Figures 6 - 8). In this case the DFE is unstable and system approaches the trivial equilibrium.

Figure 5: Exp.II. Graph of NS(t). Figure 6: Exp.II. Graph of NI(t).

Experiment III. Asymptotically stable EE. We consider vaccinated and HPV-infected (initial value V0 > 0)
organism. Parameters of system satisfy conditions of Theorems 3.1 (case (ii)) and Theorem 5.1: RS > 1,
RI < 1, RL < 1 and characteristic equation (68) does not have real positive root. Since conditions of
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Figure 7: Exp.II. Graph of NL(t). Figure 8: Exp.II. Graph of V (t).

existence of the DFE given in Theorem 3.1 (case (i)) do not hold the DFE does not exist, and if HPV
vaccine efficacy is not sufficiently high system approaches the EE. In this case HPV infection causes lesion
tissue - dysplasia (precancerous tissue) and cervical cancer. It means that organism is not resistant toward
HPV infection and gets sick. Results of numerical experiments are shown on Figures 9 – 12. The size of
susceptible cell population (epithelial tissue) declines from initial value to the stationary state N∗

S0
< NS0

(Figure 9) that is a result of balance between the susceptible cells proliferation (RS > 1) and their infection
by HPV. After a transient process the quantity of infected (Figure 10) and lesion (Figure 11) cells and size
of HPV subpopulation (Figure 12) evolve eventually to positive equilibrium, and system approaches the EE.
Numerical results of Experiment III confirm results obtained in Theorems 3.1 and 5.1.

Figure 9: Exp.III. Graph of NS(t). Figure 10: Exp.III. Graph of NI(t).

Figure 11: Exp.III. Graph of NL(t). Figure 12: Exp.III. Graph of V (t).
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7. CONCLUSION

In this paper we studied the epidemic model of age-structured sub-populations of susceptible, infectious,
lesion cells and unstructured population of human papilloma virus (HPV) (SILV epidemic model). The
model considers HPV transmission and epithelial tissue cells (susceptible, infected and lesion cells) population
dynamics of vaccinated organism. Stability analysis of autonomous system revealed the conditions of existence
of unique disease-free and unique endemic equilibria (DFE and EE, respectively) which do not contain
efficacy vaccine-dependent coefficients and parameters of model. In particular, condition of existence of
DFE depends on the basic reproduction number of susceptible cells RS which contains only fertility and
death (apoptosis) rates of susceptible cells. Condition of existence of EE depends on the basic reproduction
numbers of susceptible, infected and lesion cells RS , RI and RL, respectively, which depend on the fertility
and death (apoptosis) rates of susceptible, infected and lesion cells and the progression rate from infected to
lesion cells δ. The main indicator of DFE asymptotic stability – basic reproduction number of infection R0

is increasing function of Rvc =
αN∗

S0
nd∗

p

dv0
. Parameter Rvc contains the vaccine efficacy-dependent constants

and DFE value of susceptible population quantity N∗
S0

=
ad∫
0

S∗
0 (a)da. The higher the vaccine efficacy the

lower HPV virulence/virus activity (α), the lower HPV replication (nd∗p) and the higher the HPV death rate
(dv0) which means the decrease in parameters Rvc and R0. If coefficients of the system satisfy conditions
of Theorem 4.1 and R0 < 1 the DFE is asymptotically stable that is vaccine efficacy is sufficiently high,
vaccinated organism is resistant to HPV infection, and can rid of the lesion tissue.

On the other hand, the basic reproduction number of infection R0 (50) is increasing function of N∗
S0

.
Since we can’t evaluate the exact value of N∗

S0
, we can just assume that N∗

S0
is proportional to the initial

values NS0 =
ad∫
0

S0(a)da and V0, and study the asymptotic stability of DFE with different initial values

numerically. In Experiments I and II, two systems differed from each other only in their initial values NS0

(Figures 1 - 4 and 5 - 8) and have the same vaccine efficacy-dependent parameters. In the first case system
with smaller initial value NS0

and smaller Rvc (for which R0 < 1) satisfied conditions of asymptotic stability
of DFE of Theorem 4.1 and approached the asymptotically stable DFE (Figures 1 - 4). Quantity of infected,
lesion cells and HPV approached zero, vaccinated organism was resistant to HPV infection and got rid of
the lesion tissue and HPV. In the second case system with bigger initial value NS0

and bigger Rvc (for
which R0 > 1) did not satisfy conditions of asymptotic stability of DFE of Theorem 4.1 and approached
the trivial equilibrium (Figures 5 - 8). Quantity of all susceptible, infected, lesion cells and HPV approached
zero, vaccinated organism was not resistant to HPV infection and infection destroyed epithelial tissue layer.
We considered here a particular type of unstable DFE when system approached the trivial equilibrium with
small basic reproduction number of lesion cells population RL < 1, because we used the same coefficients
of system as in the first case (satisfying conditions of Theorem 4.1) except only the initial value. We can
conclude that asymptotic stability of DFE (i.e. resistance of vaccinated organism to HPV infection) depends
from the initial quantity of susceptible cells of epithelial tissue layer. The tissue of smaller size can be more
persistent to HPV infection than the tissue of larger size. Thus, HPV vaccine efficacy should always be
sufficiently high to reduce Rvc to a value where R0 < 1 for the maxi-mum possible epithelial tissue size.
Thus, the analysis of asymptotical stability of DFE of SILV epidemic model helps to better understand the
features of HPV vaccination and develop recommendations for practical medicine when studying the efficacy
of new vaccines in control groups in clinical trials [15], [19]. In particular, we can conclude that HPV vaccine
efficacy should always be sufficiently high to reduce Rvc to a value where R0 < 1 for the maximum possible
epithelial tissue size.

The local asymptotic stability of EE means that vaccinated organism is not resistant to HPV infection
which leads to viral disease and formation of lesion tissue. The indicator of EE asymptotic stability does not
depend from vaccine efficacy-dependent set of parameters and depends on the fertility and death (apoptosis)
rates of susceptible, infected and lesion cells, the progression rate from infected to lesion cells, HPV death
rate and its partial derivative. Asymptotically stable EE studied in the Experiment III, where system satisfied
conditions of asymptotic stability of EE of Theorem 5.1. Quantity of susceptible, infected, lesion cells and
HPV approached positive equilibrium (Figures 10 - 12), which means that vaccinated organism is not resistant
to HPV infection and gets sick, which leads to the formation of lesion tissue.

Overall, we can conclude that stability analysis of age-structured SILV epidemic model with vaccination
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provides the theoretical instrument for study the dynamics of susceptible, infected, lesion cells and HPV
populations that help us better understand the impact of vaccination on HPV infectious disease.
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