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Abstract

This study presents a mathematical model and optimal control strategy for managing the population of
the critically endangered Bali Starling (Leucopsar rothschildi) within a structured captive breeding and release
system. The model comprises a nonlinear system of differential equations that captures the interactions among
wild, captive, and juvenile (exposure) subpopulations. An optimal control problem is formulated to determine
cost-effective feeding and management strategies that sustain population viability while minimizing long-term
resource use. Analytical results confirm the existence, uniqueness, and local asymptotic stability of a non-trivial
equilibrium using Pontryagin’s Maximum Principle and Jacobian analysis. Numerical simulations show that
the optimal strategy results in a larger wild and juvenile population while significantly reducing the captive
population burden. Compared to the uncontrolled scenario, the controlled system achieves a more balanced and
sustainable population distribution. These findings highlight the practical value of integrating optimal control
theory into conservation programs to guide efficient and targeted management of endangered species under
resource constraints.
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1. INTRODUCTION

The Bali Starling (Leucopsar rothschildi) is a rare and endemic species of Java and Bali. Its last natural
habitat is in the West Bali National Park (WBNP) [3]. One of the main breeding centers is located next to
the WBNP office, called the Tegal Bunder Wildlife Sanctuary Unit (US) at Jembrana, Bali. This breeding
and release area is considered one of the original habitats of the Bali Starling. The success in increasing
the wild population of the Bali Starling is largely due to the synergistic management of ex-situ (outside the
habitat) and in-situ (inside the habitat) conservation efforts. Community enthusiasm for ex-situ breeding raises
awareness and fosters a love for the conservation of the Bali Starling. The Bali Starling, an endangered species,
faces numerous threats including habitat loss, capture for the pet trade, and forest fires ([31], [37], [30]).
Effective population management is crucial for its survival, with studies highlighting the need for proper
reserve management understanding of its habitat [37], and vulnerability to forest fires [30]. The species’
captive breeding and conservation program has been a key focus, with assessments of its extinction risk and
genetic management [12]. These studies collectively underscore the importance of a comprehensive approach
to population management, including habitat protection, captive breeding, and conservation programs. We
conducted this study to help determine the best carrying capacity for the Bali Starling breeding system so that
the population can be sustained in the long term. Previous research, such as by Noerdjito [28] and Pramatana
[31], shows that both habitat and population management play a big role in the success of these efforts.
Noerdjito highlights the importance of restoring natural habitats, while Pramatana focuses on how artificial
treatments can affect the birds’ movement and distribution. Widyaputra [39] examine the production process
management and appearance of Bali Starlings in captivity.

The Bali Starling (Leucopsar rothschildi) is critically endangered and endemic to Java and Bali. Its survival
is threatened by habitat loss and illegal poaching. Immediate and effective conservation strategies are crucial to
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prevent extinction. While traditional enforcement approaches have been ineffective, initiatives embracing local
context and involving diverse stakeholders have shown promise [19]. This research addresses the urgent need
to enhance and optimize breeding programs, ensuring a sustainable increase in the Bali Starling population
both in captivity and in the wild. By developing and applying an optimal control model, the research aims
to improve the effectiveness of current conservation efforts, making them more efficient and impactful.
Furthermore, Efficient allocation of limited resources is vital for the success of any conservation program.
The breeding centers and habituation processes for the Bali Starling require substantial financial, human, and
material resources [37]. This research is important as it aims to determine the optimal carrying capacity and
cost-effective management strategies for the breeding system at US Tegal Bunder, WBNP. By minimizing costs
and maximizing the population growth of the Bali Starling, the research ensures that conservation resources
are used sustainably, allowing for long-term success and the possibility of replicating these strategies for
other endangered species.

Mathematical models have played a critical role in understanding ecological and biological population
dynamics, including the management of endangered species [23]. Numerous studies have developed deter-
ministic and stochastic models to explore species survival, reproduction, and mortality in both natural and
controlled environments [5], [27]. Optimal control theory, especially Pontryagin’s Maximum Principle, has
been widely applied to manage harvesting strategies, epidemic control, and resource allocation in ecological
systems [24]. However, its application in the context of captive breeding programs for critically endangered
species, such as the Bali Starling (Leucopsar rothschildi), remains limited.

Recent work by [40] and [4] have demonstrated how cost-sensitive control interventions can balance
ecological goals and economic limitations, but most of these focus on general wildlife or prey—predator
dynamics. Few studies explicitly integrate the captive-exposure-release phases of population management
into a unified control framework. Moreover, the influence of stochastic environmental variations on captive
population control is rarely incorporated. This study advances the current state of the art by developing a
nonlinear dynamic system tailored to the Bali Starling breeding program and embedding a cost-optimized
control policy that accounts for practical conservation constraints. The inclusion of stochastic perturbations
further enhances the model’s applicability to real-world ecological uncertainties.

This article presents several original contributions to the mathematical modeling of conservation systems-
it introduces a novel compartmental model for the Bali Starling (Leucopsar rothschildi) that captures the key
biological processes across wild, captive, and juvenile exposure phases. Furthermore, realistic simulations
informed by field data from US Tegal Bunder, WBNP, are used to evaluate policy implications, offering a
practical tool for decision-makers. These contributions provide a new bridge between mathematical theory
and real-world conservation strategies for endangered species.

There are two main objectives of the paper, firstly is to present a dynamic mathematical model to describe
the population dynamics of the Bali Starling (Leucopsar rothschildi) in the breeding center at US Tegal
Bunder, WBNP. The model incorporated the growth, transfer, and habituation processes of the population,
and were used to design an optimal control strategy. This strategy is to ensure the effective management of
the population by balancing the breeding efforts, minimizing costs, and maintaining a sustainable population
level. Secondly is to determine the actual carrying capacity and optimal feeding strategies within the Bali
Starling breeding system at US Tegal Bunder, WBNP. By conducting simulations and stability analyses, the
study will identify the maximum manageable population size and the minimum cost required for maintaining
a healthy and stable population. This evaluation will provide valuable insights into the efficient allocation of
resources and the potential for scaling up the breeding efforts for the conservation of the Bali Starling.

A range of mathematical models have been developed for bird population and management. Sunday [3§]
presents a model for bird harvesting in intensive poultry systems, while Yaegashi [42] focus on population
management of fish-eating birds and vertebrate pest species, respectively. These models consider factors
such as cost, human interventions, and the impact of management actions on bird populations. Ramirez [25]
propose age-structured population growth models and simple population models, respectively, for specific
bird species. Optimal control theory has been applied to various aspects of bird population management.
Yaegashi [42] explore the use of stochastic and differential equations models, respectively, for sustainable
population management. Guiver [16] and Guiver [17] introduce a novel management methodology for re-
stocking declining populations, using integral control. These studies collectively highlight the potential of
optimal control theory in addressing the complex challenges of bird population management.

Previous studies on the Bali Starling have highlighted the critical status of the species and the need for
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conservation efforts [3]; [36]; [18]). These efforts have included the use of customary village regulations
(awig-awig) in Nusa Penida Islands [36] and the study of the bird’s behavior and food sources [35]. The
success of these conservation measures is evident in the increasing population of the Bali Starling in Nusa
Penida Islands [36].

The conservation of endangered species like the Bali Starling can benefit from optimal control strategies
and population modeling. Mathematical models have been developed to analyze population dynamics and
breeding programs [14]. These approaches can enhance population growth and achieve higher population
sizes compared to uncontrolled scenarios. Local community involvement and cultural practices have also
played crucial roles in conservation efforts [18]. These studies collectively demonstrate the potential benefits
of implementing control measures and considering diverse factors in the conservation of endangered species
like the Bali Starling.

2. MODEL FORMULATION
2.1. Dynamical System of Bali Starling Population

To model the dynamics of Bali Starling (Leucopsar rothschildi) population, we consider a compartmental
system consisting of three subpopulations these are M (t) is the total population in the wild, P(¢) is the
population in captivity, and E(t) ia the juvenile population in the habituation phase (exposure) as seen in
Figure 1.

The diagram visualizes the change in the wild population M (t) over time. Term r (1 — %) M represents
the natural reproduction of the Bali Starling in the wild. It follows a logistic growth model, where r is the
intrinsic growth rate, K is the environmental carrying capacity, the maximum number of individuals the
habitat can support. As M approaches K, the growth rate slows due to limited resources, simulating density-
dependent regulation. The natural mortality process —dM is the natural death rate or loss of individuals
from the wild population due to aging, disease, predation, or other ecological pressures. The parameter §
represents the mortality rate. The juvenile reintroduction process, +vE captures (positive term) the return
flow of individuals from the juvenile or exposure class F(t) back into the wild. Parameter v quantifies the
rate at which juveniles are successfully released or reintegrated into the wild population after a habituation
period.

The captive population dynamics P, the arrow from M — P, indicates transfers from the wild to captivity,
influenced by dP/dt = aM — (S + ) P, where « is the percentage of wild birds transferred into captivity, 8
is the maturation rate of chicks from captivity into juvenile class, and p is the natural death rate. The juvenile
(exposure) population (E(t)) is produced in captivity and move back to the wild dE/dt = P — (v + p)E,
where S P is the chicks maturing in captivity, y is the transition from juvenile to wild, and y is the juvenile

mortality.
The three primary biological processes are described by the following nonlinear differential equations

dM M

— = rM|1-— E—-o0M 1
L 0
dP

5 - M- (B+ )P, 2
dE

i = BP- (’Y + N)E- )

All parameters and variables in the dynamical system, including their biological meaning and units are
presented in Table 1. This system captures the dynamics of Bali Starling conservation by incorporating natural
growth, transfer between compartments, and the impact of control interventions on the captive population.

2.2. Optimal Control Problem

The objective of this study is to determine an optimal control ¢(¢) that minimizes the cost of managing the
Bali Starling population in captivity, while ensuring the sustainability of the population. The control variable
c(t) represents additional feeding and management efforts applied to the captive population P(t), as seen
in Equation (6). It is explicitly shown as an arrow in Figure 1, it influences the transition process (transfer
efficiency) and is penalized in the cost functional.
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Figure 1: Flow diagram of the Bali Starling population dynamics is the representation of Equation (5)-(7). Arrows
indicate transitions between compartments: M (wild), P (captive), and E (juvenile/exposure). The natural growth,

transfer, maturation, and mortality processes are represented alongside the influence of the control variable c(t)
(additional feeding).

r(1-M/k)

Table 1: Description of variables and parameters in the dynamical system.

Symbol  Description Unit
t Time variable month
M(t) Total population of Bali Starlings in the wild Individual
P(t) Population of Bali Starlings in captivity Individual
E(t) Juvenile population in the habituation/exposure phase Individual
r Intrinsic growth rate of the wild population month
K Carrying capacity of the environment (maximum sustainable population size) individuals
0 Mortality rate in the wild per month
vy Rate of juvenile release from exposure to the wild per month
a Rate of transfer from wild to captivity per month
B Rate of chick production in captivity per month
I Natural death rate (uniform across all compartments) per month
T Final time horizon for the control intervention month

The cost functional to be minimized is given by

J(c) :/0 (bP(t) + qc(t)) dt. @

where b is the weight associated with the maintenance cost of the captive population, ¢ is the weight
representing cost of implementing the control, ¢(¢) is the control function representing additional efforts
(in our case is the feeding). The control variable c¢(¢) is assumed to lie within the admissible set U = {c €
L>[0,T]: 0 < ¢(t) < 1}, reflecting practical constraints on the intensity of management intervention. Here,
¢ = 0 corresponds to a baseline level of feeding effort, while ¢ = 1 represents the maximum achievable
intervention within the operational limits of the breeding program.

The first term of Equation (4) penalizes the size of the captive population, while the second term penalizes
the cost of additional interventions. Now, the optimal control minimizes (.J(c)), subject to the state equations

dM M
dP
o = oM —(c+B+uP, ©6)
dE
o = (ethP-(r+uE. @)
and initial conditions
M(0) = My, P(0)=F, FE(0)=Eo. (8

The term —c(t)P(t) represents the controlled transition of individuals from the captive population to the
juvenile exposure class. Here, c(t) € [0, 1] models the intensity of additional management effort (e.g., feeding,
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training, habituation), which facilitates the progression of birds from captivity to exposure. A higher value
of ¢(t) increases the outflow rate from P, accelerating preparation for eventual release into the wild.

To solve this optimal control problem, we apply Pontryagin’s Maximum Principle to derive the associated
Hamiltonian system and characterize the optimal control policy. The Hamiltonian H is formulated by
combining the objective function and the state equations, weighted by the co-state variables (A1, Az, A3)

[21]:
H = bP+ch+)\1(rM(1A;)+7E5M>+)\2(QM(0+[3+/L)P)
A3 ((B+oP = (v +pE). ©)

The Pontryagin Maximum Principle provides necessary conditions for optimality in control problems. It
states that for an optimal control ¢*, there exists a set of costate variables A1, A2, A3 such that the Hamiltonian
H is minimized with respect to the control variables at each point in time [!]. The principle involves the
following steps: First consider the differential equations governing the system dynamics as in (5)-(7). Secondly,
we define the differential equations for the costate variables by taking the negative partial derivative of the
Hamiltonian with respect to each state variable. This gives

) 2r M

b (7«_ & —6)—)\204. (10)
A OH

dy  OH

To derive the optimal control law, we take the partial derivative of the Hamiltonian with respect to the control
variable ¢ and set it to zero

on =2qc— AP+ X3P =0. (13)
ac
Solving (13) for ¢, we get (g — 5P
" 2 — A3
c*(t) = O (14)
with bounds
c*(t) = min <1, max (0, O\Q;q/\?’)P)) . (15)

This is the optimal control law for the problem.

3. MODEL ANALYSIS
3.1. Equilibrium Points

Equilibrium points in population dynamics reveals a rich spectrum of behaviors in nonlinear systems. This
includes stable equilibrium, cyclic oscillations, and even chaos. Our discussion in section follows the concept
of equilibrium that lead to phenomena like extinction or invasion as discussed in [20]. Based on the dynamical
system , we identify the equilibrium points by solving

A AP dE

dt dt dt
The trivial equilibrium point is the state of extinction. This corresponds to the absence of population in all
compartments or (M*, P*, E*) = (0,0,0) This equilibrium represents complete extinction and often serves
as a reference point in stability analysis. The non-trivial equilibrium point assumes all populations are nonzero
at equilibrium, we denote (M*, P*, E*) # (0,0,0). Now Solving the steady-state equations, from Equation

3), we have
* B *
E —P".

0=38P"—(v+pE* = =
0t n) YA
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From Equation (2), we get

(c+ B+ )
«

O=aM*—(B+pP = M= P*.

By substituting £* and M™ into Equation (1), we get

*

M
E* — 6M*.
K)+7

0=rM* (1—

By inserting expressions, we get

« ak Y+ p «

This is a nonlinear algebraic equation in P*, which can be solved numerically (or analyzed for stability),
and then substituted back to find M* and E*.

3.2. Existence and Stability Conditions

The stability of population dynamics is a crucial area of research in ecology. Several studies have explored
various aspects of this topic, including structural stability in nonlinear systems [7]. In this paper, we follow
the stability criteria for equilibria of nonlinear matrix population models as discussed in [43].

Theorem 3.1. (Existence of non-trivial equilibrium) Consider the dynamical system (1)-(3) with parameters
r,K,0,c, 8,7, 10 > 0. Then, there exists a unique non-trivial equilibrium point (M*, P* E*) with all
components strictly positive, provided
ro et (16)
o alé]
Proof: To prove this theorem, we start by finding the equilibrium and setting the right-hand sides of the
system to zero. Firstly we solve Equation (2) of the algebraic system, giving

«

O=aM*—(B+pu)P* = P"= M*. an
B+ 1) B+
From Equation (3), we get
0=08P" —(y+pnE* = E*:LP*. (18)
vt p
Substituting (17) into (18), we get
o L Ve P - R Y ) (19)
Y+u Btp B+ w0+ n)
Next, by substituting (19) into Equation (1), we get
0=rM* (1— K)+7E*—5M*. (20)
Substituting (19) into Equation (20), we get
M* aff
0=rM* (1—>+7-M*—5M*. 201
K (B+m)(y+ 1)

By factoring out M™* # 0 on Equation (21), we get

« M yaf
=M - )+ — 5.
o= |- (1-5) * Gritren
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Dividing both sides by M™ (assuming M* # 0), we have

M~ yaf
1-— =0 — 23
( K) CENICED) *)
Now, we denote
_ yaB
(B+w)(y+mp)

Therefore, Equation (23) becomes

LM _s-A M*K(léA)K(rMA)

K r r T

Hence,

MK y, 24)
Now for M* > 0, Equation (24) implies > § — A. By replacing A, we get

o
" TG 2

Rearranging Equation (25), we get

T a(6+u)(v+u)’ 26)

o VB
then the right-hand side of (24) is positive, and thus M* > 0, and by substitution into (17) and (18), both
P* >0, E* >0 as well. ]

The existence of a non-trivial equilibrium guarantees that the system of differential equations admits
a steady-state solution where all subpopulations persist over time. In other words, it confirms the model
describes a biologically meaningful and sustainable outcome. It supports the validity of results on stability
and optimal control, and provides a clear mathematical foundation for long-term conservation planning.

Theorem 3.2 (Local asymptotic stability of the nontrivial equilibrium). Ler (M*, P*, E*) be the nontrivial
equilibrium point of system (5)-(7). Then, (M*, P*, E*) is locally asymptotically stable if the Jacobian matrix
evaluated at (M*, P*, E*) has all eigenvalues with negative real parts. A sufficient condition for this to hold
is

1) 0< M* < K, ensuring the logistic term satisfies 1 — % <1, and

2) The following inequality holds:

o> @+ i+ (540 (1-20)).

This guarantees that the effective reproductive rate exceeds the system’s dampening effects due to mortality
and density dependence, thus yielding local asymptotic stability.

Proof: Let the system be written as x = f(x), with x = [M, P, E]T. The Jacobian matrix is

ofi Ofi 9h
s\ 7 5
oM OP OF

Computing the partial derivatives, then the Jacobian matrix of the system is given by

7“(172%*)76 0 ¥
J(M*, P E") == o —(c+ B+ p) 0 : 27N
0 B+c)  —(y+mn)
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2M*
au:r(l— 7 )—5,

az = —(c+ B+ p),
—(v+n).

For simplicity, let us define

a33

The characteristic polynomial is given by
det(J —&I) = (§ — a11)(€ — a22)(€ — as3) + afy = 0. (28)
Expanding Equation (28) gives
€% — (a11 + a2 + as3)&” + (a11a22 + a11a3s + az2a33)€ — (ar1a2a33 + fy) = 0.

Let the polynomial be written as
€+ A1 + A + A3 =0,

where Ay = —(a11 + age + asz), Az = ar1a22 + a11a33 + azzazs, A3 = —(ariaaszs + afy).
Routh—-Hurwitz stability criteria state that the equilibrium is locally asymptotically stable if

Ay >0, A3>0, A1A; > As.
Since a9s, as3 < 0, their product is positive. If M* < K, then a1 is also negative. Hence
Ay >0 (sum of negatives with a minus sign), A3 > 0 <= afy > —aj1a22033.

This gives the sufficient condition

afy > (c+p+p) (v +n) <5+r<1—2]\;*>>.

Therefore, if M* < K and the above inequality is satisfied, then (M*, P*, E*) is locally asymptotically
stable. ]

3.3. Existence and Uniqueness of the Optimal Control

The existence and uniqueness of the optimal control for the Bali Starling population management problem
refers to the results from optimal control theory. The existence is often guaranteed under certain conditions
on the dynamics of the system, the cost function, and the control set. Several papers explore conditions
guaranteeing these properties. Pedregal & Tiago [29] present a general approach for proving existence without
relying on typical convexity conditions. Clarke [9] discusses existence theorems requiring convex velocity sets
and growth restrictions. Rosenblueth [33] investigates links between uniqueness of multipliers and second-
order conditions in optimal control. Song et al. [4]] provides an overview of optimal control methods,
including Pontryagin’s maximum principle and the Hamilton-Jacobi-Bellman equation. By Referring to the
papers, we state the existence of an optimal control, as follows.

Theorem 3.3. (Existence of Optimal Control). Consider the optimal control problem governed by the system
of differential equations (5)-(7) and the objective function given by Equation (4). Assume the following
conditions hold:
1) The admissible control set given by U = {c(t) | cmin < ¢(t) < Cmax, for all t € [0,T]}, where ciin
and cmax are finite bounds.
2) The function f(M, P, E, ¢) defining the system dynamics is continuous and satisfies the linear growth
condition:

If(M, P, E,c)| < CQA+ M| +||P| +|E]), V(M,P,E,c) € R® x U.
3) The function L(P,c) = bP + qc? is convex in c and satisfies the coercivity condition

L(P,c) > ¢(P)
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where 1 (P) is a non-negative function that grows unbounded as |P| — oc.
Then, there exists an optimal control function c*(t) € U such that:

J(c*) = Icl’élgll J(c).

Proof: The proof follows standard arguments in optimal control theory, relying on the Filippov-Cesari
Theorem [8] and Weierstrass’ Theorem [15]. The control set I/ is compact by assumption since it is a closed
and bounded subset of R. Since the system is defined over the finite time interval [0, T], we consider the set
of admissible controls:

U ={c:]0,T] = [Cmin, Cmax] measurable}.

By Filippov—Cesari’s Theorem [8], since f(M, P, E,¢) is continuous and satisfies a linear growth condition,
the system has a well-posed solution for any admissible control. Now, we define the set of all state trajectories:

X ={(M(t), P(t), E(t)) satisfying the system dynamics for some c(t) € U}.
Since the control set is bounded, the right-hand side of the system satisfies the linear growth condition:
If(M, P, E,c)|| < C(L+ [[M][ +[|P]| + [ E]),

which implies that the set of solutions is precompact in C([0,T],R?) (the space of continuous functions).
By the Arzela—Ascoli Theorem [2], this ensures compactness. Now, we show that the cost function is lower
semicontinuous. Consider the objective function (4), since L(P,c) = bP + qc? is convex in ¢ and continuous
in both P and ¢, so it is lower semicontinuous. By Fatou’s Lemma, the integral functional J(c) is also lower
semicontinuous in ¢. Thus, by Weierstrass’ Theorem [15], the minimum of J(¢) exists in the compact control
set U. So, the control set U is compact, the system is well-posed with continuous and bounded dynamics,
and the cost function is convex and lower semicontinuous, then there exists an optimal control ¢*(¢) that
minimizes the cost functional
" .
J(c*) = rcrélzglJ(C)'

Thus, the theorem is proved. [ |

Based on Theorem 3.3, we claim the following results: (a) the cost function is convex with respect to the
control variable, since the term ch is quadratic in the control variable ¢, which is convex. Therefore, the
cost function is convex with respect to c satisfying this condition. (b) The dynamics of the system (5)-(7) are
Lipschitz continuous in both the state and control variables [I 1]. Our dynamics are linear with respect to the
control variable ¢ and nonlinear with respect to the state variables M, P and E. However, these equations are
Lipschitz continuous in both the state and control variables, as the nonlinear terms are smooth functions of
the state variables. (c) The set of admissible controls is compact. Compactness of the admissible control set
is often a key condition for ensuring existence [26]. In our case, the control ¢ belongs to a finite-dimensional
control space, and if we restrict to be bounded, ¢ € [Cinin, Cmaz), SO the existence is satisfied.

Theorem 3.4. (The uniqueness of optimal control solution). Consider the optimal control problem governed
by the system of differential equations, (5)-(7) and the objective function given by Equation (4). Using result
in Theorem 3.3, the control c is selected to minimize the objective function (4).

Proof: We will prove uniqueness by showing that the optimal control satisfies the necessary conditions
of Pontryagin’s Maximum Principle and that these conditions yield a unique solution. Our proof will go
through 4 steps. Firstly, by Pontryagin’s Maximum Principle, we have the Hamiltonian as given by 9. The
necessary condition for optimality requires

%H =2qc— P+ X3P =0. (29)
c
Solving (29) for ¢, we obtain
- P
c*(t) = (/\27)‘3) (30)
2q

with bounds

e (t) = min (1, max (0, P2 5RTY ).

2q
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Since ¢ > 0, this provides an explicit expression for the control function. Secondly, the objective function
(4) contains the term gc?, which is strictly convex in ¢ because ¢ > 0. This ensures that any minimizer
of Jy is unique. Thirdly, since the costate equations (10)-(12) and the system dynamics (5)-(7) satisfy the
Lipschitz condition, the Picard-Lindel6f theorem (also known as the Cauchy-Lipschitz theorem), see [13] or
[32], guarantees that the system of costate equations has a unique solution for A;, Ao, A\3. Lastly, since the
Hamiltonian is strictly convex in c, its first derivative, (13), is strictly increasing in ¢, this implies that the
solution ¢*(t) = % is unique. Thus, the theorem is proved. [ |

In short, the uniqueness holds due to the facts that (a) the convexity of the cost function, which ensures
a unique minimizer. (b) The Lipschitz continuity of the system, ensuring uniqueness of the state and costate
solutions. (c) The strict convexity of the Hamiltonian, which guarantees a unique extremal control function.
(d) the objective function is strictly convex with respect to the control variable ¢ , and the system dynamics
are linear with respect to ¢, the Pontryagin Maximum Principle ensures that there is a unique solution to the
optimal control problem [34].

4. SIMULATION
4.1. Numerical Result

To solve the system of differential equations representing the population dynamics of the Bali Starling
and the optimal control strategy, we employ numerical methods due to the complexity of the equations. The
specific method used in this study is the Runge-Kutta method, implemented via the ‘solve_ivp‘ function from
the SciPy library in Python. We primarily use the RK45, a Runge-Kutta method of order 5(4) method due to its
balance between accuracy and computational efficiency for non-stiff systems. In this paper, we work with real
(unnormalized) values, keeping K = 800, and use unnormalized initial conditions M (0) = 520, P(0) =
92, E(0) = 40. This is preferred when interpreting real population sizes and making management decisions
in practice.

Moreover, in this research we used the following parameter values: r = 0.25 (Growth rate of the Bali
Starling population), 5 = 0.50 (Percentage of chicks in the exposed population), 4 = 0.20 (Natural death
rate), o = 0.17 (Rate of transfer of starlings from wild to captivity), v = 0.40 (Exposed population movement
coefficient), § = 0.1 (Mortality rate in the wild), K = 800 (Carrying capacity), b = 0.30 (Weight of feed
in captivity), ¢ = 0.25 (Weight of additional control feed for chicks). The initial parameter values used in
the model were derived from secondary data provided by the West Bali National Park (WBNP) office in the
form of internal population monitoring spreadsheets (WBNP, 2023, unpublished). These include observed
transition rates, mortality data, and carrying capacity limits specific to the Bali Starling breeding program at
US Tegal Bunder.

The next step is to work out on the numerical experiments. This is aimed to compare the population
dynamics of the Bali Starling under two scenarios: with control, ¢*(t) = (A2 — A3)P/2¢ and without control,
(c*(t) = 0). The degree of control depends on ¢, lower ¢ values lead to stronger intervention, resulting in
more regulated population growth, while higher ¢ values allow for less control, causing growth to approach
the uncontrolled case. Our goal is to observe the impact of control measures on population growth and to
evaluate the cost-effectiveness of the control strategy.

Then, we use the Phyton Library, ‘solve_ivp‘ function to integrate the system of ODEs over the specified

time span (0 to 30 months) and extract and plot the population trajectories for total population (M), population
in captivity (P), and juvenile population (£) for both scenarios. Calculating the objective function Jy =
fo (bP + qc?) dt gives the controlled scenario to evaluate the cost-effectiveness.
Figure 2 highlights the positive impact of applying an optimal control strategy to the Bali Starling population.
With control in place, the wild population grows to around 795 birds, compared to just 735 without control.
This shows that targeted interventions, such as carefully timed feeding, structured transitions, and improved
juvenile management, help more birds successfully return to the wild. Notably, the juvenile population also
increases from approximately 150 to nearly 190 under control, suggesting that the transition from captivity
to the wild becomes more effective when guided by a well-planned strategy

Interestingly, the captive population is much lower with control, that is about 80 birds versus 175 without
control. This is a good sign because one of the goals of the management plan is to reduce the number of
birds kept in captivity, which can be costly and resource-intensive. Instead of holding too many birds in
cages, the system focuses on preparing and releasing them efficiently. These results highlight how strategic
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Comparison of M(t), P(t), and E(t) With and Without Control
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Figure 2: Time evolution of the Bali Starling population under control using unnormalized initial conditions. The
system starts from M (0) = 520 birds, P(0) = 92 birds, and E(0) = 40 birds, with the carrying capacity set to
K =800 birds. When the optimal control (c(t)) is applied, the trajectories for M* ~ 795, P* = 80, and E* ~ 190.
When the system is uncontrolled ¢*(t) = 0, the trajectory for M™* ~ 735, P* ~ 175, and E* ~ 150.
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efforts not only help the wild population grow but also make the overall breeding and release program more
balanced and sustainable in the long run.

Optimal Control Profile c(t) Over Time
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0 5 10 15 20 25 30
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Figure 3: The control strategy changes over time for managing the Bali Starling population in a captive breeding
system. The vertical axis represents the intensity of the control action, noted as ¢(t), and the horizontal axis shows time
in months. The value of ¢(¢) ranges from O to 1, where 0 means no intervention or control is applied, 1 means full
intervention or maximum control effort is being used.

Figure 3 shows that at the beginning, the control value is flat at zero. This phase may represent a period
of observation or natural adjustment, where the system is allowed to evolve on its own without interference.
After that, there is a sudden spike in the control profile, where the intensity jumps from O to 1, and stays at
maximum intensity for the rest of the simulation. This switch suggests that the optimal strategy recommends
full intervention after a certain point.

4.2. Discussion

The simulation results show two very different paths for managing the Bali Starling population: one using a
carefully planned control strategy and the other with no intervention at all. In the scenario without control, the
wild population grows quickly, which might seem like a good thing at first. However, this rapid growth comes
with a big increase in the number of birds in captivity, which could be difficult and costly to manage. On
the other hand, the scenario with control (Figure 2) follows a more balanced path, where management efforts
(like feeding or conditioning) are applied strategically over time to guide the population more efficiently.

What’s especially interesting is that the controlled system actually ends up with a larger wild population
(about 795 birds) than the uncontrolled one (around 735 birds). At the same time, it keeps the number of
birds in captivity much lower, which is a win from both a practical and financial point of view. The juvenile
group, which is essential for future reintroduction to the wild, is also larger when control is applied. These
results show that the goal of control is not just to increase numbers but to create a stable, sustainable balance
across all parts of the population. The control effort starts off strong, then gradually decreases as the system
stabilizes, reducing long-term costs and effort.

By contrast, when no control is applied, the captive population grows quite large. While that might sound
like success, overcrowding can cause real problems, like disease, stress, and lower breeding rates, which have
been documented in many conservation programs [22]. Plus, managing a large group of birds in captivity
requires more space, food, and staff—resources that may not always be available.

The controlled model, Figure 3 is a kind of bang-bang control profile (no control, then full control). This
is common in optimal control theory when trying to balance ecological outcomes with limited resources [44].
It helps ensure the wild population thrives, keeps the captive group manageable, and prepares juveniles for
successful release. This mirrors real-life conservation efforts, where decisions are often shaped by limited
resources and the need for long-term success. So even though the uncontrolled model may produce bigger
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numbers at first (captive population, P(t)), the controlled strategy is more thoughtful and realistic, it helps
protect the species in a way that’s effective, affordable, and sustainable over time.

5. CONCLUSION

This study presents a dynamic population model and an optimal control strategy designed to support the
sustainable management of the Bali Starling population in a captive breeding setting. The model captures
key biological processes, such as natural growth, transfer to captivity, and juvenile habituation, through a
system of nonlinear differential equations. Using Pontryagin’s Maximum Principle, we derive an optimal
feeding strategy that not only promotes population health but also minimizes the operational costs of captive
management.

The research addresses two main objectives: (1) to develop a model that accurately represents the Bali
Starling breeding system at the USS Tegal Bunder facility in West Bali National Park, and (2) to determine
the optimal carrying capacity and feeding intervention required to achieve both ecological and financial
sustainability. Analytical results confirm the existence and stability of a meaningful non-trivial equilibrium,
while numerical simulations demonstrate that the controlled approach leads to better outcomes than an
unmanaged one. Specifically, the optimal strategy results in a higher wild population, a larger release-
ready juvenile population, and a smaller captive population, achieving a more balanced and cost-effective
distribution. These findings provide valuable insights for developing more targeted, data-informed conservation
policies and can serve as a framework for managing other endangered species facing similar habitat and
resource constraints.
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