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Abstract

Since the end of 2019 an outbreak of a new strain of coronavirus, called SARS–CoV–2, is reported from
China and later also from other parts of the world. Since 21 January 2020, World Health Organization (WHO)
reports daily data on confirmed cases and deaths from both China and other countries [1]. The Johns Hopkins
University [2] collects those data from various sources worldwide on a daily basis. For Germany, the Robert–
Koch–Institute (RKI) also issues daily reports on the current number of infections and infection related fatal
cases and also provides estimates of several disease-related parameters [3]. In this work we present an extended
SEIRD–model to describe these disease dynamics in Germany. The model takes into account the susceptible,
exposed, infected, recovered and deceased fractions of the population. Epidemiological parameters like the
transmission rate, lethality or the detection rate of infected individuals are estimated by fitting the model output
to available data. For the parameter estimation itself we compare two methods: an adjoint based approach and
a Monte–Carlo based Metropolis algorithm.

Keywords: COVID–19, Epidemiology, Disease dynamics, SEIRD–model, Parameter estimation, Adjoint equa-
tions, Metropolis algorithm.
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1. INTRODUCTION

In December 2019, first cases of a pneumonia of unknown cause were reported from Wuhan, China. In the
meantime, these cases were identified as infections with a novel strain of coronavirus, called SARS–CoV–2,
and the disease it causes was called Coronavirus Disease 2019 (COVID–19). At the beginning of January
2020, the virus spread over mainland China and reached other provinces. From 21 January onwards, WHO’s
daily situation reports [1] or Johns Hopkins University [2] (JHU) contain the latest figures on confirmed
cases and deaths for almost all countries. In this work we rely on the data published by the JHU due to their
rapid updates and easy accessibility.

The first COVID–19 case in Germany was reported on 27 January 2020 in Bavaria. Later cases were
imported by travelers from China, Iran or Italy as well as tourists returning from ski holidays in Austria and
Italy. By 1 March 2020, more than 100 cases were reported in Germany; since then, the number of cases began
to rise exponentially. The first deaths were reported on 9 March [3]. By 16 March, the federal government
introduced first measures to reduce the spread of the disease: schools, kindergartens and universities were
closed. On 22 March, these measures were tightened by implementing a national curfew and contact ban.
People are advised to stay at home, leaving only for work related activities, necessary shopping, medical
treatment or sports [4]. By mid of April, these mitigation measures showed some success with the number
of new infections declining from its peak of 6,294 on 28 March to less than 1,000 from 2 May onwards. On
6 May, a relaxation of the imposed restrictions to social and economic life was announced. Since then, the
federal states are progressing at an individual pace to ”normality”.

Asking the population to remain cautious and not to cause a second wave, local governments of cities or
districts are in charge to reinforce restrictions in case the number of new infections surpasses the limit of 50
per 100,000 inhabitants within 7 days as of 6 May [5], [6]. Already four days later five districts exceeded
this limit; with no measures reported to alleviate it.
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The pandemic continues to spread worldwide (as of June 2020) and the actual possibility of a second wave
demands for models to predict epidemic scenarios for the near and mid future. The quality of those models
heavily relies on the parameters used. In this study we present SEIRD–models which are some sort of quasi
standard in epidemiological simulations and estimate their parameters by using the available data from the
JHU. The estimation itself is based on a least–squares fit between the model output and the reported data.
Here, both the reported infections and the reported fatalities are taken into account.

2. MODEL

Following the classical SIR–models introduced by McKendrick [7] and its every–growing number of
variants (cf. [8] for an overview), we chose an SEIRD–model to describe the COVID–19 outbreak in
Germany. The entire population N is subdivided into five compartments: susceptibles S, exposed E, infected
I , recovered R, and deceased D. The virus is transmitted from infected persons to susceptible persons at a
time–dependent rate β(t) and after an incubation phase of duration κ−1 exposed individuals get infectious.
Loss of infectivity is gained after γ−1 days and with a probability µ, a patient dies from the disease. This
leads us to the following five–dimensional ODE system:

S′ = −β(t)
N

SI S(t0) = S0 = N − E0 − I0 −R0 −D0 > 0, (1a)

E′ =
β(t)

N
SI − κE E(t0) = E0 ≥ 0, (1b)

I ′ = κE − γI I(t0) = I0 > 0, (1c)
R′ = (1− µ) γI R(t0) = R0 ≥ 0, (1d)
D′ = µγI D(t0) = D0 ≥ 0. (1e)

The starting point t0 is chosen as 1 March as on that date number of reported cases exceeded 100 cases for
the first time, see Figure 1.

It is immediate to see that the model (1) has non–negative solutions, provided the initial values are all
non–negative. Due to the absence of demographic terms, there is just the trivial disease–free equilibrium
S = N and E = I = R = D = 0. Since the intention of our model is to provide short– and mid–term
simulations, we are not interested in its long–term behavior and hence possible endemic equilibria are of no
concern.

As a variant of the above basic model, we also consider a delayed differential equation (DDE) version
where we introduce a time lag τ between the infected and the deceased state so that the fraction of people
who recover or die from the disease is not attained from the amount of infectives on the same day, but from
the infectives data τ days earlier. The previous ODE model can thus be seen as a special case of the DDE
model with τ = 0.

S′ = −β(t)
N

SI S(t0) = S0 > 0, (2a)

E′ =
β(t)

N
SI − κE E(t0) = E0 ≥ 0, (2b)

I ′ = κE − γ
(
(1− µ)I + µI(t− τ)

)
I(t) = ϕ(t) > 0, (2c)

R′ = (1− µ) γI R(t0) = R0 ≥ 0, (2d)
D′ = µγI(t− τ) D(t0) = D0 ≥ 0. (2e)

Here, ϕ : [t0 − τ, t0]→ R+ denotes the initial history of the infected required for the well–posedness of the
above delay differential equation. Since the initial value I0 of the infected at the starting date 1 March is
later on subject of the estimation procedure, we assume the initial history to show some exponential behavior

ϕ(t) := I0 exp

(
− ln(0.1)

τ
(t− t0)

)
for t0 − τ ≤ t ≤ t0.
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The transmission rate β(t) can be related to the Basic Reproduction Number R0 via

R0(t) =
β(t)

γ
.

At the onset of the epidemic, the Basic Reproduction NumberR0 in Germany was estimated to beR0 ' 2.4—
4.1, see [9]. To take the different levels of restriction imposed on the social and economic life, we assume
β(t) as a step function in time:

β(t) :=


β0, t < 16 March
β1, 16 March ≤ t < 22 March
β2, 22 March ≤ t < 20 April
β3, 20 April ≤ t

(3)

Before the first restrictions were imposed on 16 March, the disease was allowed to spread almost uncontrolled.
After kindergarden, school and university closings on 16 March, the measures were tightened on 22 March
by introducing a contact ban and closing of a large number of shops and businesses. On 20 April, first
relaxations were announced and public life began to re–increase, but along with compulsory wearing of
masks which has been introduced in late April. For each of these stages we assume an specific contact rate
between individuals and hence different transmission rates βi. The values for the fixed model parameters are
given in Table 1.

Table 1: Used parameter values.

Parameter Value Unit Reference
N 83,019,213 – [10]
κ 1/3 d−1 [11]
γ 1/10 d−1 [11]
τ > 7 d [11]
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Figure 1: Graphs of cumulative infections in Germany according to Johns Hopkins University from 1 March to 3 May;
on the left side with normal scaling and on the right side using semi–logarithmic scaling.
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Figure 2: Graphs of cumulative death cases in Germany according to Johns Hopkins University from 1 March to 3 May.
The scaling is chosen as in Figure 1.

3. PARAMETER ESTIMATION

The unknown model parameter set u is estimated from a least squares fit of the model output to the given
data. Let Y and Z denote the accumulated registered COVID–19 cases or the accumulated COVID–19 deaths
in Germany as reported by Johns Hopkins University, see [2]. The reported cases Y consist of the currently
infected cases, the recovered and the deceased cases. Since by the very nature of the matter, not all infections
are detected, we introduce a detection rate δ. For the currently infected and the recovered ones, we assume
that only this proportion δ is tested and detected and hence appears in the statistics; however, we assume no
undetected deceased cases. Hence we compare the data Y to δ · (I +R) +D from the model output. To put
special emphasis on the fatalities, we add a term which just compared the reported and the simulated deaths
to the cost functional. As a third contribution we add a regularization term proportional to the norm of the
estimated parameters to attain a convex function and prevent unrealistic outliers. With this in mind we arrive
at the following cost functional:

J(u) :=
‖δ(I +R) +D − Y ‖2L2

‖Y ‖2L2

+
‖D − Z‖2L2

‖Z‖2L2

+ ω ‖u‖22 (4)

where ω > 0 denotes some small weight allowing us to adjust the contribution between the normalized least
squares terms and the regularization term and ‖f(t)‖2L2 =

∫ T
t0
f(t)2dt denotes the square of the L2–norm of

a function f resp. ‖u‖22 =
∑
i u

2
i for the square of the Euclidean norm of a vector u.

The parameters to be estimated in model (1) are the transmission rate, the detection rate, lethality and the
numbers of exposed on 1 March 2020, i.e.

u = (β0, β1, β2, β3, δ, µ,E0) ∈ R7

which is the same parameter set as in model (2) with added but fixed time lag τ . For the model with free
and to-be-optimized time lag τ , we have the parameter set

u = (β0, β1, β2, β3, δ, µ, τ, E0, I0) ∈ R9.

Here, we also estimate the initial number of infected on 1 March to allow for more flexibility of the model.
The optimal parameters u∗ are determined by solving the following minimization problem:

min
u
J(u) subject to ODE (1) resp. (2), (5a)

u∗ = argminu J(u). (5b)

Table 2 shows the planned simulations including constraints for the optimized parameters in u.
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Table 2: Simulations with the respective constraints of the fitted parameters. In Simulation 1 no time lag τ is included
in the model. The starting values for I0 and R0 are only updated in the first two simulations by division with δ in each
iteration. In Simulation 2 the time lag τ = 11.5 is fixed as a mean value within the assumed interval. The parameter τ
is also fitted in Simulation 3, just like I0. All other unknown parameters in this table are adjusted in each simulation.

Sim. Model βi δ µ τ E0 I0 R0

1 1 > 0.05 0.05− 0.5 ≤ 0.05 0 > 0 114/δ 16/δ
2 2 > 0.05 0.05− 0.5 ≤ 0.05 11.5 > 0 114/δ 16/δ
3 2 > 0.05 0.05− 0.5 ≤ 0.05 > 7 > 0 > 0 16/δ

Previous investigations in [12] already give us orders of magnitude for the initial values of the optimization
for βi and δ. For the lethality rate µ we assume the upper limit

µ ≤ Z(T )

R(T )/δ + Z(T )

whereby Z(T ) denotes for the death cases and R(T ) denotes the registered recovered individuals at end time
T [13]. This upper limit becomes smaller the fewer COVID cases are registered, since δ becomes smaller.
For our data set we find

µ ≤ 6866

130600 + 6866
≈ 0.05 (6)

based on the registered cases, i.e. this upper limit would match, if δ = 1. Building on the assumption that
less than 50% of cases are detected, we also assume a starting value for the lethality rate that is less than
half of the calculated upper limit of 5%. The order of magnitude of the time interval between the onset of
infectiousness and death is derived from the investigations in [11]. From the timelines available there we
derive τ ∈ (7, 17). In individual cases this period can be considerably longer, so that τ only represents an
average value in the model. The starting values for I0 and R0 can be taken from the statistics. Depending
on the value of the detection rate, the actual number is calculated by dividing the measured values for the
infected and recovered cases by δ. Regarding an estimate of the exposed individuals E0 at time t0, we
use a derivation using the Basic Reproduction Number R0, which indicates how many new infections an
infected individual causes on average during its illness in an otherwise susceptible population. In our model,
the infected persons I0 are at different time stages during their infectiousness. As a mean value we assume
the middle of this time interval. Thus, up to this point in time they could infect about I0R0/2 persons on
average. Depending on the assumed Basic Reproduction Number, this results in different starting values for
E0. The model adaptations are carried out in the simulations with the values R0 ∈ {3, 4, 5} and it is checked
if significant effects on the other parameters can be found. The selected start values can be seen in Table 3.

Table 3: Orders of magnitude of the initial values for adapting the model to the available data.

param. β0 β1 β2, β3 δ µ τ E0 I0 R0

init. val. 0.6 0.4 0.1 0.25 0.02 11.5 I0R0/2 114/δ 16/δ

3.1. Adjoint based approach

To solve the minimization problem using adjoint functions we introduce the Lagrangian function

L(u, x, z) = J(u) +

∫ T

t0

z(t) ·
(
g(t, x, u)− dx

dt

)
dt

whereby z = (zS , zE , zI , zR, zD) denotes the adjoint function regarding the state variable x = (S,E, I,R,D)
and g(t, x, u) denotes the right side of the ODE resp. DDE system. It should be noted that within the integral,
a scalar product of vectors is calculated. A critical point (u∗, x∗, z∗) needs to fulfill the necessary optimality
condition

∇L (u∗, x∗, z∗) = 0.
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For precise details of the following procedure, please refer to [14]. Thus we find the gradient ∇uL regarding
the parameters in u

∂L
∂βi

= 2ωβi +
1

N

∫ T

t0

∂β(t)

∂βi
SI (zE − zS) dt, i = 0, 1, 2, 3 (7a)

∂L
∂δ

= 2ωδ + 2

∫ T

t0

(I +R)
(
δ(I +R) +D − Y

)
dt, (7b)

∂L
∂µ

= 2ωµ+ γ

∫ T

t0

I (zD − zI) dt, (7c)

∂L
∂E0

= 2ωE0 + zE(t0)− zS(t0), (7d)

∂L
∂I0

= 2ωI0 + zI(t0)− zS(t0), (7e)

resp. in model (2) we obtain, due to the time delay τ ,

∂L
∂µ

= 2ωµ+ γ

∫ T

t0

I (zI − zR) + I (t− τ) (zD − zI) dt, (7f)

∂L
∂τ

= 2ωτ + γµ

∫ T

t0

(zI − zD)
dI

dt

∣∣∣∣
t=t−τ

dt. (7g)

The adjoint system is given by the equations

dzS
dt

=
β(t)

N
I (zS − zE) , (8a)

dzE
dt

= κ (zE − zI) , (8b)

dzI
dt

=
β(t)

N
S (zS − zE) + γ (zI − zR + µ (zR − zD))−

2δ (δ(I +R) +D − Y )

‖Y ‖2L2

, (8c)

dzR
dt

= − 2δ

‖Y ‖2L2

(
δ(I +R) +D − Y

)
, (8d)

dzD
dt

= − 2

‖Y ‖2L2

(
δ(I +R) +D − Y

)
− 2

‖Z‖2L2

(D − Z), (8e)

with the terminal condition (zS , zE , zI , zR, zD)(T ) = 0. By adding the time delay in model (2) we receive

dzI
dt

=
β(t)

N
S (zS − zE) + (1− µ) γ (zI − zR)−

2δ

‖Y ‖2L2

(
δ(I +R) +D − Y

)
+ µγ

(
zI(t+ τ)− zD(t+ τ)

)
· χ[t0,T−τ ](t). (8f)

Here χ denotes the characteristic function

χ[t0,T−τ ](t) =

{
1, t ∈ [t0, T − τ ]
0, else

.
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Algorithm 1 Pseudocode for the approach including adjoint functions.

1: u, Y, Z ← load initial values for u and data
2: x, z ← solve ODE resp. DDE for state variable and adjoint function
3: J, ∇J ← compute objective function and gradient regarding u
4: s← compute search direction
5: repeat
6: Jold ← J
7: ϑ← argminϑ>0 ψ(ϑ) with ψ(ϑ) := J (u+ ϑs)
8: u← u+ ϑs
9: x, z, J, ∇J, s← update depending on u

10: until ‖J − Jold‖2 < TOL
11: u∗, x∗, z∗, J∗ ← u, x, z, J

Algorithm 1 represents the basic framework of the iterative optimization via adjoint functions. To find a
preferably global minimum, n multivariate normally distributed start values for u can be created before step
1. These are then tested one after the other with the presented procedure and the best result is chosen. The
mean values of this distribution are then the values in Table 3, and the variances can be selected according to
the restrictions in Table 2. In step 2 the ODE or DDE are solved using Runge-Kutta methods. Since the state
variable is solved forward and the adjoint function backward regarding the time scale due to the initial and
end values, this is also called the forward-backward sweep method [14]. In MATLAB the ode45 and dde23
solvers are suitable for this purpose. The search direction s in steps 4 and 9 is selected as Quasi-Newton
method (BFGS). Useful alternative search directions are (conjugated) gradient methods [15]. The line search
procedure in step 7 cannot be solved analytically in our case. A common method for an appropriate step
size ϑ∗ would be a backtracking procedure considering the Armijo rule [16]. In the present simulation the
procedure in Algorithm 2 is applied. It is based on a Taylor series of ψ(ϑ) := J (u+ ϑs) developed around
ϑ0

ψ(ϑ0 + h) = ψ(ϑ0) + ψ′(ϑ0)h+
1

2
ψ′′(ϑ0)h

2 + ...

where ψ′, ψ′′, ... stand for the respective derivatives of ψ regarding ϑ. Based on this, we assume that ψ for
ϑ0 = 0 and sufficiently small values for h = ϑ can be approximated by a parabola with

ψ(ϑ) ' aϑ2 + bϑ+ c (9)
ψ′(ϑ) ' 2aϑ+ b.

Using the information ψ(0) = J(u) and ψ′(0) = ∇J(u) · s associated with a calculated value ψ(ϑ1) =
J (u+ ϑ1s) for small and fixed ϑ1 allows to derive the parameters

c = ψ(0),

b = ψ′(0),

a =
(
ψ(ϑ1)− ψ′(0)ϑ1 − ψ(0)

)
/ϑ21,

and, by using the necessary condition ψ′ (ϑ∗) = 0, find the optimum of the parabola in (9)

ϑ∗ = −b/(2a) = −0.5ψ′(0)ϑ21/
(
ψ(ϑ1)− ψ′(0)ϑ1 − ψ(0)

)
.
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Figure 3: Graphical example to approximate the optimal value for ϑ∗ with parabola linesearch. The left figure shows that
the Armijo rule ψ(ϑ) ≤ ψ(0) + αϑψ′(0) is not fulfilled for ϑ1 and the new step size is determined using the parabola
minimum ϑ∗. To make sure that the possible minimum of the parabola is below that line, one chooses a small value for
α ∈ (0, 0.5), e.g. α = 1e−4. In the right figure the Armijo rule is already fulfilled with the fixed increment ϑ1 which
can be adopted. There can also be a parabola maximum, so that ϑ∗ takes a negative value. However, this is circumvented
because in this case, there is no optimization of the step size.

Algorithm 2 Pseudocode for line search in step 7 of Algorithm 1.

1: u, J(u), ∇J(u), s← input
2: ϑ← 1
3: ψ(0)← J(u)
4: x← compute state variable depending on u+ ϑs
5: ψ (ϑ)← J (u+ ϑs)
6: ψ′(0)← ∇J(u) · s
7: α← value in (0, 0.5)
8: if ψ (ϑ) > ψ(0) + αϑψ′(0) then
9: repeat

10: ϑ← −0.5ψ′(0)ϑ2/
(
ψ (ϑ)− ψ′(0)ϑ− ψ(0)

)
11: x← update depending on u+ ϑs
12: ψ (ϑ)← J (u+ ϑs)
13: until ψ (ϑ) ≤ ψ(0) + αϑψ′(0) (Armijo rule)
14: end if
15: ϑ∗ = ϑ

The effect of the weight ω can be seen on the diagonal of the Hessian matrix in model (1)

∇2
uL = 2 diag

(
ω, ω, ω, ω, ω +

∫ T

t0

(I +R)2 dt, ω, ω, ω

)

whereby all other entries in ∇2
uL are 0. The value of ω directly influences the definiteness of the Hessian

matrix and thus the convexity of the objective function. For this reason, different values for ω are tested in
the simulations.
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3.2. Metropolis algorithm
According to the procedure described in [17], a Metropolis algorithm (cf. [18], [19], [20]) for model

(2) can be set up using the initial history and initial values for the to-be-estimated parameter set u. Using
the parameter set u0 as of Table 3 as starting conditions, we assign random draws unew from a normally
distributed (and thus symmetric) proposal function q, i.e. unew ∼ q(unew|ui−1), in every iteration i.

Using the previously defined J(u) as the target distribution, we calculate the approximative distribution
by

π(u) = c · exp
(
−J(u)

2

2σ2

)
, (10)

whereby c is an arbitrary value in R. For the acceptance probability, it follows

α(unew|ui−1) = min

{
1,
π(unew) · q(ui−1|ui)
π(ui) · q(ui|ui−1))

}
= min

{
1,
π(unew)

π(ui)

}
. (11)

In Eq.(11) we can see that the value of c is redundant as it cancels out in the division.
If the sample is accepted with the probability α, we set ui = unew; with the probability 1−α, the sample

is declined, meaning u = ui−1 [21], [17].

Algorithm 3 Pseudocode for the Metropolis algorithm.

1: u, Y, Z ← load initial values for u and data
2: x, z ← solve ODE resp. DDE for state variable
3: J ← compute objective function regarding u
4: σ ← standard distribution of the solution, i.e. I +R+D over time
5: s← set step size (standard deviation) for the algorithm, e.g. s := u/100
6: repeat
7: uold ← u from previous draw
8: ûnew ← u ∼ N (uold, s)
9: x, z, J(ûnew)← update depending on u

10: α← min
{
1, exp

(
J(uold)

2 − J(unew)2/2σ2
)}

11: unew ← ûnew with probability α and unew := u with probability 1− α
12: until maximum value of draws is reached
13: u∗, x∗, J∗ ← means of all u, x, J

Algorithm 3 represents the basic framework of the iterative optimization via the Metropolis algorithm.
In step 1, the mean values of this distribution as of Table 3 are loaded as well as the variances according
to the restrictions in Table 2. In step 2 the ODE or DDE are again solved using Runge–Kutta methods via
MATLAB’s ode45 and dde23 solvers. The step size s in step 5 is selected as a fraction of the initial guess for
the parameter set u so that the parameters are allowed move with an individual ”speed” through the search
space. In steps 6 to 12, the process is repeated for all draws, the number of draws in our case is set to 2e+4.
Alternatively, you can think about termination conditions, but we avoided this due to the random nature of
the system. Firstly, the update of the parameter set u is done by taking a random value out of the normal
distribution with mean u and standard deviation s. After solving the system in step 9, the cost functional
J(u) is compared to the previous cost functional with the function α in step 10 and the new parameter set
is accepted or rejected according to 11 in step 11. The estimation parameter set can then be computed out
of the mean value of the draws in step 13. Alternatively, in case of non–convergence, you can compute the
best fitting u of the set and use this as initial value as of step 1 again, to attain better results.

Choosing the weights ω for the target function J(u) was done under two purposes. The first purpose was
to create a convex target function so that the algorithm does not converge to local minima (see also the
previous subsection for this). The Metropolis algorithm allows steps into parameter sets having a ”worse”
target distribution with a certain probability, but it is still possible that it runs into local but not global minima
after a final amount of steps which justifies the usage of the term ω ||u||2. The other purpose is to not have a
too large ω so that the model-related terms still have a major impact on the outcome of J(u). For these two
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regards, we found that a range for ω between ω := 10−9 and ω := 10−7 is decent, but we will also present
the results if we neglect the term with ω, i.e. ω = 0. For values ω ∈ (0, 10−9) no significant changes in the
outcomes to ω = 0 were detected, while for ω > 10−7 the model–related terms are negligible and the results
are quite unrealistic.

4. NUMERICAL RESULTS AND COMPARISON OF THE ALGORITHMS

Table 4: Numerical Results.

Algorithm Adjoint Metropolis
Simulation 1 2 3 1 2 3

β0 0.60 0.64 0.62 0.55 0.70 0.64
β1 0.50 0.48 0.51 0.49 0.40 0.64
β2 0.101 0.082 0.092 0.113 0.085 0.086
β3 0.099 0.050 0.058 0.054 0.055 0.055
δ 0.31 0.27 0.18 0.29 0.20 0.19
µ 0.015 0.018 0.011 0.013 0.013 0.011
τ 0 11.5 9.0 0 11.5 7.3
E0 + I0 + R0 831 1,105 1,512 1,255 854 1,090
(J(u)− ω ‖u‖22) · 10

3 23.0 9.1 6.1 18.1 8.2 3.2
Iterations 23 22 31 20000 20000 20000

Table 4 shows the respectively best numerical results of the two algorithms. The values for the transmission
parameters βi are of similar magnitudes in almost all simulations and algorithms. In isolated cases there are
more significant deviations, such as β1 = 0.64 in Simulation 3 of the Metropolis approach or the value
β3 = 0.099 in Simulation 1 of the adjoint approach. The values show that the dynamics of the model at
the beginning of the measurement period with β0 ' 0.6 suggest a much higher R0 than assumed. The first
measures lead to a small to moderate reduction of the transmission rate to β1 ' 0.5, whereas the following
lockdown causes a significant decrease of the transmission rate to β2 ' 0.1. This also fits with the estimates
of the RKI that the Basic Reproduction Number is said to have dropped to a value of around R0 ' 1 due to
the extensive restrictions [3]. In the last phase of the data adaptation the transfer rate drops to β3 ' 0.06. Here,
due to the loosening of the measurements, one would expect an increase of the transmission rate. However,
these were introduced very slowly and under very strict hygiene measures, combined with a mask requirement
in public spaces, which apparently has decreased the β value. Regarding the detection rate δ we find values
of around 20− 30% in all cases. This means that according to the simulations, the actual number of infected
people is 3–5 times higher than the official reports. The computed lethality is between 1–2% and is therefore
roughly a third of 5% which was calculated in (6) regarding the registered cases at the end time point T .
The average time interval τ between the onset of infectivity and death in Simulation 3 is between 7 and 10
days. The influence of τ is also evident with regard to the normalized least squares terms J(u)−ω ‖u‖22. By
adding a fixed time lag in Simulation 2 and then adjusting it in the third simulation, a significant improvement
is shown in all algorithms as J(u) is considerably smaller. Regarding the magnitudes of the least-squares
terms, the algorithms show similar values in comparison to each other and lead to useful adjustments with
minor deviations of the model from the available data sets. This is also illustrated by the graphical results
which are shown in Appendices A and B. The sum of the initial values E0 + I0 +R0 lies within a realistic
range at ' 1000. Thus, the unknown initial value for the exposed individuals E0 is approximately in the
order of magnitude of the infected I0 with an upward tendency, as expected. The variation regarding the
initial value for E0 = I0R0/2 in the optimization does not lead to significant differences in the results
when R0 ∈ {3, 4, 5} is changed. For this reason, the results are presented here only for initial estimations
of R0 = 3. In the case of the Metropolis algorithm, the number of iterations is much higher than in the
adjoint approach. This is due to the fact that the Metropolis approach relies on random draws and thus a
large amount of draws is needed to obtain convergence and to diminish the effect of outliers. This seemingly
disadvantageous property of the Metropolis algorithm is partly counter–balanced when using n multivariate
normally distributed values for u as starting guesses for the adjoint–based optimization. This also increases
the iteration number by a factor n. On the other hand, this would have the consequence that the probability
of reaching a global minimum for J(u) would increase significantly. This aspect is already been cared for
in the Metropolis algorithm so no additional computations are required unless the chain statistics (as to be
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seen in the following sections). The value for J(u), especially in Simulation 3 are slightly more accurate
using the Metropolis algorithm. The comparison of the runtimes in Simulation 3 on an Intel Core i5–6400
with 2.7 GHz and 16 MB–RAM also reflects this. Due to the higher number of iterations, the Metropolis
algorithm also has a longer runtime, see Table 5.

Table 5: Average required runtime of the algorithms on an Intel i5–6400 with 2.7 GHz and 16 MB–RAM.

Algorithm Average runtime [s]
Adjoint approach 10
Metropolis 140

Additionally, the influence of the weight ω on the optimization is tested. Table 6 shows the results of the
least squares term J(u)− ω ‖u‖22 for Simulation 3 with the two algorithms and different weights.

Table 6: Values for the normalized least squares terms (J(u)−ω ‖u‖22) · 10
3 for the optimization with different weights

ω regarding the algorithms in Simulation 3.

Algorithm ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

Adjoint approach 8.9 8.8 6.1 12.0
Metropolis 3.8 3.2 3.4 4.1

The results show that an appropriate weight value is ω ' 10−8 resp. 10−9, depending on the chosen
algorithm. If the weight is too large, the value of the least squares term also deteriorates. This makes sense
since the disturbance caused by ω ‖u‖22 on the objective function becomes too large. On the other hand,
however, a sufficiently small value for ω leads to better optimization performance, since a weight of ω = 0
on the other hand gives a worse result.

4.1. Specific results for the adjoint approach
As shown in Table 4, the approach with adjoint functions leads to similar numerical results as the other

tested routine. The graphical results of Simulation 3 are shown in Figure 4.
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Figure 4: Plots for τ := free, E0 = free, I0 = free, R0 = 3 and ω = 10−8.

The necessary number of iterations until the convergence of the algorithm shows that the algorithm moves
quickly to the corresponding minima, see Figure 5. The process clarifies that the algorithm is very close to
the optimal objective function value already after 15 iterations and needs the remaining calculation steps to
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reach the given tolerance limit TOL = 10−12. However, the prerequisite for rapid convergence is a good
starting value for u.
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Figure 5: Development of the objective function J depending on the corresponding iteration step.

In addition to the presented simulations with restrictions, the algorithm was performed without limitations
for the searched parameters, see Table 7 and Figure 6.

Table 7: Numerical results of Simulation 3 without restrictions concerning the estimated parameters.

β0 β1 β2 β3 δ µ τ E0 + I0 + R0 J(u)− ‖u‖22
0.77 0.46 0.27 0.41 0.002 0.0001 7 65046 7 · 10−4
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Figure 6: Graphical results of Simulation 3 without restrictions concerning the estimated parameters.

The results show that the normalized least squares term J(u)−‖u‖22 can be reduced significantly compared
to the restricted variants. It is noticeable, however, that the fitted value for the detection rate δ is very small
at about 0.02%. This would mean that only every 500th infected person would be registered. This seems
unrealistic, even if the dark figure is unknown. The values for transmission rate, lethality and actual number
of exposed, infected and recovered at the beginning of the measurement period are changed accordingly.
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Due to the very low detection rate in this simulation, the spread of the disease would have been much more
intense than expected.

4.2. Specific results for the Metropolis algorithm approach

We now consider the value for

J(u)− ω ‖u‖22 =
‖δ(I +R) +D − Y ‖2L2

‖Y ‖2L2

+
‖D − Z‖2L2

‖Z‖2L2

,

i.e. the cost functional J(u) without the last term including the weight ω. This way we can compare the
simulations with different weights ω in terms of J(u) because the last term trivially raises along with ω.

Table 8: (J(u)− ω ‖u‖22) · 10
3 for the different weights ω.

Simulation ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

1 18.6 18.1 18.6 21.7
2 8.7 8.2 9.2 9.6
3 3.8 3.3 3.4 4.1

Table 8 shows that the weight ω = 10−9 always yields the best, i.e. smallest values for the given cost
functional J(u) . Moreover, what you can also see in Tables 10, 12 and 14 in Appendix B, the value J(u) for
the weight ω = 10−9 is larger than the value J(u) with the weight ω = 0, even when the term 10−9 · ‖u‖22
is not subtracted, which means that interestingly, the simulation with ω = 10−9 provides a better result for
a different cost functional.

The plots for the infected and dead cases in Simulation 3 with ω = 1e−9, thus the best simulation, are
shown in Figure 7.
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Figure 7: Plots for τ = free, E0 = free, I0 = free, R0 := 3 and ω = 10−9.

The chain statistics done with the optimal results in Simulation 3 for ω = 10−9 as of Figure 8 show
that for most parameters a normal distribution is visible and thus the Metropolis algorithm appears to have
converged. The parameter τ does not appear to be normally distributed, but still remains in the range from
7–8 days. This also affects some smaller side peaks regarding the other parameters. As the infection data has
the step size of 1 day, we assume that no further optimization within that range is possible, so an estimation
of τ ≈ 7–8 days is decent enough.
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Figure 8: Parameter statistics for Simulation 2 and ω = 10−9, using the best approximation with respect to J(u)−ω ‖u‖22
as starting value and a step size of u0/1000. Except of τ , most histograms appear roughly normally distributed around
their mean values.

A detailed numerical analysis as well as figures for all relevant plots can be found in Appendix B. In the
figures it is also visible that with fixed values τ = 0 or τ = 11.5 the estimated death cases run after resp.
run ahead of the data.

5. CONCLUSION

In the present work, two SEIRD–models for modelling the COVID–19 outbreak in Germany were adapted
to existing data from 1 March to 3 May. Two different approaches for the estimation of parameters and
approximation of the infection data were used and their results and performance were compared. Regarding
the graphical and numerical results, all routines have provided similar meaningful results. Each approach
has advantages and disadvantages and should be selected depending on the application needs, time, possible
analytical and programming effort. The Corona outbreak results show that the restrictions taken by the
authorities have had a major impact on the dynamics of spread. The Basic Reproduction Number could be
reduced from a presumably much higher value than the assumed R0 ' 3 to the epidemiologically important
limit R0 ' 1. Adding a time lag τ between the onset of infectiousness and death significantly increases
the accuracy of the tested model. This time delay is estimated by the data adjustment to an average of 8
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days, although in reality there may be very different values depending on how long life-support measures
are maintained in intensive care units. The adjustment regarding the detection rate and lethality showed
that, according to the model, the actual number of infected people is approximately 3–5 times higher than
registered and at µ ≈ 1–2%, the lethality is lower than assumed.

Conceivable extensions of the present work would be the application to other countries, the integration
of travel or commuting after the relaxation of exit restrictions or the integration of control variables to
mathematically derive the optimal time intervals for future lockdowns. With respect to the latter, in order to
detect a new increase in infections early on – before it returns to exponential growth – a measure within the
model of the possible increase in transmission rate is required.
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APPENDIX A – PLOTS FOR THE ADJOINT APPROACH
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Figure 9: Plots for τ = 0, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−8.
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Figure 10: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−8.
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Figure 11: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 0.
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Figure 12: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 10−9.
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Figure 13: Plots for τ := free, E0 = free, I0 = free, R0 = 3 and ω = 10−8.
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Figure 14: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 10−7.
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APPENDIX B – RESULTS AND PLOTS FOR METROPOLIS ALGORITHM

Simulation 1 – No delay and fixed initial infectives

Table 9: Estimates for τ = 0, E0 = free, I0 = 114/δ, R0 = 16/δ, R0 = 3 after r = 20000 draws and using a step
size of s = u0/100.

Parameter ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

mean std. mean std. mean std. mean std.
β1 .5822 .0353 .5525 .0439 .5935 .0177 .6381 .0227
β2 .5378 .0169 .4936 .0350 .4828 .0160 .4645 .0348
β3 .1140 .0111 .1130 .0067 .1094 .0048 .1014 .0130
β4 .0671 .0032 .0538 .0033 .0502 .0027 .0510 .0056
δ .2307 .0089 .2933 .0116 .2137 .0104 .3142 .0309
µ .0105 .0010 .0131 .0016 .0095 .0007 .0137 .0011
E0 540.7 22.5 811.4 41.5 819.8 52.9 440.8 16.1

Table 10: J(u) · 1000 for the different weights in Simulation 1. The column represents the weight that is used for J(u)
in the Metropolis algorithm and the row shows the value of J(u) for all four ω.

w.r.t. ω
weight ω

0 10−9 10−8 10−7

0 18.6 18.1 18.6 21.7

10−9 19.2 18.9 19.5 22.1

10−8 24.0 26.2 28.1 25.0

10−7 72.3 99.1 114.2 54.3

Mar 01 Mar 15 Mar 29 Apr 12 Apr 26 May 10

Date 2020   

102

103

104

105

106

C
u
m

u
la

te
d
 C

a
s
e
s

(I(t)+R(t))+D(t) Model

Registered COVID-19 Cases

Mar 01 Mar 15 Mar 29 Apr 12 Apr 26 May 10

Date 2020   

10-1

100

101

102

103

104

C
u
m

u
la

te
d
 D

e
a
th

 C
a
s
e
s

D(t) Model

Registered Death Cases

Figure 15: Plots for τ = 0, E0 = free, I0 = 114
δ

, R0 = 3 and ω = 0.
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Figure 16: Plots for τ = 0, E0 = free, I0 = 114
δ

, R0 = 3 and ω = 0.
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Figure 17: Plots for τ = 0, E0 = free, I0 = 114
δ

, R0 = 3 and ω = 0.
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Figure 18: Plots for τ = 0, E0 = free, I0 = 114
δ

, R0 = 3 and ω = 0.
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Simulation 2 – Fixed delay and initial infectives

Table 11: Estimates for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 16/δ, R0 = 3 after r = 20000 draws and using a
step size of s = u0/100.

Parameter ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

mean std. mean std. mean std. mean std.
β1 .6735 .0538 .7045 .0600 .6391 .0411 .6678 .0508
β2 .4414 .0250 .3951 .0336 .4823 .0323 .5011 .0323
β3 .0810 .0073 .0846 .0075 .0820 .0059 .0790 .0090
β4 .0672 .0042 .0552 .0073 .0520 .0027 .0605 .0091
δ .2055 .0228 .2050 .0161 .2761 .0217 .2871 .0214
µ .0132 .0009 .0131 .0013 .0178 .0011 .0179 .0013
E0 737.0 62.8 661.2 31.3 620.6 70.5 409.2 18.7

Table 12: J(u) · 1000 for the different weights in Simulation 2. The column represents the weight that is used for J(u)
in the Metropolis algorithm and the row shows the value of J(u) for all four ω.

w.r.t. ω
weight ω

0 10−9 10−8 10−7

0 8.7 8.2 9.2 9.6

10−9 9.6 9.0 9.7 9.9

10−8 17.2 15.7 14.7 12.8

10−7 93.8 82.9 64.8 42.1
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Figure 19: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 0.
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Figure 20: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−9.
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Figure 21: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 := 3 and ω := 10−8.
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Figure 22: Plots for τ = 11.5, E0 = free, I0 = 114/δ, R0 = 3 and ω = 10−7

.
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Simulation 3 – Free delay and initial infectives

Table 13: Estimates for τ = free, E0 = free, I0 = free, R0 = 16/δ, R0 = 3 after r = 20000 draws and using a step
size of s = u0/100.

Algorithm ω = 0 ω = 10−9 ω = 10−8 ω = 10−7

mean std. mean std. mean std. mean std.
β1 .5859 .0530 .6442 .0357 .6737 .0300 .7370 .0548
β2 .4785 .0359 .6403 .0250 .5197 .0396 .4587 .0183
β3 .0926 .0097 .0862 .0039 .0920 .0037 .0949 .0034
β4 .0556 .0025 .0554 .0038 .0502 .0019 .0576 .0025
δ .2768 .0295 .1911 .0115 .2063 .0135 .2237 .0155
µ .0154 .0008 .0107 .0006 .0117 .0006 .0128 .0005
E0 790.0 46.7 690.0 52.5 500.8 206.4 351.2 14.9
I0 493.1 40.1 316.1 30.2 439.0 140.7 350.7 115.7
τ 7.3 .6 7.3 .4 7.4 .3 7.2 .6

Table 14: J(u) · 1000 for the different weights in Simulation 3. The column represents the weight that is used for J(u)
in the Metropolis algorithm and the row shows the value of J(u) for all four ω.

w.r.t. ω
weight ω

0 10−9 10−8 10−7

0 3.8 3.3 3.4 4.1

10−9 4.7 3.8 3.8 4.3

10−8 12.5 9.0 7.8 6.5

10−7 90.5 60.9 47.7 28.7
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Figure 23: Plots for τ := free, E0 = free, I0 = free, R0 = 3 and ω := 0
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Figure 24: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω := 10−9.
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Figure 25: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω := 10−8.
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Figure 26: Plots for τ = free, E0 = free, I0 = free, R0 = 3 and ω = 10−7.
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