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Abstract

A Continuous-Time Markov Chain model is constructed based on the a deterministic model of dengue
fever transmission including mosquito fogging and the use of repellent. The basic reproduction number (R0)
for the corresponding deterministic model is obtained. This number indicates the possible occurrence of an
endemic at the early stages of the infection period. A multitype branching process is used to approximate
the Markov chain. The construction of offspring probability generating functions related to the infected states
is used to calculate the probability of disease extinction and the probability of an outbreak (P0). Sensitivity
analysis is shown for variation of control parameters and for indices of the basic reproduction number. These
results allow for a better understanding of the relation of the basic reproduction number with other indicators
of disease transmission.
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1. INTRODUCTION

Dengue fever has been recognized as a disease caused by the DENV virus. It is known that the Aedes
aegypti mosquito is the main vector that transmits the virus from infected mosquitoes to humans. Currently,
dengue fever has become an epidemic in most tropical and sub-tropical countries. Recent facts on dengue
reported that outbreaks have also occurred in countries with no previous local transmission, such as in Oman
in 2018-2019 [1]. With no currently-approved vaccine to treat dengue fever, the main strategy to prevent and
control the spread of dengue fever is to control the mosquito population [2].

Various deterministic models for dengue fever transmission have been developed, following the simple SIR-
SI model [3]. For deterministic models, the basic reproduction number (R0), which represents the expected
number of secondary infections produced by a single typical infectious individual in a completely susceptible
population, is the primary indicator for a region’s endemicity [4]. We start with a deterministic model of
SEIR-SEI type which will be the basis for the construction of the stochastic model.

The spread of dengue fever can be controlled by treating the human and the mosquito populations [5].
Mathematical models to control the spread of dengue by treating it in human populations have been developed.
One model with human population controls using repellents has been studied in [6]. Also, Abidemi et al. in
[7], developed a model involving eight mutually exclusive compartments by introducing personal protection,
larvicide, and adulticide control strategies that illustrate the dynamics of dengue fever transmission.

Meanwhile, there are more ways to control the spread of dengue fever through the mosquito population.
Various important factors of the mosquito population can be involved in controlling the mosquito population,
such as the life cycle of mosquitoes [8], sterilizing male mosquitoes [9], releasing Wolbachia mosquitoes[10],
and providing fogging [11]. Pliego et al. introduced a mathematical model of the Aedes aegypti mosquito’s
life cycle in water and air, which is also known as the two-stage life cycle [5]. The model reflecting changes in
mosquito abundance was then modified with three seasonally adjusted control measures. Meanwhile, Wijaya
et al., in their 2014 and 2016 research, explored a multi-age-class model for mosquito populations that were
secondary classified into indoor-outdoor dynamics [12], [13].
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As an endemic indicator, the basic reproduction number only gives the potential of endemic occurrence at
the early infection period. With this indicator, the outbreak and possible disappearance of the disease cannot
be described. In this respect, a stochastic approach will give more description of the intensity of the infection.

Here we consider a simple vector-host stochastic model where there is intervention in the vector population
with fogging treatment and intervention in the host population by using an effective vector (mosquito)
repellent. Our goal is to determine the efficacy of these intervention measures with respect to the rate of
disease spread and the probability of disease extinction.

2. DETERMINISTIC MODEL

We start with a deterministic model of SEIR-SEI type which will be the basis for the construction of the
stochastic model.

2.1. Model Development
Let Sh(t), Eh(t), Ih(t), and Rh(t) represent the number of susceptible, exposed (infected but not yet

infectious), infectious, and recovered humans (hosts) after t ≥ 0 days, respectively. Similarly, let Sv(t), Ev(t),
and Iv(t) denote the number of susceptible, exposed, and infectious mosquitoes (vectors) after t ≥ 0 days,
respectively. The total human population will be denoted as Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t) and
the total mosquito population will be denoted as Nv(t) = Sv(t) + Ev(t) + Iv(t). The formulation of the
deterministic model is as follows:

Ṡh = Ah − (1− τ)βh
Sh
Nh

Iv − µhSh,

Ėh = (1− τ)βh
Sh
Nh

Iv − (ϕh + µh)Eh,

İh = ϕhEh − (γh + µh)Ih,

Ṙh = γhIh − µhRh,

Ṡv = Av − (1− τ)βvSv
Ih
Nh
− (µv + θv)Sv,

Ėv = (1− τ)βvSv
Ih
Nh
− (ϕv + µv + θv)Ev,

İv = ϕvEv − (µv + θv)Iv.

(1)

The parameters Ah > 0 and Av > 0 represent recruitment rates for the host and vector populations,
respectively, whereas the parameters µh > 0 and µv > 0 represent the natural death rates for the host and
vector, respectively. The parameter θv ≥ 0 denotes the fogging-related death rate of the vector population. We
assume frequency-dependent disease transmission from vector to host and host to vector with transmission
parameters βh > 0 and βv > 0, respectively. The parameter τ ∈ [0, 1] represents the proportion of the host
population which is protected against vector contact with an effective repellent. The expressions 1/ϕh and
1/ϕv denote the duration of latency for infected hosts and vectors, respectively, where ϕh > 0 and ϕv > 0.
Lastly, γh > 0 represents the recovery rate for infectious hosts. The total human and vector population
dynamics are given by

dNh
dt

= Ah − µhNh,
dNv
dt

= Av − (µv + θv)Nv. (2)

For simplification, we assume that the human and vector populations are constant, and given by

Nh =
Ah
µh

,

Nv =
Av

µv + θv
. (3)
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Thus the feasible region for the System (1) is

Ω = {(Sh, Eh, Ih, Rh, Sv, Ev, Iv)|0 ≤ Sv, Ev, Iv ≤ Nv, 0 ≤ Sh, Eh, Ih, Rh ≤ Nh
Sv + Ev + Iv = Nv, Sh + Eh + Ih +Rh = Nh}.

(4)

Note that the domain Ω is positively invariant under the System (1) since the vector fields on the boundary
of Ω do not point to the exterior.

2.2. The Basic Reproduction Number
The deterministic model (1) has a unique disease-free equilibrium (DFE) given by

DFE = (Sh, Eh, Ih, Rh, Sv, Ev, Iv) =
(
S̄h, 0, 0, 0, S̄v, 0, 0

)
, (5)

where S̄h = Ah/µh and S̄v = Av/(µv + θv). The state variables representing infected hosts and vectors are
Eh, Ih, Ev , and Iv . Linearizing the differential equations for these infected states about the unique DFE,
we obtain the Jacobian matrix.

J =


−(µh + ϕh) 0 0 (1− τ)βh

ϕh −(µh + γh) 0 0

0 (1− τ)βv
S̄v

S̄h
−(µv + ϕv + θv) 0

0 0 ϕv −(µv + θv)

 (6)

The Jacobian can be expressed as J = F − V , where

F =


0 0 0 (1− τ)βh
0 0 0 0

0 (1− τ)βv
S̄v

S̄h
0 0

0 0 0 0

 ,

V =

ϕh + µh 0 0 0
−ϕh γh + µh 0 0

0 0 ϕv + µv + θv 0
0 0 −ϕv µv + θv


(7)

The elements of matrix F correspond to the appearance of new infectious hosts or vectors and the elements
of matrix V represent all other state transitions. The next generation matrix (NGM) is defined as

FV −1 =


0 0 ϕv(1−τ)βh

(ϕv+µv+θv)(µv+θv)
(1−τ)βh

µv+θv
0 0 0 0

ϕh(1−τ)βvS̄v

(ϕh+µh)(γh+µh)S̄h

(1−τ)βvS̄v

(γh+µh)S̄h
0 0

0 0 0 0

 (8)

The NGM spectral radius is defined as the basic reproduction number [23], [24]. That is,

R0 = ρ(FV −1) = (1− τ)

√
ϕvβhϕhβ̂v

(ϕv + µv + θv)(µv + θv)(ϕh + µh)(γh + µh)
, (9)

where β̂v = βvS̄v/S̄h.

The basic reproduction number R0 represents the expected number of secondary infections produced by a
typical infectious individual in a completely susceptible population. For deterministic models, it is common
that the basic reproduction number is a threshold. If R0 < 1 , the disease becomes extinct and if R0 > 1,
the disease will spread and become endemic within the population. From Equation (9), it can be seen that
an increase in the transmission rates βh and βv will increase the value of R0. Similarly, an increase in the
fogging-related death rate θv or the proportion of hosts using repellent τ , will decrease the value of R0.
The effects of the parameters on R0 will be explored in more detail in the sensitivity analysis of R0.
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Figure 1: Level set of R0 and Rf .

2.3. Reduction Factor

Let us consider the basic reproduction number when there is no intervention by fogging or the use of
repellent (θv = τ = 0). In this case, the basic reproduction number is given by

R00 =

√
(µv + θv) β̂vϕhβhϕv

µv2 (ϕv + µv) (µh + ϕh) (γh + µh)
. (10)

Then after intervention, we have the reduction factor

Rf =

√
(−1 + τ)

2
µv2 (ϕv + µv)

(µv + θv)
2

(ϕv + µv + θv) ,
(11)

so that R0 = RfR00.

In Figure 1, we see the sensitivity of the reduction factor Rf for variations in θv and τ , based on the
data in Table 2.
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3. STOCHASTIC MODEL

3.1. Continuous-Time Markov Chain Model
Let Sh(t), Eh(t), Ih(t), and Rh(t) denote discrete random variables which represent the number of sus-

ceptible, exposed (infected but not yet infectious), infectious, and recovered humans (hosts) after t ≥ 0 days,
respectively. Similarly, let Sv(t), Ev(t), and Iv(t) denote discrete random variables representing the number
of susceptible, exposed, and infectious mosquitoes (vectors) after t ≥ 0 days, respectively. The associated
discrete-valued random vector is denoted as

X(t) = (Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t)). (12)

A continuous-time Markov chain (CTMC) model is defined in terms of the state transitions that occur for
the stochastic process {X(t)|t ∈ [0,∞)} during an infinitesimally-small time period ∆t. The state transitions
and corresponding rates are summarized in Table 1. The expression r∆t + o(∆t) is a very small transition
probability for the change ∆X(t) = X(t+ ∆t)−X(t).

Table 1: State transitions and rates describing the CTMC model.

Description Change Rate, r
Host recruitment Sh → Sh + 1 Ah

Death of Sh Sh → Sh − 1 µhSh

Host infection (Sh, Eh)→ (Sh − 1, Eh + 1) (1− τ)βhShIv/Nh

Death of Eh Eh → Eh − 1 µhEh

Latent to infectious (host) (Eh, Ih)→ (Eh − 1, Ih + 1) ϕhEh

Death of Ih Ih → Ih − 1 µhIh
Host recovery (Ih, Rh)→ (Ih − 1, Rh + 1) γhIh
Death of Rh Rh → Rh − 1 µhRh

Vector recruitment Sv → Sv + 1 Av

Death of Sv Sv → Sv − 1 (µv + θv)Sv

Vector infection (Sv, Ev)→ (Sv − 1, Ev + 1) (1− τ)βvSvIh/Nh

Death of Ev Ev → Ev − 1 (µv + θv)Ev

Latent to infectious (vector) (Ev, Iv)→ (Ev − 1, Iv + 1) ϕvEv

Death of Iv Iv → Iv − 1 (µv + θv)Iv

3.2. Branching Process
A Galton-Watson multitype branching process is used to approximate the nonlinear CTMC dynamics near

the DFE. The only sources of infection for our model are the states Eh, Ih, Ev , and Iv . Therefore, the
branching process estimates are applied only to these states and the numbers of susceptible humans and
mosquitoes are assumed to be close to disease-free equilibrium., S̄h = Ah/µh and S̄v = Av/(µv + θv).

Susceptible hosts can become exposed through direct contact with an infectious vector. Similarly, suscep-
tible vectors can become exposed by direct contact (i.e. biting) with an infectious host. In what follows, we
use the term ‘offspring’ to describe susceptible hosts or vectors which become exposed by direct contact
with an infectious vector or host, respectively. The term ‘offspring’ will also be used for exposed hosts or
vectors which progress to a state of infectiousness. It is assumed that the number of offspring produced by a
single human or an exposed / infectious mosquito does not depend on the number of offspring produced by
humans or other exposed / infectious mosquitoes. Offspring probability generating functions (pgfs) is defined
for the ”birth” and ”death” of an exposed or infected individual. The probability of disease extinction was
calculated using pgf [15], [17], [19], [20], [21], [22].

In general, for xi(0) = 1 and xj(0) = 0 for j 6= i, the offspring probability generating function (pgf) for
individuals of type i is the function fi : [0, 1]n → [0, 1]n is defined by

fi(x1, . . . , xn) =

∞∑
k1=1

· · ·
∞∑

kn=1

Pi(k1, . . . , kn)xk11 · · ·xknn , (13)
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where Pi(k1, . . . , kn) denotes the probability that one type i individual gives ‘birth’ to kj individuals of type
j. For the branching process approximation, we consider exposed hosts as type 1 individuals (x1), infectious
hosts as type 2 individuals (x2), exposed vectors as type 3 individuals (x3), and infectious vectors as type 4
individuals (x4).

The offspring pgf for Eh, given that Eh(0) = 1, Ih(0) = 0, Ev(0) = 0, and Iv(0) = 0 is

f1(x1, x2, x3, x4) =
ϕhx2 + µh
ϕh + µh

. (14)

The term ϕh/(ϕh + µh) is the probability that an exposed host becomes infectious, and µh/(ϕh + µh) is
the probability of natural death for an exposed host.

The offspring pgf for Ih, given that Eh(0) = 0, Ih(0) = 1, Ev(0) = 0, and Iv(0) = 0 is

f2(x1, x2, x3, x4) =
(1− τ)β̂vx2x3 + µh + γh

(1− τ)β̂v + µh + γh
. (15)

The term (1 − τ)β̂v/((1 − τ)β̂v + µh + γh) is the probability that a susceptible vector becomes exposed
from contact with an infectious host resulting in one infectious host and one exposed vector. The term
(µh + γh)/((1− τ)β̂v + µh + γh) is the probability that an infectious host dies or recovers.

The offspring pgf for Ev , given that Eh(0) = 0, Ih(0) = 0, Ev(0) = 1, and Iv(0) = 0 is

f3(x1, x2, x3, x4) =
ϕvx4 + µv + θv
ϕv + µv + θv

. (16)

The term ϕv/(ϕv + µv + θv) is the probability that an exposed vector becomes infectious, and the term
(µv + θv)/(ϕv + µv + θv) is the probability that an exposed vector dies naturally or due to fogging.

The offspring pgf for Iv , given that Eh(0) = 0, Ih(0) = 0, Ev(0) = 0, and Iv(0) = 1 is

f4(x1, x2, x3, x4) =
(1− τ)βhx1x4 + µv + θv

(1− τ)βh + µv + θv
. (17)

The term (1 − τ)βh/((1 − τ)βh + µv + θv) is the probability that a susceptible host becomes exposed
from contact with an infectious vector resulting in one exposed host and one infectious vector. The term
(µv + θv)/((1− τ)βh +µv + θv) is the probability that an infectious vector dies naturally or due to fogging.

The offspring pgfs always have at least one fixed point in [0, 1]4 given by (1, 1, 1, 1). If the offspring pgfs
are nonsingular, then there exists a unique fixed point in (0, 1)4 [17], [19], [20], [22]. A function fi is called
singular if it is a linear function of xj , j = 1, . . . , 4 such that fi(0, 0, 0, 0) = 0.

The expectation matrix M = [mij ] for the offspring pgfs is a nonnegative 4× 4 matrix, whose entries are
defined as

mij =
∂fj
∂xi

, (18)

where the partial derivatives are evaluated at (x1, x2, x3, x4) = (1, 1, 1, 1). The entry mij denotes the expected
number of type i offspring produced by one individual of type j. The expectation matrix for the offspring
pgfs is

M =



0 0 0
(1− τ)βh

(1− τ)βh + µv + θv
ϕh

ϕh + µh

(1− τ)β̂v

(1− τ)β̂v + µh + γh
0 0

0
(1− τ)β̂v

(1− τ)β̂v + µh + γh
0 0

0 0
ϕv

ϕv + µv + θv

(1− τ)βh
(1− τ)βh + µv + θv


(19)

Since the offspring pgfs fi are nonsingular and the expectation matrix M is irreducible, there are at most
two fixed points in [0, 1]4 [22]. If the process is subcritical or critical (ρ(M) < 1 or ρ(M) = 1), then
(1, 1, 1, 1) is the only fixed point, and if the process is supercritical (ρ(M) > 1), then there exists a unique
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second fixed point (q1, q2, q3, q4) ∈ (0, 1)4 of the offspring pgfs [17], [19], [20], [22]. This fixed point is
used to calculate the probability of disease extinction [17], [19], [20], [22]. In particular, the probability of
disease extinction is given by

P0 =

{
1 if ρ(M) ≤ 1,

q
Eh(0)
1 q

Ih(0)
2 q

Ev(0)
3 q

Iv(0)
4 if ρ(M) > 1.

(20)

The terms q1, q2, q3, and q4 are the probability of disease extinction in the exposed host population, infectious
host, exposed vector, and infectious vector, respectively. If ρ(M) > 1, then the probability of a “major
outbreak” can be defined as

1− P0 = 1− qEh(0)
1 q

Ih(0)
2 q

Ev(0)
3 q

Iv(0)
4 . (21)

In this context, a “major outbreak” is considered anything other than disease extinction, opposed to the
number of infectious individuals in the host or vector populations reaching some critical level.

The computation of the spectral radius M cannot be shown explicitly. However, the Threshold Theorem
in [16] gives the following relationship between ρ(M) and R0:

R0 < 1 (= 1, > 1) ⇐⇒ ρ(M) < 1 (= 1, > 1). (22)

The hypotheses of the Threshold Theorem are satisfied since the expectation matrix M is irreducible, the
matrix F in (6) is non-negative, and the matrix V in (6) is a nonsingular M -matrix.

The fixed point of the offspring pgfs can be calculated explicitly in terms of the model parameters:

q1 =
ϕh

ϕh + µh
q2 +

µh
ϕh + µh

, (23)

q2 =
(1− τ)β̂vϕv

(1− τ)β̂vϕv + (ϕv + µv + θv)(γh + µh)

1

R2
0

+
(ϕv + µv + θv)(γh + µh)

(1− τ)β̂vϕv + (ϕv + µv + θv)(γh + µh)
,(24)

q3 =
ϕv

ϕv + µv + θv
q4 +

µv + θv
ϕv + µv + θv

, (25)

q4 =
(1− τ)βhϕh

(1− τ)βhϕh + (µv + θv)(ϕh + µh)

1

R2
0

+
(µv + θv)(ϕh + µh)

(1− τ)βhϕh + (µv + θv)(ϕh + µh)
. (26)

The expressions for q1 and q3 follow directly from the definitions of the offspring pgfs f1 and f3. The
expression for q2 (q4) is the sum of two probabilities: (1) probability of successful transmission from one
infectious human (mosquito) to a susceptible mosquito (human) times the probability of no secondary human
infection (mosquito) 1/R2

0 plus (2) possible transmission failure (death of humans or mosquitoes). Note that
the expression R2

0 is a type of reproduction number to control for human or mosquito populations [?], [?].
In Section 4, we compare the results of the deterministic and stochastic models. Additionally, we compute

the extinction probabilities q1, . . . , q4 using parameter values related to dengue transmission among humans
and mosquitoes and show that the expression obtained for the probability of disease extinction from the
branching process approximation agrees well with numerical simulations of the CTMC model. The effects
of fogging and use of an effective mosquito repellent on R0 and P0 are explored numerically.

4. NUMERICAL SIMULATIONS

We present numerical simulation resulting from the analysis in the previous sections.

4.1. Probability of Disease Extinction
The parameter values used for numerical simulations of the deterministic and stochastic models are given

in Table 2. We assume baseline values of θv = 0.1 and τ = 0.1 for the fogging-related death rate and
proportion of hosts protected with an effective repellent. These parameter values are variable and we explore
the effects of varying θv and τ on the basic reproduction number and probability of disease extinction.

Using the parameter values in Table 2, the basic reproduction number is R0 ≈ 2.19. Solutions of the
deterministic model exhibit an initial outbreak in both the host and vector populations before stabilizing at
an endemic level near disease extinction (i.e. Eh(t), Ih(t), Ev(t), and Iv(t) ≈ 0). The ODE solution and one
sample path of the CTMC model are plotted in Figure 2.
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Table 2: Model parameters related to dengue transmission. The basic reproduction number for these parameters is R0 ≈
2.19.

Description Parameter Value Source
Host recruitment rate Ah 1000 · µh [6]
Host death rate µh

1
70×365

[6]
Host infection rate βh 0.375 [3]
Host latentcy period 1/ϕh 7 Assumed
Host recovery rate γh 1/14 [6]
Vector rectuirment rate Av 500 · (µv + θv) [6]
Vector natural death rate µv

1
30

[6]
Fogging-related death rate θv 0.1 Assumed
Vector infection rate βv 0.5 [3]
Vector latency period 1/ϕv 5 Assumed
Proportion of hosts using repellent τ 0.1 Assumed
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Figure 2: Comparison of one sample path of the CTMC model (solid line) and the ODE solution (dashed line). Parameter
values are as in Table 2 with initial conditions Sh(0) = 999, Eh(0) = 0, Ih(0) = 1, Rh(0) = 0, Sv(0) = 499,
Ev(0) = 0, and Iv(0) = 1. The probability of disease extinction is P0 = 0.2092.

The probability of disease extinction is calculated for several sets of initial conditions using the expression
in equation (21) obtained from the branching process approximation. This expression is compared to a
numerical approximation obtained from the proportion of 10,000 sample paths of the CTMC model which
exhibit disease extinction (i.e. Eh(t) = Ih(t) = Ev(t) = Iv(t) = 0) prior to time t = 150 which is
approximately the time of peak infection for the ODE model. The results are summarized in Table 3.

The expressions for q1, q2, q3, and q4 in (23)-(26) represent the probability of disease extinction in the
states Eh, Ih, Ev, and Iv , respectively. In Figure 3, the sensitivity of each of these quantities is shown to the
fogging-related death rate, θv .
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Table 3: Probability of disease extinction P0 and a numerical approximation (Approx.) based on 10,000 sample paths of
the CTMC model with parameter values as in Table 2 and initial conditions Sh(0) = 1000, Eh(0), Ih(0), Rh(0) = 0,
Sv(0) = 500, Ev(0), and Iv(0). The value of P0 was obtained from the expression in (21).

Eh(0) Ih(0) Ev(0) Iv(0) P0 Approx.
1 0 0 0 0.4831 0.4831
0 1 0 0 0.4829 0.4834
0 0 1 0 0.6599 0.6564
0 0 0 1 0.4332 0.4398
1 0 1 0 0.3188 0.3204
0 1 0 1 0.2092 0.2092
1 1 0 0 0.2333 0.2350
0 0 1 1 0.2859 0.2809
1 1 1 1 0.0669 0.0653
2 0 0 0 0.2334 0.2374
0 2 0 0 0.2332 0.2336
0 0 2 0 0.4355 0.4366
0 0 0 2 0.1877 0.1875

(a) (b)

(c) (d)

Figure 3: Level set of q1, q2, q3, and q4.
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Figure 4: Plots of the basic reproduction number illustrating the effects of fogging and the use of effective repellent.
Parameter values are as in Table 2 with the exception of θv and τ which vary over the domain 0 ≤ θv ≤ 1 and 0 ≤ τ ≤ 1,
respectively. The red circle indicates the point at which R0 = 1.
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Figure 5: Plots of the probability of disease extinction P0 illustrating the effects of fogging and the use of an effective
repellent. Parameter values are as in Table 2 with the exception of θv and τ which vary over the domain 0 ≤ θv ≤ 0.3
and 0 ≤ τ ≤ 0.5, respectively. The initial conditions used to calculated P0 are Eh(0) = 1, Ih(0) = 1, Ev(0) = 1, and
Iv(0) = 1.

4.2. Control Efforts
In this section, we explore the utility of fogging and mosquito repellent. To explore the effects of fogging,

we consider the basic reproduction number and probability of disease extinction as functions of the fogging-
related death rate of vectors, R0 = R0(θv) and P0 = P0(θv), and allow θv to vary over a domain of
biologically-feasible values. Similarly, to explore the effects of mosquito repellent, we consider R0 and P0

as functions of τ ∈ [0, 1]. We are primarily interested in the values of P0 for R0 > 1. Therefore, we only
consider values of θv and τ for which R0 > 1 in our exploration of P0. In the subcritical (critical) case
R0 < 1 (R0 = 1), the probability of disease extinction is given by P0 = 1.

The effects of fogging and mosquito repellent can be seen in Figures 4 and 5. Recall that P0 is dependent
on the initial number of exposed/infectious hosts and vectors. To gain a better understanding of the ways in
which θv and τ affect the probability of disease extinction, we plot several of the level sets for the extinction
probabilities q1, . . . , q4.

Control efforts may not be implemented until the number of infectious hosts reaches a critical level. It is
of interest to determine the expected time at which the number of infectious individuals reaches this critical
level. In Figure 6, we plot the approximate probability distribution for the time at which the number of
infectious hosts reaches a threshold level of Ih(t) = 10 prior to a maximum time of tmax = 250. Parameter
values are as in Table 2 with initial conditions Eh(0) = 1, Ih(0) = 1, Ev(0) = 1, and Iv(0) = 1. The mean
time at which the threshold is reached is t̄ = 51 days. Calculations are based on 10,000 sample paths of the
CTMC model. Note that approximately 6.5% of the sample paths exhibit disease extinction prior to reaching
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the treshold level resulting in the spike at tmax = 250 days. This is consistent with our expression for P0

given the same set of initial conditions (see Table 3).

Figure 6: Approximate probability distribution for the time at which the number of infectious hosts reaches a threshold
level of Ih(t) = 10 prior to a maximum time of tmax = 250. Parameter values are as in Table 2 with initial conditions
Eh(0) = 1, Ih(0) = 1, Ev(0) = 1, and Iv(0) = 1. The mean time at which the threshold is reached is t̄ = 51 days.
Calculations are based on 10,000 sample paths of the CTMC model.

4.3. Sensitivity Analysis
We calculate the sensitivity indices of the basic reproduction number, R0, and the probability of disease

extinction P0, to the model parameters. How much influence each parameter is for disease transmission and
outbreak / extinction is determined by these two indices.

To calculate the sensitivity indices, we use the normalized forward sensitivity index as defined in [18].
Specifically, the normalized variable forward sensitivity index, u, which depends on the parameter, p, is
defined as

Υu
p =

∂u

∂p
× p

u
. (27)

Since we have a explicit expressions for R0 and P0 in 9 and 21, Two sensitivity indices R0 and P0 can be
calculated for each parameter of the model in the Table 2.

4.4. Sensitivity Indices of R0

The sensitivity index of R0 with respect to τ is

ΥR0
τ = − τ

1− τ
. (28)

The sensitivity index of R0 with respect to Ah is

ΥR0

Ah
= −1

2
. (29)

The sensitivity index of R0 with respect to βh is

ΥR0

βh
=

1

2
. (30)

The sensitivity index of R0 with respect to γh is

ΥR0
γh

= −1

2

γh
γh + µh

. (31)
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The sensitivity index of R0 with respect to Ah is

ΥR0

Av
=

1

2
. (32)

ΥR0

βv
=

1

2
. (33)

Table 4: Based on the basic parameter values given in Table 2, the indices of sensitivity of R0 to the parameters for the
dengue 1 model is evaluated. The parameters are in order of the most sensitive. θv , the mosquito mortality rate related to
fogging is the most sensitive parameter, and ϕh, the human rate of progression from the latent state is the least sensitive
parameter.

Parameter, p Sensitivity Index, ΥR0
p

θv −0.90
Ah −0.50
µh +0.50
βh +0.50
Av +0.50
βv 0.50
γh −0.50
µv −0.30
ϕv +0.20
τ −0.11
ϕh +0.00014

5. CONCLUSION

A continuous-time Markov chain model for the transmission of dengue fever with mosquito fogging and use
of repellent was presented. Two control parameters are used in the model in the form of mosquito repellent
for reducing the contacts between mosquitoes and humans, and in the form of fumigation (fogging) for
reducing the mosquito population. In a multitype branching process approximation, the offspring probability
generating functions for the infected states are constructed and the existence of a nontrivial fixed point which
is related to the basic reproduction number is found. An expression for the probability of disease extinction
is obtained and numerical simulations are performed including sensitivity analysis of the basic reproduction
number. The results are expected to give a more comprehensive insight of dengue transmission.
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