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Abstract

In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (R+)
of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed
(SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used
to estimate R+ in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned
properly, this approach produces similar result compared to existing approach such as Extended Kalman filter
(EKF).
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1. INTRODUCTION

Governments around the world are using the reproduction numbers as criteria when deciding public
health policies during COVID-19 pandemic. In principal, there are two types of reproduction numbers: basic
reproduction number and effective reproduction number. The basic reproduction number (denoted by Rg)
shows the average expected number of cases generated by one case in a population where all individuals are
susceptible. The effective reproduction number (denoted by R;) shows the average expected number of cases
generated in the current state of a population. In practice, R is used to determine how many population that
needs to be immune to reach herd immunity. In this case, the herd-immunity threshold is 1 — 7% On the
other hand, R; is used to monitor transmissions of the disease in a population during the outbreak. Hence,
this number is usually used as one of the main criteria to evaluate the public health policies. Theoretically,
R+ needs to be below 1 to ensure the transmission is under control.

Many researchers have provided calculations to estimate R; using different approaches, e.g., Bayesian
estimation [], serial interval [2], Extended Kalman filter [3], and parameter fitting [4]. If the estimation
parameters are tuned properly, all of these approaches will provide similar pattern with small variation. Once
the estimated R, is obtained, we can create short-term forecasts to determine different reopening scenarios
(51, [6].

The aim of this paper is to provide a novel approach to estimate the effective reproduction number R
of infectious diseases. To this end, we design a Nonlinear Observer (NLO) from a discrete-time augmented
Susceptible-Infectious-Removed (SIR) model. The method is efficient in the sense that the epidemiological
data is injected directly into the model once we found a constant observer gain. The observer gain is obtained
by solving a Linear Matrix Inequality (LMI). While the majority of estimation methods are based on stochastic
process, this new approach is deterministic. The Confidence Interval (CI) provided in our estimation is
inherited from the uncertainty in the infectious time and not from the method itself.

The paper is organized as follow. In Section II, we derive a discrete-time augmented SIR model. In this
section, we consider the time-varying R; as an augmented state. Furthermore, we assume its value is a
piece-wise constant function. In Section III, we derive a sufficient condition for the observer gain in terms
of LMI. Simulation results using epidemiological data from Jakarta is presented in Section IV. Extension to
other compartmental model can be found in Section V. Finally, conclusions are given in Section VI.
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2. MATHEMATICAL MODEL

We use a simple SIR model in this paper for several reasons. First, it can be used to described transmissions
of many infectious diseases. Furthermore and most importantly, the actual data of the three compartments are
available in most outbreak events. The removed compartment consists of individuals who are either recovered
or deceased. Assuming constancy of population N, the SIR model can be written as follow [7]:

S = ‘%’ (M
iy = OO ) @
R(t) = A1), 3)

where S denotes the number of susceptible individuals, I denotes the number of infected individuals or active
cases, and 12 denotes the number removed individuals. The model has two parameters: the transmission rate
B and the removal rate . By definition, J is the average number of contacts per person per time, multiplied
by the probability of disease transmission in a contact between a susceptible and an infectious individual.
Thus, in principal 3 is time-varying due to interventions. For this reason, in the remaining of this paper we
consider  as a parameter that depends on time ¢ and is unknown. On the other hand, the removal rate = is
an inverse of the average infectious time, i.e., v = % The infectious time can be obtained through medical
data and is usually known together with its Confidence Interval (CI). Taking into account reduction in the

number of susceptible individuals, the effective reproduction number can be estimated as follow [&]:
S(t) (Bt B(t
Rty = 20 ((>> ~ B @)
N\ v g

Discretizing (1)-(3) using the Euler discretization method, substituting 5(¢) = 7R (¢) into the model, and
augmenting R (t) as a new state variable, we obtain the following discrete-time augmented SIR model:

Sht1) = S() ~ LIRWIRIS ) )
I(k+1) = (1—~AOI(K) + %Rt(k)f(k)sm), ©)
Rk+1) = R(k)+~AtI(k), %
Ri(k+1) = Ry(k). 3

Remark that, in the last equation we assume R, as a piece-wise constant function with jumps every time
new data come in. To simplify the model, let us define:

z(k) = (S(k) I(k) R(k) Ru(k))". ©

The discrete-time augmented SIR model (5)-(8), can be written as the following nonlinear state-space
representation:

xz(k+1) = Azx(k) + f(x(k)), (10)
where
1 0 0 0 —%Rt(k)l(k)S(k)
A = 8 1;&“ (1) 8 and f(z(k)) = %Rt<kéf(k>5(k) : 11
0 0 0 1 0

Since data for S(k), I(k), and R(k) are available, the measurement vector y(k) € R? is given by:
y(k) = Cx(k), (12)

1000
C:<O 10 0). (13)

where

0 010
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3. METHOD
We design the NLO as follow:
z(k+1) = Az(k) + f(2(k)) + K (y(k) —g(k)), (14)
where & (k) € R* is the estimated state from the NLO and K € R**3 is the observer gain to be determined
later. Let (k) = x(k) — &(k), (k) = y(k) — g(k), and Af(k) = f(x(k)) — f(z(k)). Subtracting (10)
with (14), we obtain:
@k +1) = (A— KC)&(k) + Af(k). (15)

The problem is to find K such that the error &(k) asymptotically converges toward zero, which guarantees
the estimated states converge to the actual states. Designing an NLO for a nonlinear system is not trivial and
sometime impossible. Researchers usually simplify the problem using assumptions, for example by assuming
the non-linearity is locally Lipschitz and bounded. These assumptions are common when designing NLO for
nonlinear systems, e.g., see [9], [10].

Assumption 1. The nonlinear function f is a one-sided Lipschitz, i.e., it satisfies

“ (X}?Z)Y (—_;Ii _(%14) (i}@;)) >0, (16)

for e > 0, where 1, denotes the identity matrix of size 4.

Assumption 2. The nonlinear function f satisfies the quadratic inner-boundedness condition, i.e.,
(k) \" (L 5Is\ [ &(k)
@ (Af(k)) (1 “n.) \afi) =" 4

Our augmented model satisfies both assumptions. From here, we can derive a sufficient condition for the
observer gain K, as stated in Theorem II1.2.

for e > 0 and v € R.

Lemma 3.1. The discrete-time augmented SIR model (5)-(8) is locally Lipschitz and bounded.

Proof: Since Ri(k + 1) = R¢(k), the Jacobian of (5)-(6) is linear. Thus, (5)-(6) are locally Lipschitz.
Furthermore from (5), for S(0),I(0) > 0 the solutions S(k) and I(k) will remain bounded. See detailed
explanation in [11]. [ |

Theorem 3.2. For €1,¢2 > 0 and v € R, the error dynamics (15) is asymptotically stable if there exist
matrices G = GT > 0 and R € R*** such that the following LMI holds

—G+(ea—e)l;, ATG-CTR+Y2:9, ATG-C'R

GA-R'C + “3521, G — el 0 < 0. (18)
GA-R'C 0 -G
Furthermore, the observer gain is given by:
K=G 'RT. (19)
Proof: Let us define a Lyapunov function:
V(k) = z(k)"Gz(k). (20)
Thus, if AV (k+1) =V(k+1) — V(k), then we have:
AV(k+1) = z2k)T(A-KC)"G(A-KC)-G)z(k)+2z(k)T(A—- KC)" GAf(k)
+Af(K)TGAS (k). (21

Expressing the right hand side of (21) as a matrix multiplication, we have:

aviesn) = () (A RYS KO —E AKTE) (T). e
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Adding the left hand side of (16) and (17) into (22), we have:

2(k) \" & ( E(k)
AVE+1) < [ Z » 7 23
e = (S5h) @ (a5 @9
where
P — (A-KC)'"G(A-KC)-G+ (e2—e€1)ly (A-KC)'G+ “241, 24)
- G(A—KC)+%I4 G — ey ’
Substituting (19) and applying Schur complement to (24), then ® < 0 is equivalent to (18). This completes
the proof. ]

Remark 1. Even though the observer guarantees the stability of the estimate, finding matrix R can be
difficult. Unfortunately, there is not systematic methods to obtain it. As for matrix G, it can be chosen as
long as the matrix is symmetric and positive definite.

4. ESTIMATION OF R; IN JAKARTA

Daily epidemiological data of COVID-19, such as the number of active case and the number of removed
case between April 2020 until August 2020, are used in our estimation. Code and data are available in:
https://github.com/agusisma/COVIDNLO. In this simulation, we use the following parameters: ¢; = 10,
€2 = 1, and v = 9. Furthermore, the symmetric matrix G is chosen as G = 0.114, while the matrix R is
chosen as:

0.0363  —0.0032 0 —0.0013
R=(-0.0320 0.0745 0 0.0057 | . (25)
0 0 0.0916 0
We assume the average infectious time 1 = 12 days with standard deviation of 3 days. Using these

parameters, the LMI (18) is negative definite with the largest and smallest Eigenvalues are -0.0989 and
-9.1294, respectively. The observer gain is then given by:

03630 —03200 0
—0.0320 07453 0

0 0 09160 | - (26)
00134 00573 0
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Figure 1: Real-time data fitting from the NLO for active and removed case with their estimation errors.
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Figure | shows estimation results from the NLO for the daily number of active and removed case. It can
be observed from the estimation errors that the NLO estimates these numbers reasonably accurate. The NLO
is compared with the EKF method presented in [3] and the results can be seen from Figure 2. It can be
observed that the estimation results are virtually almost identical. We should note, however, that these results
are obtained after a lengthy process of trial and error when determining the matrix R. Unfortunately, there
is no method that can be used to determine matrix R systematically. Having said that, the main advantage
of using NLO is its stability and efficiency compare to EKF, since the NLO does not require calculation of
inverse matrices.
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Figure 2: Comparison of the effective reproduction numbers R: from NLO and EKF. The Confidence Interval (CI),

indicated by the band, is a result from uncertainty in the infectious time %

5. ESTIMATION OF R; FROM OTHER COMPARTMENTAL MODEL

A natural question is then what happen to the estimation when we have unmeasured compartment? For
example, let us consider the following Susceptible-Exposed-Infectious-Removed (SEIR) model:

S(t) = —w, @n
Et) = w— pE(t), (28)
I(t) = pB(t) —~I(), (29)
R(t) = ~I(t). (30)

In this model, suppose that we do not have data on the number of exposed population. Applying the NLO
into the SEIR model, we obtain the estimated number of exposed case in Figure 3. It can be seen that the
number is quite reasonable and it follows the pattern of the infections compartment. However, the estimated
‘R in Figure 4 is lower than in Figure 2. When it comes to a question which one is a better estimate? we
argue that the estimated R; from Figure 2 is a better estimate since we cannot confirm that the estimated
number of exposed population is close to reality.
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Figure 3: Real-time data fitting using NLO from the SEIR model.
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Figure 4: Estimation of R; using NLO from the SEIR model.

6. CONCLUSION

In this paper, we have presented a new approach to estimate the effective reproduction number R; of
infectious diseases. The idea is to inject the discrete-time augmented SIR model with epidemiological data,
such as active and removed case. The main challenge is to find a suitable observer gain, since there are
no methods to solve the LMI systematically. However, once the observer gain is found, the method is
comparable with EKF. The main advantage of using NLO is its stability compared to EKF. Furthermore, it
does not require computation of inverse covariance matrices, which makes NLO more efficient. Extension to
other compartmental models can be done, without guarantee on the quality of the estimated parameters. For
general parameter estimation problems, we advise to use compartmental models where all data are available.
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