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Abstract

In this study, we propose deterministic and stochastic models of the spread of Covid-19 with vaccination
and quarantine programs. The model considers the facts that vaccines do not provide full protection, the
efficacy of current vaccines only lasts for a limited time, and recovered people could be reinfected. The
routine analysis was carried out for the deterministic model, including calculating an expression for the basic
reproduction number. The stochastic formulation makes use of a Continuous-Time Markov Chain (CTMC)
model. The basic reproduction number from the deterministic model relates to the stochastic model’s analysis
in producing a formula for the probability of extinction of Covid-19. Furthermore, numerical simulations are
carried out to analyze the sensitivity of the dynamical states and the basic reproduction number to the model
parameters. An expression for the probability of disease extinction in terms of the model parameters and initial
conditions is given. The results of this study suggest that current conditions in Indonesia will lead to a long-
term Covid-19 epidemic. One of the efforts to overcome the Covid-19 epidemic is by increasing the provision
of vaccines to the susceptible population. However, the number of vaccinated people in the population is not
always an ideal control for dealing with the spread of the disease. The vaccine efficacy is also important to
reduce the infection. As long as the efficacy is not sufficient to give a good protection to the human population
and it lasts only for a short period of time, quarantine is still needed.
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1. INTRODUCTION

In November 2019, the emergence of a new disease caused by the Coronavirus in Wuhan, China, shocked
the world. Now, it is known as Coronavirus disease (Covid-19). The disease has similar initial symptoms to
influenza, namely fever, cough, fatigue, sore throat, and difficulty breathing that can cause death [34]. Covid-
19 can be transmitted from one individual to another easily through the droplets of infected individuals which
contain Coronavirus. In a short time, there was a major outbreak in China and many countries all over the
world. Therefore, The World Health Organization (WHO) announced Covid-19 as a global pandemic on
March 2020 [33].

In order to decrease Covid-19 transmission, many strategies have been implemented such as quarantine of
infected individuals, local lockdown, and minimizing the movement of people from one country to others. In
addition to medical treatments and biological research about the virus itself, it is important to understand the
dynamics of the disease transmission. Therefore, mathematical analysis is needed to study the factors which
drive disease transmission and the effects of several control strategies before they are launched.

Many mathematical models have studied the transmission of Covid-19, starting from the SI and SIR models
[8], [2]. The authors in [8] apply the SIR model to provide predictions for the spread of Covid-19 for the
period of February until September 2020 by collecting data from several countries, namely Australia, USA,
Italy, China, South Korea, and India, from February to June 2020. Meanwhile, the authors in [2] propose a
model to predict Covid-19 using SIR and machine learning for smart health care and the welfare of Kingdom
of Saudi Arabia (KSA) residents. Following the discovery that individuals exposed to the Coronavirus have
an incubation period which lasts for a few days, a SEIR mathematical model was developed. In [5], the
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authors included vaccination parameters for susceptible individuals, with the assumption that Covid-19 will
not infect any individual who has been vaccinated. In other words, the vaccine is able to prevent the infection
completely. The authors in [15] propose the SEIR model and the Al model to predict the peak and size
of the Covid-19 epidemic in the non-Wuhan region of mainland China. The results of this study indicate
that if the lockdown is lifted, the outbreak in non-Wuhan areas in mainland China will double in size.
Adjustments of those models were made to present the actual situation better. Furthermore, some studies
divide infected individuals into symptomatic and asymptomatic compartments [23], [27]. Calculation of the
basic reproduction number Ry is the main objective in those studies.

Recently, one of the strategies to decrease the transmission of Covid-19 is the vaccination program,
including in Indonesia. Some works have studied the effects of vaccination on the spread of Covid-19.
Ghostine et al. [17] considered the vaccinated population and quarantine policy in an improved Covid-19
model. In [17], the authors assumed that all infected individuals follow strict quarantine guidelines. In reality,
since the number of infected people has increased rapidly lately, medical facilities cannot quarantine them in
hospitals. In [22], Machado et al. also discussed a model with vaccination and without quarantine policy, but
they considered the confirmed and unconfirmed infected populations. Savasan et al. [28] proposed a Covid-19
transmission model in Mediterranean Island by considering vaccination as well. In this work, they divided the
infected population into three sub-populations, namely mild infected individuals that are in quarantine hotels,
moderate infected individuals that are in hospitals, and severe infected individuals that are in intensive care
units. In January 2021, the Indonesian government has launched a vaccination program for citizens. Fuady
et al. [16] considered a model with a targeted vaccine allocation program in Indonesia without a quarantine
strategy. However, those models have not been able to accommodate the fact that the efficacy of current
vaccines is limited for a certain period of time in the body [10]. In [24], Omae et al. constructed a Covid-19
model to study the effects of vaccination by taking into account individuals with the first and second doses.
They also considered the scenario that vaccinated people may move to the susceptible population again.

Sinovac AstraZeneca Sinopharm Moderna Pfizer

Figure 1: The number of doses of Covid-19 vaccines in Indonesia until September 2, 2021

Currently, there are several types of vaccines for Covid-19. Since the implementation of the national
vaccination program to deal with Covid-19, since January 2021, Indonesia has used three types of vaccines
until June 2021. Namely the CoronaVac (Sinovac), AstraZeneca, and Sinopharm [9]. Lately, the government
of Indonesia has used other types of vaccines, such as Pfizer and Moderna. Until September 2021, Indonesia
has used about 217 million doses of vaccines in total. From the 217 million doses, the Sinovac is the most
commonly used vaccine in Indonesia, with about 181.9 million doses, followed by AstraZeneca with about
11.5 million doses. The complete data about the number of doses of Covid-19 vaccines in Indonesia until
September 2021 is shown in Figure 1.

According to [19], each vaccine has a different efficacy, as seen in Table 1. Since the efficacy of those
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vaccines varies even after getting vaccinated, people could be infected by the Coronavirus [35]. WHO also
suggests keeping taking precautions to protect ourselves since some people may still get ill from Covid-
19 after vaccination [35]. As such, there is an important question related to the eradication of Covid-19,
i.e., whether it is enough to be vaccinated. The present study aims to analyze the effects of vaccination in
controlling Covid-19 in Indonesia. For this reason, a vaccinated compartment will be added to the SEIR
model, which will be one of the unique features of this study. Since vaccinated individuals may get ill
from Covid-19, we assume that vaccinated individuals may become exposed (infected but not yet infectious)
after contact with an infected individual. We also consider that the current vaccines only have efficacy for
certain period of time. It is also assumed that vaccinated people have stronger immunity than susceptible
unvaccinated people. In this study, the vaccine’s efficacy affecting the immunity is represented implicitly by
the infection rate. Thus, the infection rate for vaccinated people by the infected is lower than the infection
rate for susceptible unvaccindated people. Additionally, we divide infected people into two sub-populations,
i.e., quarantined and those who are not. Only those who are not quarantined can transmit the Covid-19 to
others.

Furthermore, we develop a stochastic model closely related to the deterministic model to account for
variability in transmission and recovery behavior in the early stages of the Covid-19 pandemic. Previously,
a stochastic approach has been used by several authors [3], [31], [4]. Allen et al. [3] have considered
a stochastic SIR epidemic model, and Suryani et al. [31] developed a stochastic model for Middle East
Respiratory Syndrome (MERS) disease. Further, Zevika et al. [37] developed a model for the Zika virus
infection with Microcephaly in newborns, and Soewono et al. [30] considered a stochastic model for the Zika
virus with concern to pregnant women and microcephaly in newborns. Modeling the transmission behavior
with a stochastic approach is expected to display a stochastic simulation closer to the actual data. For the
stochastic model, we calculate a threshold value which is related to the probability of extinction of Covid-19.
This stochastic threshold is closely related to the basic reproduction number from the deterministic model.

Table 1: Vaccine efficacy by Coronavirus variants

Vaccine Efficacy at  Efficacy at Efficacy at Efficacy at Reference
preventing  preventing preventing preventing

disease: infection: disease: infection:

Alpha Alpha Beta, Gamma, Delta Beta, Gamma, Delta
CoronaVac 50% 44% 43% 38% [19]
Sinopharm 73% 65% 63% 56% [19]
AstraZeneca 90% 52% 85% 49% [19]
Moderna 94% 89% 94% 80% [19]
Pfizer 94% 86% 85% 78% [19]

This paper is organized as follows. In Section 2, we construct a deterministic mathematical model for
Covid-19 transmission. An expression for the basic reproduction number R is obtained and we consider
the existence of equilibrium points. In Section 3, we discuss a Continuous-Time Markov Chain (CTMC)
model for the spread of Covid-19. The non-linear dynamics of the CTMC model are approximated near the
disease-free equilibrium by a Galton—Watson multitype branching process. An expression for the probability
of disease extinction Py is obtained in terms of the model parameters and initial conditions for Ry > 1.
In Section 4, numerical simulations are carried out to analyze the role of parameters to the dynamics of
transmission, Rg, and Pg.

2. DETERMINISTIC MODEL

In this section, a deterministic model of Covid-19 transmission will be formulated. In the model, the human
population is divided into six compartments; namely susceptible, vaccinated, exposed (infected but not yet
infectious), infectious, quarantined: i.e., the hospitalized infected and self-quarantine infected at home, and
recovered. Let S(t), V (¢), E(t), I(t), Q(t), and R(t) denote the number of susceptible, vaccinated, exposed,
infectious, quarantined, and recovered humans after ¢ > 0 days. Thus, N(¢) = S(¢t) + V(t) + E(t) + I(t) +
Q(t) + R(t) denotes the total population after ¢ > 0 days.
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The model in this study considers three important facts. First, vaccines do not provide full protection so
that vaccinated people can still be infected [35], [36]. Second, the efficacy of current vaccines only lasts for
a limited time so that vaccinated people may return to the susceptible population after a certain time [10].
Third, recovered individuals have natural immunity that lasts for a period of time, after which they can be
reinfected. Therefore, they can return to the susceptible population [10]. Here, we assume that individuals
are recruited (through birth and immigration) into the population at a constant rate A > 0 so that the total
population is constant (N (¢t) = N(0) = N) and there is no disease-related death. That is, the only death
rate for humans is the natural death rate ¢ > 0 and A = Npu. Susceptible people will be vaccinated with a
vaccination rate o > 0. The vaccinated people will return to the susceptible population after the efficacy of
the vaccine vanishes with the reduction rate of antibodies x > 0. Infected individuals I can infect people in
compartments .S and V. However, we assume that the quarantined population () can not spread the disease
to others during their quarantine period. We assume frequency-dependent transmission where 5; > 0 and
B2 > 0 denote the infection rates of susceptible and vaccinated individuals, respectively. Since vaccination
provides some immunity, it is assumed that 3; > /2. People who have contact with infected individuals can
be exposed and enter the E compartment. They are in the latent period for an average of 1/ days, where
v > 0, and cannot infect others. Some people in the IZ compartment will be quarantined with the proportion
p € [0,1). The remaining proportion, 1 — p, are infectious and not quarantined I. People in I and @ can
recover from infection with a recovery rate 6 > 0. After recovered individuals lose their natural immunity,
they return to the susceptible population with the reduction rates of antibodies by natural infection v > 0.

The disease transmission is described in the following diagram.

~

Figure 2: Transmission diagram of Covid-19 considering the compartments of vaccinated people and quarantined people.

Based on the diagram transmission in Figure 2, the formulation of the deterministic model is as follows

%f:A_(aJru)s_gl%HnVJruR,
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System (1) is equipped with non-negative initial conditions, i.e., S(0) = Sy > 0, V(0) =V > 0, E(0) =
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Eo >0, 1(0) = I >0, Q(0) = Qo > 0, and R(0) = Ry > 0.

2.1. Positive Invariance

Since all variables of System (1) denote populations, then all of them must be non-negative for time ¢ > 0

when the initial conditions are also non-negative. Hence, it will be shown that System (1) is well-posed from

a biological point of view. Considering the first equation in System (1), ¢ > —/;.S for non-negative initial

> d
conditions. Therefore, '
S(t) > Spe ™ > 0. 2)

This means that S(¢) remains non-negative for all times ¢ > 0. Analogous results hold for the other variables
V(t), B(t), I(t), Q(t), and R(t).

The summation of all equations in System (1) yields a differential equation for the total population N ()
as follows AN

Solving equation (3) yields N(t) = % + (N(0) — %)e_“t, where N (0) is the initial total population. As
t — oo, then N(t) — % Hence, the feasible domain of System (1) is

A
QZQ&MELQMGR$OSN§E} 4)

which is positively invariant. Thus, System (1) is well-posed.

2.2. The Basic Reproduction Number
System (1) has two equilibrium points, namely a disease-free equilibrium (DFE) given by X, = (S, V,0,0,0,0),
where ( A A
G ) S S 7 S
pla+ K+ p) p(a+k+p)
and an endemic equilibrium X; = (S*,V* E* I*, Q*, R*) which will be discussed in Section (2.4).

S’:

The next-generation matrix method [ 1], [12] is applied to obtain an expression for the basic reproduction
number of the System (1). In System (1), only the F and I compartments contribute to the appearance
of new infections since it is assumed that quarantined individuals ) do not infect susceptible individuals.
Linearization of the differential equations for the state variables E'(t) and I(t) about the DFE X results in
the Jacobian matrix Bi( )45

1K+ @) + baax
—(vtp) ——
J= a+k+p ) )]
(1—-p)y —(0+p)
The Jacobian can be expressed as J =F — V [11] with

F = a+Rr+p and V= 0 g . 6)
+
(1-p)y 0 a

The entries of F correspond to the emergence of new infected individuals and the entries of V correspond
to all other state transitions [11], [12]. These matrices are used to compute the next-generation matrix as

follows
Br(k + p) + Pacx

0
NGM =FV~1 = (atrtpu)@+p) (7)

(1—-p)y 0
Y+ p
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The basic reproduction number is defined as the spectral radius of the next-generation matrix, Ro = p(NGM)

(1], [12]

®)

o _ [PBilst )+ Bral (L= p)y
TN O+ w(atrtp)y+p)

2.3. Stability of the Disease-free Equilibrium

If Ry < 1, then the unique disease-free equilibrium X of System (1) is locally asymptotically stable and
if Rg > 1, then X is unstable.
Proof: The evaluation of the Jacobian matrix for (1) at X, has eigenvalues —u, —(p + 0), —(p + v),
—(u+ a + k), and the roots of the polynomial

CLQ)\Q + al)\z +ag =0, )
where

4z = a+ K+ p,
a1 = (a+r+p)(y+2u+0),
ao = (o + K+ ) (v + )0 + p) (1 — RY).

The characteristic polynomial (9) has two negative roots when Ry < 1. Thus, it is clear that X is locally
asymptotically stable for Ry < 1 and unstable for Ry > 1. ]
2.4. Existence of a Unique Endemic Equilibrium

The unique endemic equilibrium point of System (1) is X7 = (S*, V*, E* I*, Q*, R*), with

(I"Bopp+ Ak +Ap) (v +p) (n+6) A

5 py (L—=p) (I Brfapp+ Ao fo+ Ak By + ABrp)
Ve (v + 1) (n+60) A
py (L—=p) (I Brfapp+ Ao fo+ Ak By + APrp)
E I e———— = R =
T 1 "0 ey

where I is defined implicitly by

F(I*) =boI*? 4 by I* + by,
by =1 B1B2 (w+v+0)y+ (0 +p) (n+v)),
bi=— 1 =p)AyupiB2(p+v)+Aubs (0 + 1) (1 +v) (v + 1)
+Ap(aBe+rpr+pb)(p+v+0)y+(0+pn) (L+v)),
bo=—A*(u+7) (p+a) (p+0) (a+ 5+ p) (RF — 1).

According to Descartes’ criterion, the polynomial f(I*) has one positive root (I* > 0) since the sign
of the coefficients of polynomial f(I*) change once, that is by > 0 and by < 0 when Ry > 1. Thus,
X™ is guaranteed to exist when R > 1. Figure 3 shows the bifurcation diagram of the equilibrium points
with respect to 2, whereas other parameters are fixed. When the values of (5 for the case Ry < 1, Xy is
asymptotically stable. Meanwhile, if the values of 35 in the case Ry > 1, X becomes unstable and a stable
endemic equilibrium exists.
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Figure 3: Bifurcation diagram of the equilibrium points with respect to parameter 82. Solid lines indicate the stable
equilibriums and dashed lines indicate unstable equilibriums.

3. STOCHASTIC MODEL
3.1. Continuous-Time Markov Chain Model

In this section, we discuss a stochastic model for the spread of Covid-19 based on the deterministic model
in Section 2. For convenience, the same notation used for the deterministic model is used in the stochastic
model for the appropriate states. Let S(t), V(¢), E(t), I(t), Q(t), and R(t) be discrete random variables
representing the number of susceptible, vaccinated, exposed (infected but not yet infectious), infectious,
quarantined, and recovered individuals after ¢ > 0 days, respectively. The related discrete-valued random
vector is denoted as

X(t) = (S@), V(1), E(t), I(t), Q(1), R(t))- (10)

A continuous-time Markov chain (CTMC) model is defined in terms of the state transitions that occur
for the stochastic process {X(¢)|t € [0,00)} during an infinitesimally-small time period A¢. The change
AX(t) = X(t+ At) — X(t) has an infinitesimal transition probability rA¢ + o(At). The state transitions
and corresponding rates are summarized in Table 2.

3.2. Branching Process Approximation

To determine the probability of disease extinction, the nonlinear dynamics of the CTMC model are
approximated near the DFE using a Galton-Watson multitype branching process as in [3], [4]. The only state
variables contributing to the appearance of new infections are E' and I. Therefore, the branching process
approximation is only applied to these states, and the number of susceptible and vaccinated people is assumed
to be close to disease-free equilibrium, S(t) ~ S and V() =~ V.

Both susceptible and vaccinated individuals can become infected through direct contact with infectious
(non-quarantined) individuals. In the following, we use the term ’offspring’ to describe susceptible or vac-
cinated people, each of whom was exposed through direct contact with an infectious person. The term
“offspring” will also be used for exposed people who develop an infectious state. We assume that the events
associated with the infected states E(¢) and I(t) are independent. That is, the number of offspring produced
by a single exposed or infectious individual does not depend on the number of offspring produced by other
exposed or infectious individuals. This assumption of independent events is the most restrictive leading to a
Galton-Watson multitype branching process [3], [6], [18], [20].
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Table 2: State transitions and corresponding rates describing the CTMC model.

Description Change Rate, r
Recruitment S—=5+1 A
Rate of vaccination (S, V)= (S—-1,V+1) aS
Death of S S—5-1 wS
Infection of S (S,E) = (S—1,E+1) B1SI/N
Death of V/ VoV-1 na
Infection of V (V,E) = (V—1,E+1) BVI/N
V becomes S V,8) = (V-1,5+1) KV
Exposed to infectious (B, ]) = (E-1,I1+1) (1 —-prE
Exposed to quarantined (E,Q) — (F—1,Q+1) v E
Death of E EFE—-FE-1 nE
Recovery of I (I,R) > (I—-1,R+1) 01
Death of 1 I—-1-1 ul
Recovery of Q (Q,R)— (Q—1,R+1) 0Q
Death of Q Q—-0Q-1 e
Loss of immunity (R,S) = (R—1,5+1) VR
Death of R R—-R-1 uR

The probability of disease extinction is defined as

Py = tlg{)lo Prob{E(t) + I(t) = 0}. an
Note that the probability of disease extinction does not depend on the number of quarantined individuals
Q(¢) since it is assumed quarantined individuals are not capable of infecting susceptible individuals. Thus,
even if infectious quarantined individuals are present, they will eventually recover or die without transmitting
the disease producing new infections. An expression for the probability of disease extinction can be obtained
from the offspring probability generating functions (pgfs) for the states £ and 1.

In general, for z;(0) = 1 and z,;(0) = 0 where j # i, the offspring probability generating function (pgf)
for individuals of type ¢ is the function f; : [0,1]™ — [0, 1]™ defined by

fi(l’],...,l'n): Z Z Pi(klw'wkn)xllgl"'xﬁna

ki1=1 kn=1

12)

where P;(k1, ..., ky) denotes the probability that one type ¢ individual gives ‘birth’ to k; individuals of type
j [3], [4]. For the branching process approximation, we consider exposed people as type 1 individuals (x1),
and infected people as type 2 individuals (z2).

The offspring pgf for E, given E(0) =1 and 1(0) =0, is

(1—p)yzs +py+p
v+

The term (1 — p)v/(v + w) is the probability that a person changes status from exposed to infectious (non-

quarantined), the term py/(vy+ ) is the probability that a person changes status from exposed to quarantined,

and the term p/(y 4 p) is the probability of natural death for an exposed person before becoming infectious
or quarantined.

The offspring pgf for I, given F(0) =0 and 1(0) =1, is

Br(k + p)ryzg + Paaaiza 4+ (0 + p) (o + K + p)
Pr(k+p) + Poa+ (0 + p)(a+ K+ p)

The term By (k+p)/ (51 (k+ 1)+ B2+ (0+p) (a+Kk+p)) is the probability that a susceptible person becomes

exposed as a result of contact with an infectious person. The term Saar/ (81 (k+p) + P+ (04 p) (a+ K+ 1))
is the probability that a vaccinated person becomes exposed as a result of contact with an infectious person.

fi(xy,w2) = (13)

fa(z1,22) = (14)
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The term (6 + p)(a + x + p)/(B1(k + i) + Boa + (0 + p)(a + & + p)) is the probability of recovery or
death of an infected person.
The expectation matrix M = [m;;] is a non-negative 2 x 2 matrix, whose entries are defined as

ml-j =

15
D, )
where the partial derivatives are evaluated at the fixed point (x1,22) = (1,1) [3], [4]. The entry m;; denotes
the expected number of type ¢ offspring produced by one individual of type j. The expectation matrix
M = [m;;] for the offspring pgfs is

Bi(k + p) + Boc

M- 0 Bi(k + ) + Baa + (0 + p) (o + K + p) 16)
(1—p)y Bi(k + p) + Paa

yH+u Bk A+ )+ Boa+ (04 p)(a + K+ )

Since the expectation matrix M is irreducible and the offspring pgfs f; are non-singular, there are at most
two fixed points (z1,z2) € [0,1]? [26]. If the process is subcritical or critical (p(M) < 1 or p(M) = 1),
then the point (1,1) is the only fixed point. However, if the process is supercritical (p(M) > 1), then
there is a unique second fixed point (g1, g2) € (0,1)2 of the offspring pgfs [18], [26]. The probability of
disease extinction is calculated using the fixed point (q1, g2) € (0,1)2. In particular, the probability of disease

extinction is
{ 1 it p(M) <1,
Py =

E(0) a7

o Vg it p(M) > 1.

Thus, the spectral radius of the expectation matrix p(M) serves as a threshold for disease persistence or
extinction for the stochastic model in the same way that the basic reproduction number R is a threshold for
the deterministic model [3], [4]. The spectral radius of M is given by

p(M) = % [A +/AT T 4AB} , (18)

where
A B1(k + p) + Bocx
Bk + p) + Pac+ (0 + p)(a + K+ p)’
_ (=ph
T+w
The Threshold Theorem in [4] gives the following relationship between p(M) and Ry:
Ro<l(=1,>1) <= p(M)<1(=1,>1). 19)

The hypotheses of the Threshold Theorem are satisfied since the matrix F' in (6) is non-negative, the
expectation matrix M is irreducible, and the matrix V' in (6) is a non-singular M -matrix.

Let E(0) = ep and I(0) = 4o for Ry > 1, then the probability of extinction of disease define
Pq = lim Prob{E(t) + I(t) = 0} = qql, (20)
— 00

for the unique fixed point (g1, g2) € (0,1)? of the offspring probability generating functions. The values of
q1 and g9 are given by

_py+p (A-py 1

+ +u RE
?_ 2 Y 2 0 (2])

= 72’
RO

q1

q2
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Here, the term ¢; denotes the probability of disease extinction for a single exposed individual. Meanwhile,
the term ¢ is the probability of disease extinction for a single infectious (non-quarantined) individual. The
expressions for g; and g can be interpreted epidemiologically. Given one exposed individual, either that
individual dies from natural causes with probability /(v + p), survives and progresses to a quarantined
status with probability py/(y + ), or survives and progresses to an infectious (non-quarantined) status with
probability (1—p)~y/(y+x). Then the infectious individual succesfully transmits the infection with probability
q1 = 1/R3. Note that go < g1 which is biologically reasonable since the disease is more likely to persist if
individuals are already infectious rather than only exposed to the disease.

4. NUMERICAL ANALYSIS

In this section, we perform numerical simulation of the deterministic and stochastic models as well as
sensitivity analysis of R, Py, and the equilibrium values with respect to the model parameters. All simulations
use the parameter values in Table 3.

Table 3: Parameter values with their description used in the simulation.

Symbol  Parameter Value Unit References
A Recruitment rate Npu human/day assumed
I Death rate 1/(70 x 365) human/day  assumed
o Vaccination rate 1.107% —4.2.103 1/day [25]

K The reduction rates of antibodies by vaccination 1/240 — 1/180 1/day [10]
51 Infection rate of S 0.119 — 0.282 - [32]
B2 Infection rate of V 0.05 —0.2 - assumed
P Proportion of quarantined humans E 0-1 - assumed
~ Latency period 1/5.5 1/day [14]
0 Recovery rate 1/10 1/day [14]
v The reduction rates of antibodies by natural infection 1/240 — 1/180 1/day [10]

Figure 4 shows the plots of one sample path of the CTMC model and the solution of deterministic model
with a = 0.0001, p = 0.45, 81 = 0.25, 82 = 0.1, kK = v = 1/210, and Ry = 1.1651. It can be seen that
for the SVEQIR model with loss of immunity to V' and R after a certain period of time, there will be an
epidemic in the long term.

4.1. Level Sets R

The level sets of Ry for some parameters are given in Figure 5. Figures 5(a) and 5(d) show that the values
of B2 and « are proportional to the value of R, while the value of « is inversely proportional to the value
of Ry. These results provide knowledge that the value of R can be reduced by using a vaccine with higher
efficacy (decreasing (2) and a longer effective period (decreasing k). Furthermore, Figures 5(b) and 5(c)
show that increasing p or o decreases the value of Rg. These results indicate that the value of Ry can be
reduced by increasing the proportion of people who are quarantined and the proportion of people who are
vaccinated.

4.2. Sensitivity Index of R

We analyzed the sensitivity of Ry to model parameters using a normalized forward sensitivity index as
defined in [7]. In particular, the forward sensitivity index of the normalized variable u, which depends on
the parameter p, is defined as
yu_ U P 22)
P op ou
The sensitivity index of R can be calculated for each model parameter given in Table 3. Using the parameter
values given in Table 3, the sensitivity index R to the parameters in System (1) is evaluated using equation
(22) and the results are given in Table 4.
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Simulation of ODE and CTMC model with Ro =1.1651
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Figure 4: Simulation of ODE (dashed) and CTMC (solid) models with o = 0.0001,p = 0.45, 31 = 0.25,82 = 0.1,k =
v =1/210, and Ry = 1.1651.

Table 4: Sensitivity indices of Ro to parameters.

Scenario 1
Ro = 1.1651
(a, p) = (0.0001, 0.45)

Scenario 2
Ro = 1.2724
(ar, p) = (0.0042,0.1)

Parameter (p) _ Sentivity index (YX0)

Parameter (p)

Sentivity index (T;’fo )

1 [ -0.4998 1 6 -0.4998
2 B +0.4959 2 581 +0.3704
3 p -0.4091 3 B2 +0.1296
4 a -0.0061 4 « -0.1037
5 K +0.0060 5 K +0.1029
6 Ba +0.0041 6 p -0.0556
7 o -0.0003 7 o +0.0005
8 o +0.0001 8 o +0.0001
9 v 0 9 v 0

Table 4 shows the sensitivity indices of Ry for two scenarios of pairs o and p. From the table, it can
be observed that the level of antibody reduction by natural infection () has no effect on Ry. This occurs
because the expression for Ry does not contain v. The basic reproduction number R is the most sensitive to
the recovery rate (#) and the infection rate of S by I (1), respectively. Meanwhile, R is the least sensitive
to the latency period () and the natural death rate (u), respectively. However, these four parameters are not
easy to control through human intervention. Thus, we pay our attention to other parameters, namely p, «, &,
and [o. These parameters have different sensitivity orders in Scenarios 1 and 2, depending on the magnitude
of each value. The value of Ry in Scenario 1 is closer to the situation in Indonesia. Under Scenario 1, Ry
is more sensitive to the parameter p, followed by «, x, and Ss. This is in accordance to the level set of Ry
in the previous subsection. Figure 5(b) that showed the level set of Ry to p and « has the longest interval
of Ry compared to three other figures. Under this circumstance, since the current vaccines do not give full
protection and the antibodies from vaccination has limited time, it is still necessary to quarantine the infected.
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Figure 5: Level set of Ry with data in Table 3: o = 0.0001,p = 0.45, 31 = 0.25, 82 = 0.1,k = v = 1/210.

4.3. Probability of Disease Extinction

The expression ¢; in equation (21) represents the probability of extinction of the disease in the state £, and
the expression g2 represents the probability of extinction in the state /. In Figure 6, the sensitivity of each
quantity is shown in relation to vaccination rate, infection rate, and proportion of quarantined individuals.
Figure 6 shows that the values of « and p are directly proportional to ¢; and g2, while values of 35 are
inversely proportional to g; and gs. These results indicate that increasing the vaccine’s efficacy, the rate of
vaccination, and the proportion of quarantined infected people contributes to improving the probability of
extinction of Covid-19 in the population.

The probability of disease extinction Fj is calculated for several sets of initial conditions using the equation
(20). This probability is compared with the numerical estimate (Approx.) of disease extinction in the CTMC
model simulation. The numerical estimations are obtained from the proportion of 10,000 sample paths of the
CTMC for which disease extinction occurs (E(t) = I(t) = 0) before time ¢ = 320, which is the peak of the
deterministic model. The results are summarized in Table 5 with parameter values as in Table 3 and initial
conditions S(0) = 30,000 — E(0) — I(0), V(0) =0, E(0), I(0), Q(0) =0, and R(0) = 0.

In Table 5 it can be seen that the analytical value of the probability of extinction is very close to the
estimated extinction value obtained from the 10,000 sample simulation. This shows that the probability of
disease extinction can be calculated by the formula obtained Py (21). Meanwhile, for the simulation case in
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Figure 6: Level set of ¢ (a) and (b), and level set of g2 (c) and (d) by using the data in Table 3: @ = 0.0001,p =
0.45, 61 = 0.25, 8, = 0.1,k = v = 1/210.

Table 5: An analytical calculation of the probability of disease extinction Py and its numerical approximation (Approx.)

based on 10,000 sample paths of the CTMC model.

E0) 1(0) Ro Py Approx.
1 0 1.1651 0.8552  0.8545
2 0 1.1651 0.7314  0.7316
0 1 1.1651 0.7367  0.7381
0 2 1.1651 0.5428  0.5493
1 1 1.1651 0.6301  0.6256
1 2 1.1651 0.4642  0.4565
2 1 1.1651 0.5389  0.5320
2 2 1.1651 0.3970  0.3990

Figure 4, for a very long time (¢ = 3000 days), the values obtained are 7(3000) ~ 65 and E(3000) =~ 65.
This result gives the value Py = 1.36 x 107!* ~ 0 where Ry = 1.1651. This is in accordance with the
solution plots in Figure 4, where there will be an epidemic for a long time.
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Figure 7: Sensitivity analysis of V, @, I, and R with respect to parameters «, 32, p, and x with data in Table 3.

4.4. Sensitivity Analysis of Variables

Next, we analyze the sensitivity of solutions of System (1) to changes in the model parameters. There are
six variables and nine parameters which yield 54 sensitivity analysis simulations. The sensitivity simulation
is obtained by the following procedure. Rewriting System (1) as X; = G(X,p) with X; = %, p =
(o, B1, B2, 07,0, iy k5, )T and X (¢) = (S(t),V(t), E(t),1(t),Q(t), R(t))T. The notation 9, X represents
the change of solution X (¢) to the change of parameter p [29], [21].

Let K = 0,X and assume that K is differentiable, then the derivative of K to time ¢ can be obtained by
using the chain rule as follows

K = 0,G(X,p) = 0xG 9, X + 0, X, (23)

so that
0K = (0xG)K + 0,G. 24)

Equation (24) is a dynamical system with 0xG and 0,G are 6 x 6 Jacobian matrix and 6 x 9 matrix,
respectively. Since the system yields 54 sensitivity simulations, then we only focus on variables V, @, I,
and R along with the fluctuating parameters due to human interventions or public policies such as «a, (2,
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p, and k. Furthermore, a sensitivity analysis around the non-explicit endemic equilibrium (10) is simulated
based on the values of the parameters in Table 3, as shown in Figure 7.

Values in Figure 7 represent the sensitivity of variables for the corresponding parameters, whereas the
signs (positive or negative) denote the relation of direction. Hence, from Figure 7, we observe that V, Q,
and R are the most sensitive to «, x, and followed by 2 and p, even to 52 and k. Figures 7(a) and (c) show
that variable V' is directly proportional to o and p, but two other figures show it is inversely proportional
to P2 and . Meanwhile, the direction change of variables (), I and R fluctuate at the beginning of time,
but after ¢ = 1500 they show almost no more change. This means that the endemic equilibrium has been
reached. Furthermore, from the magnitude of the change of variables to time ¢ in Figure 7(b) and (c) show
that parameters 02 and p just make a slight change to all variables. However, V' is much more sensitive to «
compared to other parameters and even other variables to that parameter. Therefore, increasing the vaccinated
people and extending the antibodies resistance due to vaccines will reduce the number of the infected.

0.5

0.035 ‘ ‘ I
——a=0, Ry=1.1722
0.45f ——a=1.10" R =1.1651
0.03f
04L& a=5.10"*, R =1.1386
—a=1.10%, R =1.11

N L 0.025 ]
=035 = ——a=4.2.10%, R =0.9947
4 g
= 03f =
= = 0.02f
z i
©0.25 °
S 5
£ I £0.015F
§ 02 S
o 0 R < e
£ o1 ——a=0, Ry=1.1722 | &

——a=1.10%, R =1.1651 0.017

0.1 a=5.10"*, R =1.1386
—a=1.10%, R =1.11 0.005 -
0.05 1
——a=4.2.10%, R =0.9947
0 ‘ ‘ I I I 0 ‘ | | ‘ |
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Days Days
@) (b)

Figure 8: The proportions of V(¢) + R(t) and I(¢) + Q(t) with different c.

The current study states that herd immunity in Indonesia will be achieved if the proportion of the population
that has immunity is about 70% [13], [1]. In this model, we assume that the number of humans who have
immunity is the total population of V' (¢)+ R(t). Figure 8 shows the proportions of V' (¢)+ R(¢) and I(¢)+Q(t)
in a population with several different a scenarios. In Figure 8, it can be seen that the average vaccination
rate has a significant effect on increasing the proportion of the population who has immunity. However, for
possible scenarios on average vaccine administration based on [25], herd immunity has not been achieved in
Indonesia.

The next important factor is o, which is the infection rate of people who have been vaccinated. The
greater the value of [, the lower the vaccine efficacy. Figure 9 shows the proportions of V' (¢) + R(t) and
I(t) + Q(t) in a population with several scenarios of f2. From Figure 9, it can be said that the lower the
vaccine efficacy, the lower the amount V'(¢) + R(¢) and the higher the amount I(¢) + Q(¢) . Thus, it can be
concluded that the use of vaccines with higher efficacy can be applied as an effort to reduce the number of
infected humans.

Considering the two most influential factors in the vaccinated compartment, namely the vaccination rate
and the infection rate in the vaccinated compartment, we simulated several scenarios of the pairs of («, 33).
Figure 10 shows the simulation results in the proportion of the number of compartments V' (¢) + R(¢) and
I(t)+ Q(t) for the scenarios of the highest and lowest rate combinations at the values « and (32, respectively.
From the simulation, it can be seen that the effect of the value of « is greater than the effect of the value of
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Figure 10: The proportions of V (t) + R(t) and I(t) + Q(t) with different pairs of («, 32).

B2 for each proportion. That is to say, the speed of administration of the vaccine is more influential than the
efficacy of the vaccine to increase the number of populations that have immunity and reduce the number of
infected people.

Figure 11 shows a simulation of several scenarios for the pairs of («,p). The proportion of I(t) + Q(t)
is always proportional to R as shown in Figure 11(b), while the proportion of V(¢) + R(t) is not always
proportional to Ry as shown in Figure 11(a). However, it can be observed that for the same value of p, the
greater the value of «, the greater the proportion of V' (¢)+ R(t). Meanwhile, for the same « value, the greater
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Figure 11: The proportions of V' (¢) + R(¢) and I(¢) + Q(t) with different pairs of («, p).

the value of p, the lower the value of V(t) + R(t). It can be explained by the parameter p (proportion of
people quarantined) which is indirectly inversely proportional to the proportion of R(t), while the parameter
«a (vaccination rate) is proportional to the proportion of V(¢).

5. CONCLUSION

In this study, we considered an extended SEIR model of Covid-19 transmission with the addition of
vaccinated and quarantined compartments. Thus, the rate of vaccination, the efficacy of the vaccine used,
and the proportion of the number of infected people who were quarantined became control parameters. We
analyzed some important indicators for disease transmission through deterministic and stochastic models,
namely the basic reproduction number and the probability of extinction of Covid-19. Numerical simulations
were performed for the deterministic and stochastic models reflecting the epidemic in Indonesia. The results
of this study lead to two main recommendations for dealing with the Covid-19 epidemic in Indonesia. First,
increasing the proportion of humans who are vaccinated to reduce the possibility of people being infected
when coming into contact with an infected person. Second, since the current vaccines do not provide full
protection and their efficacy only lasts for a limited time, quarantining infected people is still necessary to
reduce the proportion of infectious individuals transmitting the disease. The efforts to increase the rate of
vaccination can be done by increasing the average daily administration of vaccines in Indonesia. On the other
hand, the limitations of the Indonesian government on distributing the vaccine can be offset by implementing
a quarantine program for infected people. The quarantine does not have an impact on increasing the number
of people who are immune directly, but it can reduce the number of people who can transmit the disease.
Additionally, an important parameter for reducing the number of infected people is the efficacy of the vaccine
itself. We believe that this study provides some insights in understanding the transmission of Covid-19 with
the vaccination program, although this model is limited by some assumptions.
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