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Abstract

We discuss the dynamics of new COVID-19 epidemic model by considering asymptomatic infections and
the policies such as quarantine, protection (adherence to health protocols), and vaccination. The proposed
model contains nine subpopulations: susceptible (S), exposed (E), symptomatic infected (I), asymptomatic
infected (A), recovered (R), death (D), protected (P ), quarantined (Q), and vaccinated (V ). We first show the
non-negativity and boundedness of solutions. The equilibrium points, basic reproduction number, and stability
of equilibrium points, both locally and globally, are also investigated analytically. The proposed model has
disease-free equilibrium point and endemic equilibrium point. The disease-free equilibrium point always exists
and is globally asymptotically stable if basic reproduction number is less than one. The endemic equilibrium
point exists uniquely and is globally asymptotically stable if the basic reproduction number is greater than
one. These properties have been confirmed by numerical simulations using the fourth order Runge-Kutta
method. Numerical simulations show that the disease transmission rate of asymptomatic infection, quarantine
rates, protection rate, and vaccination rates affect the basic reproduction number and hence also influence the
stability of equilibrium points.

Keywords: COVID-19 epidemic model, asymptomatic infection, quarantine, protection, vaccination, Lyapunov
function, stability analysis.
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1. INTRODUCTION

Coronavirus Disease 2019 (COVID-19) is a infectious disease for humans caused by SARS-CoV-2 [3], [24],
[35]. COVID-19 affects the human respiratory system which can cause acute pneumonia [37]. COVID-19
patients generally have initial symptoms such as fever, dry cough, and fatigue [4]. The spread of COVID-19
virus through the virus in patient droplets inhaled by humans either directly or indirectly [3]. Indirect spread
can be through mediums that are commonly touched by humans, such as table, office tools, and so on.
The patients with strong immune systems cause them to have no symptoms (they are called asymptomatic
infected) [16], [27], [36]. Therefore, COVID-19 is of global concern because patients are difficult to detect
and spread quickly.

The first case of COVID-19 was confirmed in Wuhan, China, in December 2019 [37]. At first, COVID-19
was considered a common and harmless disease such as influenza. Over time, COVID-19 spread rapidly so
that the World Health Organization (WHO) declared COVID-19 as world pandemic on March 11, 2020 [9].
The impact of COVID-19 pandemic is not only on human health, but indirectly it has also reduced the quality
and quantity of economic sectors, social, and educational in all countries. Therefore, it is necessary to have
policies from government to improve the sectors affected by this world pandemic.

The prevention and mitigation to reduce COVID-19 cases is carried out by implementing health protocols,
such as wearing masks, reducing contact, wash hands routinely, and social distancing as recommended
by WHO [26], [27]. In addition, other mitigation policies have also been implemented such as lockdown,
quarantine especially for COVID-19 patients, mobility restrictions, maximum member capacity for an event,
and so on [37]. Some of these policies are implemented by adjusting the real conditions of the disease
transmission. It is important to understand the mechanism of COVID-19 spread.
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Mathematical modeling is an approach to understanding the dynamics of COVID-19 spread. The model can
be a phenomenological model or a mechanistic compartment model. The paper [41] conducted an analysis
of growth curve of COVID-19 cases using phenomenological model including the classical logistic growth
model, generalized logistic model and generalized Richard model. The phenomenological model can provide
an approximation of the growth curve of COVID-19 cases to real data, both daily data and cumulative data
[13], [14], [32]. On the other hand, the phenomenological model cannot provide a mechanism of COVID-19
transmission. The mechanism of COVID-19 transmission including the measurement of intervention policies
can be described by compartment models [14]. Many compartment models of COVID-19 spread have been
developed, such as SIR (susceptible-infected-recovered), SEIR (susceptible-exposed-infected-recovered), and
other development [39], [12], [24], [40], [43], [36], [35]. In particular, Soewono [39] has appied the SEIR
model to fit the early period of COVID-19 cases in Wuhan, Diamond Princess, and Jakarta-cluster.

One of policies implemented for patients is self-quarantine. In [44], Zhang et al. constructing the susceptible-
exposed-infected-quarantined-recovered (SEIQR) model because the infected individuals are required by
government to either self-quarantine or hospital quarantine. The quarantined individuals cannot infect others
due to loss of contact with susceptible individuals [9]. The existence of a quarantined subpopulation is
expected to reduce the spread of COVID-19.

Other policies implemented for uninfected individuals (such as susceptible individuals) are by applying
health protocols and vaccination [18], [9]. The group of individuals who adhere to health protocols such
as wearing masks and social distancing will get protection due to loss of contact with other individuals.
In [27], López & Rodo constructed the susceptible-exposed-infected-quarantined-recovered-death-protected
(SEIQRDP) model by considering the existence of protected individuals. The protected individuals who
neglect health protocols will become susceptible again and they can be infected by COVID-19 viruses. In
other words, there is no guarantee that a protected individual will be completely spared from COVID-19.
The one can reduce the risk of death due to COVID-19 is vaccination program that prioritizes uninfected
individuals (susceptible or protected individuals). In [19], Ghostine et al. constructing the susceptible-exposed-
infected-quarantined-recovered-death-vaccinated (SEIQRDV) model by considering the vaccine efficacy. In
vaccination program, vaccine efficacy becomes a benchmark for community as a determination to follow
vaccination or not [18]. Several types of COVID-19 vaccines such as BioNTech, Moderna, Sinovac, and
BNT162b2 mRNA have efficacy above 90% [23], [34]. The vaccine efficacy p < 100% causes vaccinated
individuals are still possible to be infected by viruses. Since the protected individuals do not guarantee to
avoid COVID-19 infection [27], the protected individuals who are vaccinated may also be infected by viruses.

COVID-19 patients who have high immunity may become an asymptomatic infected. This individual group
differs from exposed individuals who are developing the virus but are not infectious [16], [27]. Megasari et
al. [29] have reported asymptomatic infections in East Java, Indonesia have spread which is characterized
by a high prevalence of infection. Markets and crowded places have a high risk of COVID-19 transmission
by asymptomatic infection because their status is not detected. To control the presence of asymptomatic
infections, rapid testing for asymptomatic and symptomatic individuals can be a strategy to reduce the
basic reproduction number [6]. Hence, a mathematical model which includes the asymptomatic infected
is needed. In [37], Riyapan et al. constructed the susceptible-exposed-symptomatic infected-asymptomatic
infected-quarantined-recovered-death (SEIAQRD) model by considering asymptomatic infections. After virus
incubation period, exposed individuals become either symptomatic or asymptomatic infected. The transmission
rates of both are different. Furthermore, in [5], Adila stated that the transmission rate of asymptomatic infection
was lower than symptomatic infection due to the transmission through droplets was lower.

The various characteristics of COVID-19 disease and the policies implemented are important to consider
in the mathematical model. In this work, we propose the COVID-19 model by considering asymptomatic
infections and the policies such as quarantine, implementing health protocols, and vaccination. First, in Sec-
tion 2, we construct the susceptible-exposed-symptomatic infected-asymptomatic infected-recovered-death-
protected-quarantined-vaccination (SEIARDPQV) model. Several assumptions about vaccine efficacy in [18]
are considered in the model. The first assumption is that some of vaccinated subpopulation has successfully
acquired maximum immunity which is assumed to be recovered group [38]. The second assumption is that
the proportion of vaccine inefficacy (failure of efficacy) from vaccinated subpopulation can be infected by
COVID-19 virus. In Section 3–6, we study the dynamics of proposed model containing basic properties
(non-negativity and boundedness of solutions), equilibrium points, basic reproduction number, and stability
of equilibrium points, both locally and globally. In Section 7, we showed a numerical simulation using fourth
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order Runge-Kutta. Finally, we conclude in Section 8.

2. MODEL FORMULATION

The model of COVID-19 transmission in this work describes the interaction between nine subpopulations,
that is, S(t), E(t), I(t), A(t), R(t), D(t), P (t), Q(t), and V (t), which represent the subpopulations size
of susceptible, exposed, symptomatic infected, asymptomatic infected, recovered, death due to COVID-
19, protected, quarantined, and vaccinated individuals, respectively. The model assumes that susceptible
individual (S(t)) may become exposed if there is a contact between susceptible individual with infected
individual. Protected subpopulation (P (t)) is susceptible individuals who carry out health protocols such
as wearing masks, maintaining cleanliness, social distancing, and restricting mobility. Hence, the protected
subpopulation avoids contact with infected individuals. However, the protected individuals may lose their
patience and become careless in implementing health protocols, and thus these individuals become susceptible
again [27]. We also assumed that there are susceptible individuals who undergo a vaccination program so
that they move into the vaccinated subpopulation (V (t)), where the proportion of vaccine efficacy p was
successful in gaining immunity during period of a clinical experiment.

The interactions between nine subpopulations of the proposed model are shown by compartment diagram
in Figure 1. The proposed model is expressed in a first-order ordinary differential equations system (1),

dS(t)

dt
= Λ+ η2P (t)− S(t) (βI(t) + βaA(t))− (η + σ + µ)S(t),

dE(t)

dt
= S(t) (βI(t) + βaA(t)) + V (t) (δI(t) + δaA(t))− (α+ µ)E(t),

dI(t)

dt
= θαE(t)− (γ + γ4 + µ)I(t),

dA(t)

dt
= (1− θ)αE(t)− (γa + γ5 + µ)A(t),

dR(t)

dt
= νQ(t) + qV (t) + bγI(t) + γaA(t)− µR(t), (1)

dD(t)

dt
= ν2Q(t) + (1− b)γI(t),

dP (t)

dt
= ηS(t)− (η2 + σ1 + µ)P (t),

dQ(t)

dt
= γ4I(t) + γ5A(t)− (ν + ν2 + µ)Q(t),

dV (t)

dt
= σS(t) + σ1P (t)− V (t) (δI(t) + δaA(t))− (q + µ)V (t),

with non-negative initial values S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = R0, D(0) =
D0, P (0) = P0, Q(0) = Q0, V (0) = V0. The definition of parameters in model (1) could be seen in Table 1.

To simplify the model (1), we introduce new symbols ξ1 = η+ σ+ µ, ξ2 = α+ µ, ξ3 = γ + γ4 + µ, ξ4 =
γa + γ5 + µ, ξ5 = η2 + σ1 + µ, ξ6 = ν + ν2 + µ, and ξ7 = q + µ. Since the first four equations and the last
three equations of Model (1) do not depend on R(t) and D(t), we reduce the nine-dimensional model to a
seven-dimensional model expressed in System (2).
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dS(t)

dt
= Λ+ η2P (t)− S(t) (βI(t) + βaA(t))− ξ1S(t),

dE(t)

dt
= S(t) (βI(t) + βaA(t)) + V (t) (δI(t) + δaA(t))− ξ2E(t),

dI(t)

dt
= θαE(t)− ξ3I(t),

dA(t)

dt
= (1− θ)αE(t)− ξ4A(t), (2)

dP (t)

dt
= ηS(t)− ξ5P (t),

dQ(t)

dt
= γ4I(t) + γ5A(t)− ξ6Q(t),

dV (t)

dt
= σS(t) + σ1P (t)− V (t) (δI(t) + δaA(t))− ξ7V (t).

Figure 1: The compartment diagram of the proposed COVID-19 epidemic model.

3. NON-NEGATIVITY AND BOUNDEDNESS OF SOLUTIONS

Since Model (2) describes the interaction of human subpopulations, the solutions of the system must be non-
negative and ultimately bounded. The following theorem has guaranteed the non-negativity and boundedness
of solutions of Model (2).

Theorem 3.1. All solutions of the reduced COVID-19 Model (2) subject to non-negative initial values are
non-negative and ultimately bounded.

Proof: We first prove that S(t) and P (t) are non-negative. Assume the contrary; then let t1 and t2 be
the first time such that they are equal to zero at t1 and t2, respectively. From first and fifth equations of
Model (2), we get
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Table 1: The definition of parameters in Model (2).

Parameter Definition

Λ Recruitment rate of S(t)
µ Natural death rate
η Protection rate
η2 Rate of carelessness in protection
σ Vaccination rate of S(t)
σ1 Vaccination rate of P (t)
p Vaccine efficacy
q p/(Average time that V (t) need to obtain immunity)
β Transmission rate in S(t) from symptomatic infection
βa Transmission rate in S(t) from asymptomatic infection

δ = (1− p)β Transmission rate in V (t) from symptomatic infection
δa = (1− p)βa Transmission rate in V (t) from asymptomatic infection

α 1/(Average incubation period)
θ Symptomatic proportion
γ Disease-free rate of I(t)
b Recovery proportion
γ4 Quarantine rate of I(t)
γa Recovery rate of A(t)
γ5 Quarantine rate of A(t)
ν Recovery rate of Q(t)
ν2 COVID-19 death rate of Q(t)

dS(t)

dt

∣∣∣
t=t1

= Λ+ η2P (t1),

dP (t)

dt

∣∣∣
t=t2

= ηS(t2). (3)

Since the right-hand side of equations (3) depends on t1 and t2, we separate this proof into two cases.
If t1 ≤ t2, then P (t1) ≥ 0. We have

dS(t)

dt

∣∣∣
t=t1

= Λ+ η2P (t1) > 0.

This means that S(t) > 0 on (t1, t1+ε1) for arbitrary small positive constant ε1. This leads to a contradiction.
As a result, S(t) ≥ 0 for all t ≥ 0. Consequently, dP (t)

dt |t=t2 = ηS(t2) ≥ 0. Similarly, P (t) ≥ 0 on (t2, t2+ε2)
for arbitrary small positive constant ε2. This leads to a contradiction. As a result, P (t) ≥ 0 for all t ≥ 0.

If t1 > t2, then S(t2) > 0. We have

dP (t)

dt

∣∣∣
t=t2

= ηS(t2) > 0.

This means that P (t) > 0 on (t2, t2+ε2) for arbitrary small positive constant ε2. This leads to a contradiction.
As a result, P (t) ≥ for all t ≥ 0. Consequently, dS(t)

dt |t=t1 = Λ + P (t1) > 0. Similarly, S(t) > 0 on
(t1, t1 + ε1) for arbitrary small positive constant ε1. This leads to a contradiction. As a result, S(t) ≥ 0 for
all t ≥ 0.

The non-negativity of E(t), I(t), A(t), Q(t), V (t) can also been shown in similar way. Therefore, all
solutions of Model (2) are non-negative.

We next let N(t) = S(t) + E(t) + I(t) +A(t) + P (t) +Q(t) + V (t). Based on Model (2), we have

dN(t)

dt
= Λ− µN(t)− pV (t)− γI(t)− (ν + ν2)Q(t)− γaA(t) ≤ Λ− µN(t).
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It is easy to show that N(t) satisfies

N(t) ≤ Λ

µ
+

(
N(0)− Λ

µ

)
exp(−µt),

and thus lim
t→+∞

N(t) ≤ Λ
µ . The feasible region of Model (2) is

Ω =

{
(S,E, I, A, P,Q, V ) ∈ R7

+ ∪ {⃗0}
∣∣∣S + E + I +A+ P +Q+ V ≤ Λ

µ

}
.

Therefore, all solutions of Model (2) are ultimately bounded.

4. EQULIBRIUM POINTS AND BASIC REPRODUCTION NUMBER

We first let ω = βθα
ξ3

+ βa(1−θ)α
ξ4

,Ψ1 = ξ7
(1−p) ,Ψ2 = µη

ξ5
+ µ, and X(t) = (S(t), E(t), I(t), A(t), P (t),

Q(t), V (t)). By setting the right-hand side of equations in Model (2) to be zero, we get the solutions as
equilibrium points. We see the second equation of Model (2):

S(t)

(
βθα

ξ3
+

βa(1− θ)α

ξ4

)
E(t) + V (t)

(
δθα

ξ3
+

δa(1− θ)α

ξ4

)
E(t)− ξ2E(t) = 0.

It is clear that either E(t) = 0 or S(t)
(

βθα
ξ3

+ βa(1−θ)α
ξ4

)
+ V (t)

(
δθα
ξ3

+ δa(1−θ)α
ξ4

)
= ξ2, from which

we obtain two equilibrium points of Model (2), that is, disease-free equilibrium point χDFE and endemic
equilibrium point χ∗. The disease-free equilibrium point is χDFE(SDFE , 0, 0, 0, PDFE , 0, V DFE) with

SDFE =
Λξ5

ξ1ξ5 − η2η
, PDFE =

Λη

ξ1ξ5 − η2η
, V DFE =

Λ(σξ5 + σ1η)

ξ7(ξ1ξ5 − η2η)
,

which is always exists.
We next determine the basic reproduction number (R0) of Model (2). First, we define Y (t) = (E(t),

I(t), A(t), Q(t)), which is the vector of infected compartment. The expression d
dtY (t) can be represented

by d
dtY (t) = F −M where

F =

S(t) (βI(t) + βaA(t)) + V (t) (δI(t) + δaA(t))
0
0
0

 ,

and

M =

 ξ2E(t)
−θαE(t) + ξ3I(t)

−(1− θ)αE(t) + ξ4A(t)
−γ4I(t)− γ5A(t) + ξ6Q(t)

 .

The Jacobian matrices of F and M at χDFE are respectively

F =

0 βSDFE + δV DFE βaS
DFE + δaV

DFE 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and

M =

 ξ2 0 0 0
−θα ξ3 0 0

−(1− θ)α 0 ξ4 0
0 −γ4 −γ5 ξ6

 .
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Then the next generation matrix is

FM−1 =


RI +RA

βSDFE+δV DFE

ξ3

βaS
DFE+δaV

DFE

ξ4
0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

where RI = Λξ5
Ψ1ξ2(ξ1ξ5−η2η)

(
Ψ1 + σ + σ1η

ξ5

)(
βθα
ξ3

)
and RA = Λξ5

Ψ1ξ2(ξ1ξ5−η2η)

(
Ψ1 + σ + σ1η

ξ5

)(
βa(1−θ)α

ξ4

)
.

The basic reproduction number is the radius spectral ρ of the next generation matrix, which in our case is
given by

R0 = ρ(FM−1)

= RI +RA

=
Λξ5

Ψ1ξ2(ξ1ξ5 − η2η)

(
Ψ1 + σ +

σ1η

ξ5

)(
βθα

ξ3
+

βa(1− θ)α

ξ4

)
We notice that the basic reproduction number has two terms which are from the symptomatic and asymp-

tomatic infections, respectively [37].
The second equilibrium point is endemic equilibrium point χ∗(S∗, E∗, I∗, A∗, P ∗, Q∗, V ∗) with

S∗ =
Λ

ξ1 − η2η
ξ5

+ ωE∗ , I∗ =
θα

ξ3
E∗, A∗ =

(1− θ)α

ξ4
E∗, P ∗ =

ηΛ

ξ1ξ5 − η2η + ωξ5E∗ ,

Q∗ =

(
γ4θα

ξ3ξ6
+

γ5(1− θ)α

ξ4ξ6

)
E∗, V ∗ =

ξ2
(1− p)ω

− Λ

(1− p)
(
ξ1 − η2η

ξ5
+ ωE∗

) ,
where E∗ satisfies the following quadratic equation:

A1(E
∗)2 +A2E

∗ +A3 = 0, (4)

with

A1 = ξ2ω,

A2 = Ψ1ξ2 −
η2ηξ2
ξ5

+ ξ1ξ2 − ωΛ,

A3 =
ξ1ξ2Ψ1

ω
− Λξ1 −

η2ηξ2Ψ1

ξ5ω
+

η2ηΛ

ξ5
− Λ(Ψ1 −Ψ2).

The existence and uniqueness of endemic equilibrium point is given by following theorem.

Theorem 4.1. The endemic equilibrium point χ∗ exists and unique if R0 > 1, and does not exist if R0 < 1.

Proof: Suppose that D represents a discriminant of Equation (4). We first proof that the endemic equi-
librium point χ∗ exists and unique if R0 > 1. If R0 > 1, then Λω

ξ2

(
Ψ1 −Ψ2 + ξ1 − η2η

ξ5

)
> Ψ1(ξ1ξ5−η2η)

ξ5
.

We consider that

−4A1A3 = −4ξ22

(
ξ1Ψ1 −

Λξ1ω

ξ2
− η2ηΨ1

ξ5
+

η2ηωΛ

ξ5ξ2
− Λω(Ψ1 −Ψ2)

ξ2

)
= 4ξ22

((
Λω(Ψ1 −Ψ2)

ξ2
+

Λξ1ω

ξ2
− η2ηωΛ

ξ5ξ2

)
−Ψ1

(
ξ1 −

η2η

ξ5

))
> 0.

Therefore, E∗ = −A2+
√
D

2A1
> 0 if R0 > 1, which is unique.
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The positivity V ∗ > 0 is equivalent to Λ
ξ1− η2η

ξ2
+ωE∗ < ξ2

ω . In other words, by substituting E∗, we have to

show
√
D > ξ2

(
Ψ1 − ξ1 +

η2η
ξ5

+ ωΛ
ξ2

)
if R0 > 1. We consider that

D = ξ22

(
Ψ1 −

η2η

ξ5
+ ξ1 −

ωΛ

ξ2

)2

+4ξ22

((
ωΛ(Ψ1 −Ψ2)

ξ2
+

Λωξ1
ξ2

− η2ηωΛ

ξ5ξ2

)
−Ψ1

(
ξ1 −

η2η

ξ5

))
= ξ22

(
Ψ2

1 + 2Ψ1

(
ξ1 −

η2η

ξ5
− ωΛ

ξ2

)
+

(
ξ1 −

η2η

ξ5
− ωΛ

ξ2

)2
)

+4ξ22

((
ωΛ(Ψ1 −Ψ2)

ξ2
+

Λωξ1
ξ2

− η2ηωΛ

ξ5ξ2

)
−Ψ1

(
ξ1 −

η2η

ξ5

))
= ξ22

(
Ψ2

1 − 2Ψ1

(
ξ1 −

η2η

ξ5
− ωΛ

ξ2

)
+

(
ξ1 −

η2η

ξ5
− ωΛ

ξ2

)2
)

+4ξ2Λω

(
ξ1 −

η2η

ξ5
−Ψ2

)
> ξ22

(
Ψ1 − ξ1 +

η2η

ξ5
+

ωΛ

ξ2

)2

.

It is clear that
√
D > ξ2

(
Ψ1 − ξ1 +

η2η
ξ5

+ ωΛ
ξ2

)
. Therefore, the endemic equilibrium exists and unique if

R0 > 1.
We next proof that the endemic equilibrium point does not exist if R0 < 1. If R0 < 1, then Ψ1(ξ1ξ5−η2η)

ξ5ω
>

Λ
ξ2

(
Ψ1 −Ψ2 + ξ1 − η2η

ξ5

)
and ξ1 − η2η

ξ5
> ωΛ

Ψ1ξ2

(
(Ψ1 −Ψ2) + ξ1 − η2η

ξ5

)
> ωΛ

ξ2
. We consider that

A3

A1
=

ξ1Ψ1

ω2
− Λξ1

ξ2ω
− η2ηΨ1

ξ5ω2
+

η2ηΛ

ξ5ξ2ω
− Λ

(Ψ1 −Ψ2)

ξ2ω

=
Ψ1(ξ1ξ5 − η2η)

ξ5ω2
− Λξ1

ξ2ω
+

η2ηΛ

ξ5ξ2ω
− Λ

(Ψ1 −Ψ2)

ξ2ω
> 0,

and
A2

A1
=

1

ω

(
Ψ1 + ξ1 −

η2η

ξ5
− ωΛ

ξ2

)
> 0.

This means that Equation (4) has no positive solution. Thus, Theorem 4.1 is proven.

5. LOCAL STABILITY

In this section, we investigate the local stability of equilibrium points of non-linear Model (2) with
linearization around equilibrium points. In this linearization, the Jacobian matrix at equilibrium point χk

is given by

J(χk) =



J1 0 −βSk −βaS
k η2 0 0

ωEk −ξ2 βSk + δV k βaS
k + δaV

k 0 0 (1− p)ωEk

0 θα −ξ3 0 0 0 0
0 (1− θ)α 0 −ξ4 0 0 0
η 0 0 0 −ξ5 0 0
0 0 γ4 γ5 0 −ξ6 0
σ 0 −δV k −δaV

k σ1 0 J2


,
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with J1 = −ωEk − ξ1 and J2 = −(1 − p)ωEk − ξ7. By evaluating the real part of all eigenvalues of
the Jacobian matrix, we get the following stability conditions for the disease-free equilibrium point and the
endemic equilibrium point.

Theorem 5.1. The disease-free equilibrium point χDFE of Model (2) is locally asymptotically stable if
R0 < 1.

Proof: Assume that R0 < 1. By evaluating |J(χDFE)− λI| = 0, we have the characteristic equation
of Jacobian matrix J at χDFE as follow.

(−ξ7 − λ)(−ξ6 − λ) ((−ξ5 − λ)(−ξ1 − λ)− η2η) (b1 + b2) = 0, (5)

with

b1 = (−ξ4 − λ)
(
(−ξ2 − λ)(−ξ3 − λ)− θα(βSDFE + δV DFE)

)
,

b2 = (1− θ)α(ξ3 + λ)(βaS
DFE + δaV

DFE).

It is clear that the first two eigenvalues are λ1 = −ξ6 < 0 and λ2 = −ξ7 < 0. Two other eigenvalues
(λ3, λ4) are determined by ((−ξ5 − λ)(−ξ1 − λ)− η2η) = 0 or equivalently by λ2 + (ξ1 + ξ5)λ+ (ξ1ξ5 −
η2η) = 0. Since −(ξ1+ξ5) < 0 and ξ1ξ5−η2η > 0, the real parts of eigenvalues λ3 and λ4 are negative. The
rest of eigenvalues are determined by b1+b2 = 0. By recalling the equalities θα(βSDFE+δV DFE) = ξ2ξ3RI

and (1− θ)α(βaS
DFE + δaV

DFE) = ξ2ξ4RA, b1 + b2 = 0 can be written as

λ3 + c1λ
2 + c2λ+ c3 = 0 (6)

where c1 = (ξ1 + ξ2 + ξ3), c2 = ((1−RI)ξ2ξ3 + (1−RA)ξ2ξ4 + ξ4ξ3), and c3 = ξ2ξ3ξ4(1−R0).
Based on the well-known Routh-Hurwitz Criterion, the solutions of Equation (6) have negative real parts

if and only if c1 > 0, c3 > 0, and c1c2 − c3 > 0. We see that c1 is always positive and if R0 < 1, then
c3 = ξ2ξ3ξ4(1 − R0) > 0. Furthermore, if R0 < 1, then RI < 1 and RA < 1. Hence, c1c2 − c3 =
((1−RI)ξ2ξ3 + (1−RA)ξ2ξ4) (ξ1 + ξ2 + ξ3) + ξ1ξ4ξ3 + ξ23ξ4 +R0ξ2ξ3ξ4 > 0. Therefore, all solutions of
the characteristic Equation (5) have negative real parts if R0 < 1. In other words, the disease-free equilibrium
point is locally asymptotically stable if R0 < 1.

Theorem 5.2. Let the endemic equilibrium point χ∗ of Model (2) exists. The point χ∗ is locally asymptotically
stable if ∆3 > 0, and ∆5 > 0 where ∆3 and ∆5 are stated in the proof.

Proof: We first assume that the endemic equilibrium χ∗ exists and use the following notations

Y1 = −(ξ2 + ξ3 + ξ4) < 0,

Y2 =

(
ξ2βθα

ω
+

ξ2βa(1− θ)α

ω
− ξ2ξ3 − ξ2ξ4 − ξ3ξ4

)
< 0,

Y4 = −(βθ + βa(1− θ))αS∗ < 0,

Y5 = ωξ3ξ4S
∗ > 0,

Y6 = −(δθ + δa(1− θ))αV ∗ < 0,

Y7 = ωξ3ξ4(1− p)V ∗ > 0,

Y8 = −(ωE∗ + ξ1) + Y1 < 0,

Y9 = −(ωE∗ + ξ1)Y1 − Y2 > 0,

Y10 = −(ωE∗ + ξ1)Y2 − ωE∗Y4 > 0,

Y11 = ωE∗Y5 > 0,

Y12 = η (σ1Y4 − η2Y6) ,

Y13 = η (η2Y7 − σ1Y5) .

By evaluating |J(χ∗)− λI| = 0, the characteristic equation of the Jacobian matrix J at χ∗ can be written
as

(−ξ6 − λ)
(
λ6 +W1λ

5 +W2λ
4 +W3λ

3 +W4λ
2 +W5λ+W6

)
= 0, (7)
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where

W1 = ξ5 − Y8 + (1− p)ωE∗ + ξ7,

W2 = Y9 − ξ5Y8 − η2η + ((1− p)ωE∗ + ξ7) (ξ5 − Y8) ,

W3 = ξ5Y9 + Y10 + η2ηY1 − (1− p)ωE∗Y6 + ((1− p)ωE∗ + ξ7) (Y9 − ξ5Y8 − η2η) ,

W4 = ξ5Y10 + Y11 + η2ηY2 + ((1− p)ωE∗ + ξ7) (ξ5Y9 + Y10 + η2ηY1)

+(1− p)ωE∗ (Y7 − (ωE∗ + ξ1)Y6 − σY4 − ξ5Y6) ,

W5 = ξ5Y11 + ((1− p)ωE∗ + ξ7) (ξ5Y10 + Y11 + η2ηY2)

+(1− p)ωE∗ (ξ5Y7 − ξ5(ωE
∗ + ξ1)Y6 − ξ5σY4 + σY5 + (ωE∗ + ξ1)Y7 − Y12) ,

W6 = ((1− p)ωE∗ + ξ7) (ξ5Y11) + (1− p)ωE∗ (ξ5σY5 + (ωE∗ + ξ1)ξ5Y7 − Y13) .

From Equation (7), we get the first eigenvalue λ1 = −ξ6 < 0. We next show that Wi > 0 for all i = 1, 2, ..., 6.
1) It is clear that W1 > 0.
2) Since −ξ5Y8 > ξ5ξ1 > η2η, ξ5Y9 > −η2ηY1, and ξ5Y10 > −η2ηY2, we have W2 > 0, W3 > 0, and

W4 > 0.
3) Since ξ5Y10 > −η2ηY2 and −ξ5(ωE

∗ + ξ1)Y6 > η2ηY6 > Y12, we have W5 > 0.
4) Since (ωE∗ + ξ1)ξ5Y7 > η2ηY7 > Y13, we have W6 > 0.
Based on Lienard-Chipart Criterion in [15], all characteristics roots of Equation (7) have negative real parts

if and only if the third and the fifth Routh-Hurwitz Criterion are satisfied, that are ∆3 > 0, and ∆5 > 0,
where

∆3 =

∣∣∣∣∣W1 1 0
W3 W2 W1

W5 W4 W3

∣∣∣∣∣ = W3(W1W2 −W3)−W1(W1W4 −W5) > 0,

and

∆5 =

∣∣∣∣∣∣∣∣∣
W1 1 0 0 0
W3 W2 W1 1 0
W5 W4 W3 W2 W1

0 W6 W5 W4 W3

0 0 0 W6 W5

∣∣∣∣∣∣∣∣∣ = W5[W4∆3 −W2 (W1(W2W5 −W1W6)−W3W5)

+W1(W4W5 −W3W6)−W 2
5 ]−W6[W3∆3

−W1(W1(W2W5 −W1W6)−W3W5)]

> 0

Therefore, the endemic equilibrium point χ∗ is locally asymptotically stable if ∆3 > 0, and ∆5 > 0.

6. GLOBAL STABILITY

In this section, we investigate the global stability of equilibrium points by introducing suitable Lyapunov
functions. The conditions for global stability of the equilibrium point of Model (2) are given by the following
theorems.

Theorem 6.1. The disease-free equilibrium point χDFE(SDFE , 0, 0, 0, PDFE , V DFE) of Model (2) is glob-
ally asymptotically stable if R0 < 1.

Proof: Assume that R0 < 1 and let Z(x) = (x− 1− ln (x)). Since the fifth equations and the last
equation of Model (2) do not depend on variable Q(t), we consider the following positive definite Lyapunov
function L1(X̃(t)) where X̃(t) = (S(t), E(t), I(t), A(t), P (t), V (t)):

L1(X̃(t)) = SDFEZ
(

S(t)

SDFE

)
+

(
η2 + σ1

ξ5

)
PDFEZ

(
P (t)

PDFE

)
+ V DFEZ

(
V (t)

V DFE

)
+ E(t)

+
βξ2
ξ3ω

I(t) +
βaξ2
ξ4ω

A(t).
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Since the geometric mean is less than or equal to the arithmetic mean [28], Λ = ξ1S
DFE − η2P

DFE ,
ξ7 = σSDFE+σ1P

DFE

V DFE , ξ1 = σ + µ+ η2η
ξ5

+ ησ1

ξ5
+ ηµ

ξ5
, and R0 < 1, we get

dL1(X̃(t))

dt
=

(
1− SDFE

S(t)

)
dS(t)

dt
+

(
η2 + σ1

ξ5

)(
1− PDFE

P (t)

)
dP (t)

dt
+

(
1− V DFE

V (t)

)
dV (t)

dt

+
dE(t)

dt
+

βξ2
ξ3ω

dI(t)

dt
+

βaξ2
ξ4ω

dA(t)

dt

=

(
1− SDFE

S(t)

)
(Λ + η2P (t)− S(t) (βI(t) + βaA(t))− ξ1S(t))

+

(
η2 + σ1

ξ5

)(
1− PDFE

P (t)

)
(ηS(t)− ξ5P (t))

+

(
1− V DFE

V (t)

)
(σS(t) + σ1P (t)− V (t) (δI(t) + δaA(t))− ξ7V (t))

+ (S(t) (βI(t) + βaA(t)) + V (t) (δI(t) + δaA(t))− ξ2E(t))

+
βξ2
ξ3ω

(θαE(t)− ξ3I(t)) +
βaξ2
ξ4ω

((1− θ)αE(t)− ξ4A(t))

= ξ1S
DFE

(
2− SDFE

S(t)
− S(t)

SDFE

)
+η2P

DFE

(
SDFE

S(t)
+

S(t)

SDFE
− SDFEP (t)

S(t)PDFE
− PDFES(t)

P (t)SDFE

)
+σ1P

DFE

(
2 +

S(t)

SDFE
− PDFES(t)

P (t)SDFE
− V (t)

V DFE
− V DFEP (t)

V (t)PDFE

)
+σSDFE

(
1 +

S(t)

SDFE
− V (t)

V DFE
− V DFES(t)

V (t)SDFE

)
+
ξ2
ω

(βI(t) + βaA(t))

(
ω

ξ2

(
SDFE + (1− p)V DFE

)
− 1

)
=

(
µ+

ηµ

ξ5

)
SDFE

(
2− SDFE

S(t)
− S(t)

SDFE

)
+ η2P

DFE

(
2− SDFEP (t)

S(t)PDFE
− PDFES(t)

P (t)SDFE

)
+σ1P

DFE

(
4− SDFE

S(t)
− PDFES(t)

P (t)SDFE
− V (t)

V DFE
− V DFEP (t)

V (t)PDFE

)
+σSDFE

(
3− SDFE

S(t)
− V (t)

V DFE
− V DFES(t)

V (t)SDFE

)
+

ξ2
ω

(βI(t) + βaA(t)) (R0 − 1) .

≤ 0 (8)

Moreover, dL1(X̃(t))
dt = 0 is achieved if and only if X̃(t) = χDFE . The LaSalle’s Invariance Principle in

[28] guarantees that the disease-free equilibrium point is globally asymptotically stable.

Theorem 6.2. Let the endemic equilibrium point χ∗ of Model (2) exists. The point χ∗ is globally asymptot-
ically stable.

Proof: We consider a positive definite Lyapunov function

L2(X̃(t)) = S∗Z
(
S(t)

S∗

)
+

(
η2 + σ1

ξ5

)
P ∗Z

(
P (t)

P ∗

)
+ V ∗Z

(
V (t)

V ∗

)
+ E∗Z

(
E(t)

E∗

)
+
βξ2
ξ3ω

I∗Z
(
I(t)

I∗

)
+

βaξ2
ξ4ω

A∗Z
(
A(t)

A∗

)
.
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Since X̃∗ exists and the geometric mean is less than or equal to the arithmetic mean [28], we get

dL2(X̃(t))

dt
=

(
1− S∗

S(t)

)
dS(t)

dt
+

(
η2 + σ1

ξ5

)(
1− P ∗

P (t)

)
dP (t)

dt
+

(
1− V ∗

V (t)

)
dV (t)

dt

+

(
1− E∗

E(t)

)
dE(t)

dt
+

βξ2
ξ3ω

(
1− I∗

I(t)

)
dI(t)

dt
+

βaξ2
ξ4ω

(
1− A∗

A(t)

)
dA(t)

dt

=

(
1− S∗

S(t)

)
(ξ1S

∗ − ξ1S(t)) +

(
1− S∗

S(t)

)
(η2P (t)− η2P

∗)

+

(
1− P ∗

P (t)

)(
(η2 + σ1)

P ∗S(t)

S∗ − (η2 + σ1)P (t)

)
+

(
1− V ∗

V (t)

)
(σS(t)− σS∗)

+

(
1− V ∗

V (t)

)
(σ1P (t)− σ1P

∗) +

(
1− V ∗

V (t)

)
(ξ7V

∗ − ξ7V (t)) + 2ξ2E
∗

−βξ2I
∗2E(t)

ωI(t)E∗ − βaξ2A
∗2E(t)

ωA(t)E∗ − E∗S(t) (βI(t)− βaA(t))

E(t)
− E∗V (t) (δI(t)− δaA(t))

E(t)

+

(
1− S∗

S(t)

)
S∗ (βI∗ + βaA

∗) +

(
1− V ∗

V (t)

)
V ∗ (δI∗ + δaA

∗)

=

(
µ+

ηµ

ξ5

)
S∗
(
2− S∗

S(t)
− S(t)

S∗

)
+ η2P

∗
(
2− S∗P (t)

S(t)P ∗ − P ∗S(t)

P (t)S∗

)
+σS∗

(
3− S∗

S(t)
− V (t)

V ∗ − V ∗S(t)

V S∗

)
+ σ1P

∗
(
4− S∗

S(t)
− V (t)

V ∗ − V ∗P (t)

V P ∗ − P ∗S(t)

P (t)S∗

)
+βS∗I∗

(
3− I∗E(t)

I(t)E∗ − E∗S(t)I(t)

E(t)S∗I∗
− S∗

S(t)

)
+δV ∗I∗

(
3− I∗E(t)

I(t)E∗ − E∗V (t)I(t)

E(t)V ∗I∗
− V ∗

V (t)

)
+βaS

∗A∗
(
3− A∗E(t)

A(t)E∗ − E∗S(t)A(t)

E(t)S∗A∗ − S∗

S(t)

)
+δaV

∗A∗
(
3− A∗E(t)

A(t)E∗ − E∗V (t)A(t)

E(t)V ∗A∗ − V ∗

V (t)

)
≤ 0.

Furthermore, dL2(X̃(t))
dt = 0 is obtained only if X̃(t) = χ∗. By applying the LaSalle’s Invariance Principle

in [28], the endemic equilibrium χ∗ is globally asymptotically stable.

7. NUMERICAL SIMULATIONS

In this section, we provide several numerical simulations to illustrate the spread of COVID-19 under
several different scenarios. For this aim, we solve the model (2) numerically using the fourth-order Runge-
Kutta scheme in [10] with the step size h = 0.01. We first set the parameters value of Model (2) as given by
Table 2. In Table 2, we assume the transmission rate βa = 0.5β due to asymptomatic infections spread fewer
droplets than symptomatic infections [5]. Since vaccination can be reserved for both susceptible individuals
and protection individuals without discrimination, we assume the vaccination rate σ1 = σ. In our simulation,
we use Moderna as vaccine type with vaccine efficacy 94.1% throughout 4 weeks in clinical trials [25].

7.1. The Impact of Asymptomatic Infection
Aguiar and Stollenwerk in [2] have noticed that asymptomatic infection has significant role in a disease

transmission. Motivated by their work, we first study the impact of asymptomatic infection using the value
of parameters in Table 2 to Model (2). We obtain two equilibrium points χDFE1(3433117, 0, 0, 0, 1527075,
0, 51597) and χ∗(2185185, 3650, 891, 1404, 971986, 3990, 32823) which are the disease-free equilibrium
point and the endemic equilibrium point, respectively. The basic reproduction number is R0 = 1.57 which
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Table 2: The definition and value of parameters of Model (2).

Parameter Definition Value Source

Λ Recruitment rate 49316712
70×365

[5]
µ Natural death rate 1

70×365
[6]

η Protection rate 0.015 [27]
η2 Rate of carelessness in protection 1

30
[27]

σ Vaccination rate of S(t) 3.5
104

[19]
σ1 Vaccination rate of P (t) 3.5

104
assumed

p Vaccine efficacy 0.941 [25]
q p/(Average time that V (t) need to obtain immunity) 0.941

4∗7 [25]
β Transmission rate in S(t) from symptomatic infection 2.015

107
[6]

βa Transmission rate in S(t) from asymptomatic infection 1.0075
107

assumed
δ Transmission rate in V (t) from symptomatic infection 11.8885

109
(1− p)β

δa Transmission rate in V (t) from asymptomatic infection 5.94425
109

(1− p)βa

α 1/(Average incubation period) 1
5.2

[33]
θ Symptomatic proportion 0.4 [6]
γ Disease-free rate of I(t) 0.115 [37]
γ4 Quarantine rate of I(t) 0.2 [37]
γa Recovery rate of A(t) 0.1 [37]
γ5 Quarantine rate of A(t) 0.2 [37]

ν + ν2 Disease-free rate of Q(t) 0.115 [37]
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Figure 2: Numerical solution of Model (2) with parameter values in Table 2 at : (a) time interval [0, 300] and (b) time
interval [5.5 × 104, 7 × 104]. In (b), the left-hand side of y-axis represents a scale of solutions S(t), P (t), Q(t), and
V (t), while the right-hand side of y-axis represents a scale of solutions E(t), I(t), and A(t). The solution of Model (2)
subject to initial value X(0) and parameters value in Table 2 is convergent to χ∗ even though it is oscillating.
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means that the average number of new exposed individual by one infected individual in susceptible and
vaccinated subpopulations is 1.57. This indicates that the infection of virus SARS-CoV-2 will continue
to exist. In addition, we also get the third and the fifth Routh-Hurwitz Criteria, ∆3 = 0.282 > 0 and
∆5 = 1.139 × 10−8 > 0, respectively. This means that the endemic equilibrium point χ∗ is locally and
globally asymptotically stable. The visualization for this stability is shown in Figure 2. Here, the initial value
is set to be X(0) = (43000000, 1031, 30100, 20077, 1100000, 25089, 100225), which corresponds to the
population size and relevant data reported by government in East Java Province, Indonesia. Figure 2(a) and
2(b) show the numerical solutions in the interval t ∈ [0, 300] and t ∈ [5.5 × 104, 7 × 104], respectively. It
is seen that the solution oscillates but it converges to χ∗. According to Kassa et al. [21], such oscillation
is caused by the asymptomatic infection, i.e., the asymptomatic infection could re-emerge the disease in the
future. To verify this statement in proposed Model (2), we take βa = 0 and then we get R0 = 0.88 < 1.
Hence, the disease will disappear in the future. This phenomenon is depicted in Figure 3, which shows
that the disease-free equilibrium point χDFE1 of Model (2) is locally and globally asymptotically stable.
Therefore, the asymptomatic infection in the epidemic model of COVID-19 has significant role, especially
both R0 and global stability of equilibrium points. This is in accordance with the results presented in [22].
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Figure 3: Numerical solution of Model (2) with parameter values in Table 2 except βa = 0 at : (a) time interval [0, 300]
and (b) time interval [5.5× 104, 7× 104]. In (b), the left-hand side of y-axis represents a scale of solutions S(t), P (t),
Q(t), and V (t), while the right-hand side of y-axis represents a scale of solutions E(t), I(t), and A(t). The solution of
Model (2) subject to initial value X(0) and this modified parameter value (that is, βa = 0) is convergent to χDFE1.
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7.2. The Impact of Quarantine

The quarantine is one of COVID-19 mitigations that can reduce the size of infected subpopulations [8],
[1], [31], [33], [45]. To see this effect, we take γ4 = 0.4 and γ5 = 0.4, which are twice the values of the
quarantine rates in Table 2. In this case, we have R0 = 0.95 < 1 and the disease-free equilibrium point
χDFE2(3433117, 0, 0, 0, 1527075, 0, 51597) is the only equilibrium point. The equilibrium point χDFE2 is
locally and globally asymptotically stable. The visualization of this properties is shown in Figure 4. Notice
that it is case, the COVID-19 disease will disappear in the future. This fact is caused by the increasing
number of infected individuals who are quarantined such that they cannot spread COVID-19 to others. This
shows that the greater quarantine rate leads to the lower basic reproduction number, which is a desirable
condition for eradicating disease in future.
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Figure 4: Numerical solution of Model (2) with parameter values in Table 2 except γ4 = 0.4 and γ5 = 0.4 at : (a)
time interval [0, 300] and (b) time interval [5.5× 104, 7× 104]. In (b), the left-hand side of y-axis represents a scale of
solutions S(t), P (t), Q(t), and V (t), while the right-hand side of y-axis represents a scale of solutions E(t), I(t), and
A(t). The solution of Model (2) subject to initial value X(0) and this modified parameters value (that is, γ4 = 0.4 and
γ5 = 0.4) is convergent to χDFE2.

7.3. The Impact of Protection

In the proposed model (2), protected individuals are assumed to be individuals who adhere to health
protocols such as wearing mask, reducing contact, wash hands routinely, and social distancing. The authors
in [45], [17], [11] stated that one of the best ways to eliminate COVID-19 is to reduce contact between
individuals. Based on that statement, we triple the value of protection rate in Table 2, which is η = 0.045.
With this protection rate, the basic reproduction number R0 = 0.97 < 1 and thus we only have the disease-free
equilibrium point χDFE3(2124805, 0, 0, 0, 2835386, 0, 51597), which is locally and globally asymptotically
stable; see Figure 5.



DYNAMICS OF COVID-19 EPIDEMIC MODEL WITH ASYMPTOMATIC INFECTION, QUARANTINE, . . .121

0 50 100 150 200 250 300

Time (in Day)

(a)

0

1

2

3

4

5

S
u
b
p
o
p
u
la

ti
o
n
 S

iz
e
 (

in
 H

u
m

a
n
)

10
7

S(t)

E(t)

I(t)

A(t)

P(t)

Q(t)

V(t)

5.5 6 6.5 7

Time (in Day)

(b)
10

4

0

0.5

1

1.5

2

2.5

3

S
u
b
p
o
p
u
la

ti
o
n
 S

iz
e
 f
o
r 

D
a
s
h
e
d
 C

u
rv

e

10
6

0

2000

4000

6000

8000

10000

S
u
b
p
o
p
u
la

ti
o
n
 S

iz
e
 f
o
r 

S
o
lid

 C
u
rv

e

Figure 5: Numerical solution of Model (2) with parameter values in Table 2 except η = 0.045 at : (a) time
interval [0, 300] and (b) time interval [5.5×104, 7×104]. In (b), the left-hand side of y-axis represents a scale
of solutions S(t), P (t), Q(t), and V (t), while the right-hand side of y-axis represents a scale of solutions
E(t), I(t), and A(t). The solution of Model (2) subject to initial value X(0) and this modified parameter
value (that is, η = 0.045) is convergent to χDFE3.

Since the protected subpopulation has no direct contact with the infected individuals, the size rate of both
exposed and infected subpopulations is inversely proportional to size rate of protected subpopulation. We can
see that the size of protected subpopulation is larger and the size of exposed and infected subpopulations
is smaller than the case presented in Figure 2. This shows that an increase in rate of protection causes
a decrease in transmission of COVID-19. Therefore, we also claim that increasing the rate of protection
is strategy that can reduce the spread of COVID-19. In addition, implementing health protocols are the
cost-effective strategies to control highly infected subpopulations [7].

7.4. The Impact of Vaccination
In March 2021, the vaccination program began to be implemented in East Java Province, Indonesia. Various

efforts have been carried out to increase a vaccination rate by government, such as mandatory requirements for
regional leaders, civil servants, health workers, and anyone involved in government administration [20]. This
show that the vaccination program is a reliable COVID-19 mitigation because it can make active infections
disappear in a limited time [42]. To see the impact of vaccination, we take vaccination rates σ1 = σ = 7

104 ,
which are much larger than the vaccination rates in Table 2. The basic reproduction number in this case
R0 = 0.83 < 1 and we do not have an endemic equilibrium point. The disease-free equilibrium point
χDFE4(1813187, 0, 0, 0, 798234, 0, 54329) is locally and globally asymptotically stable. Therefore, the
increasing vaccination rates may avoid the endemic conditions. This situation is depicted in Figure 6.

In East Java Province, the most widely used vaccine types were AstraZenecca (with vaccine efficacy 70.4%
during 12-week experimental period) and Sinovac (with vaccine efficacy 50.7% during 2-week experimental
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Figure 6: Numerical solution of Model (2) with parameter values in Table 2 except σ1 = σ = 7
104

at : (a) time interval
[0, 300] and (b) time interval [5 × 104, 7 × 104]. In (b), the left-hand side of y-axis represents a scale of solutions
S(t), P (t), Q(t), and V (t), while the right-hand side of y-axis represents a scale of solutions E(t), I(t), and A(t).
The solution of Model (2) subject to initial value X(0) and this modified parameters value (that is, σ1 = σ = 7

104
) is

convergent to χDFE4.

period) [25]. If we apply parameter values as in Table 2, except p = 0.704, q = 0.704
12×7 for first scenario and

p = 0.507, q = 0.507
2×7 for second scenario, then we get the basic reproduction number from both scenarios

R0 = 1.59 and R0 = 1.58, respectively, which are almost the same as when we take p as in Table 2. This
show that high vaccine efficacy has no significant effect on basic reproduction number.

8. CONCLUSION

In this paper, we introduce the new COVID-19 model by considering the asymptomatic infection and
the policies such as protection (wearing mask, social distancing, and other health protocols), quarantine for
infected individuals, and vaccination. The non-negativity and boundedness of solutions of the proposed model
have been proven. The proposed model has two equilibrium points, that are, the disease-free equilibrium point
and the endemic equilibrium point. From there, we have determined the formulation of basic reproduction
number, R0, using the spectral radius of next generation matrix. The local stability of equilibrium points
is approximated by linearization and Jacobian Matrix. The global stability of equilibrium points is studied
by defining the Lyapunov function and applying LaSalle’s Invariance Principle in [28]. The disease-free
equilibrium point always exists and is asymptotically stable, both locally and globally, if R0 < 1. The
endemic equilibrium exists uniquely and is global asymptotically stable if R0 > 1. The sufficient conditions
of local stability of endemic equilibrium point are more complex to be stated explicitly, that is, the third
and fifth Routh-Hurwitz Criterion (see [30]). Such properties have been confirmed by numerical simulations.
The simulations show that asymptomatic infections have an important role in the proposed model and the
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increasing of quarantine rates, protection rate, vaccination rates may cause the disappearing the COVID-19
case.

To model the spread of COVID-19, we consider the asymptomatic infections and some current government
policies. For vaccination program, the increase in vaccinated community is very likely to lower the self-
protection such as wearing mask and social distancing. Therefore, it is necessary to carry out contact tracking
and rapid tests into the model. We notice that hospitalization and reinfection in recovered subpopulation were
not considered. This will be more interesting if these conditions are considered into the model and readjusted
to the government’s new policies in the future.
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