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Abstract

In this study, we implement a Nonstandard Finite Difference (NSFD) scheme for a predator-prey model
involving cannibalism and refuge in predator. The scheme which is considered as a discrete dynamical system
is analyzed. The performed analysis includes the determination of equilibrium point and its local stability. The
system has four equilibrium points, namely the origin, the prey extinction point, the predator extinction point,
and the coexistence point, which have exactly the same form and existence conditions as those in continuous
system. The local stability of each first three equilibrium points is consistent with the one in continuous system.
The stability of the coexistence point depends on the integration time step size. Nevertheless, the NSFD scheme
allows us to choose the integration time step size for the solution to converge to a feasible point more flexible
than the Euler and 4" order Runge-Kutta schemes. These are shown via numerical simulations.
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1. INTRODUCTION

In recent decades, mathematical modelling of predator-prey interaction has attracted enormous interest from
researchers and has been rapidly developed. Among the developments may applied the assumptions of the
existing of harvesting [17], [24], [13], spread of disease [15], [11], Allee effect [16], [27], and stage-structure
[5], [26]. Another interesting development is by adding the assumption of cannibalism existence [19]. The
following model is a predator-prey model involving cannibalism in predator proposed by Deng et al [&].

N (- e

di K 0
AP by P2

A NPt eP —eP - .

dt aNFreli—el-r s

N >0and P > 0in (1) are the size population of prey and predator, respectively. In the absence of predator,
prey grows logistically with a rate of » and the environment’s carrying capacity of K. Then, in the presence
of predator, prey decreases by b1 /NP which is a type I Holling functional response with the predation rate
of b;. Prey biomass consumed by predator is converted into predator births at a rate of ¢;. The predator dies

oo by P?
naturally at a rate of e and decreases due to cannibalism by 2

, with by and ko denote the maximum

cannibalism rate and half-saturation constant of cannibalism, respectively. The cannibalism is converted to
predator birth linearly at a rate of cs.
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The system (1) had been modified by changing the predation rate following the type II Holling functional
response and adding the assumption of the cannibalized predator refuge [18]. The modified system is

W (1N P

dt K k1 + N’ @)
dj _ ClNP —|—CP—€P— bg(l—m)P2

dt kNP ke + (1—m)P’

with k; denotes half-saturation constant of predation and m is proportion of refuge, while b; becomes the
maximum predation rate. The dynamical properties of (2), those are the existence of equilibrium points, local
and global stability analysis of the equilibrium points, and forward bifurcation existence had been shown in
[18].

The predator-prey model (2) is a continuous dynamic system which is in the form of a system of
nonlinear differential equations. Meanwhile, in general, nonlinear differential equations system cannot be
solved analytically. Hence, discretization is required for approximating their solutions [3]. Moreover, as the
stability of the equilibrium points in discrete models typically depends on the integration time stepsize, the
discrete model mostly results in richer dynamics than the continuous one [9], [25].

A discrete model of a system of first-order differential equations can be obtained by applying the discretiza-
tion method. Euler’s method is one of the simplest method to discretize systems of differential equations.
However, Mickens [12] had shown that the Euler discretization method has a weakness, that is the numerical
instability. To eliminate it, Mickens proposes another method, namely the Nonstandard Finite Different
(NSFD) scheme. By adopting the exact finite difference scheme, NSFD becomes a generalization of the
Euler scheme. The most important property of a NFSD is that, in most cases, it eliminates the instability of
the Euler scheme. NSFD follows the rules described below [12].

1) The first derivative of the differential equations system is approximated by the generalization of Euler’s
forward difference scheme, i.e

dX(n) X(n+1) - X(n)
a0 P ’

with X (n) = X (t(n)), ¢ = ¢(h) is a denominator function such that ¢(h) = h + O(h?), and h is
the integration time step size.
2) The nonlinear form must be replaced with a non-local form like the following examples.
X2 = X(n+1)X(n),
X D+ X(n—-1
xy - X(n+1) -ZF (n—-1)

Y (n), etc.

If a discrete model and its corresponding continuous model have the same dynamic properties, they are
said to be dynamically consistent [2]. The consistency of dynamics can be obtained using the discretization
method of NFDS. NSFD has also been applied by researchers recently to develop biomathematics models
into discrete systems [21], [6], [10], [1], [23], [7], [4], [14]. Therefore, in this paper, a NSFD scheme used
to study discrete dynamical system of predator-prey model involving cannibalism and refuge in predator.

2. MODEL DEVELOPMENT

The continuous differential equation system (2) is discretizated as follows.

N2 = N(n+1)N(n),

NP — N(n+1)P(n),

P2 = P(n+1)P(n),

dN - N(n+1) - N(n) 3)
dt o)

P P(n+1) - P(n)

dt é(h) ’
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where the denominator function ¢(h) is ¢(h) = h. Through the discretization, the nonstandard numerical
scheme for the system (2) is

Nn+1) = N(n)+h(rN(n) 1N<7}+1>>b1125n++;(>$<n>),

“

By using some algebraic manipulations, we get the explicit form for System (4), i.e.

N(n)(1+ hr)

rN(n b1 P(n
(18 (252 + 25 )]
_ P(n) heiN(n)(1 + hr)
P(n + 1) - 14 h ba(1—m)P(n) (l + k N 14h rN(n) b1 P(n) + hes

[1+h (e + 2 Try )] (r+ N ) [ (2 + 252 )]
®

To investigate the local stability of the equilibrium points of the system (3), the following lemma is very
useful.

N(n+1) =

i
Q
=
S
3
S

G2(N(n), P(n)).

Lemma 2.1. [22] Consider E* = (N*, P*) is an equilibrium point of a two dimensional discrete system.
For the quadratic equation \*> — 7(J(E*))\ + A(J(E*)) = 0, the roots satisfy |\;| < 1,Vi = 1,2, if and
only if all of the following conditions are satisfied.

D 14+7(J(E")+ A(J(EY)) >0;

2) 1—7(J(E*))+ A(J(EY)) >0;

3 AWJ(EY)) <1,
where T(J(E*)) and N(J(E™)), respectively, are the trace and determinant of characteristic equation of the
Jacobian matrix at E*.

3. LOCAL STABILITY

The equilibrium points of system (3) are obtained by finding the solutions of

G1(N(n),P(n)) = N(n),
G2(N(n), P(n)) = P(n),
which is equivalent to the following system.
N* by N*P*

N*(1- - =
" ( K ) ki + N* 0
c1N*P* by(1 — m)P*?
—_— P*—eP* — ————— 0.
oy e L Ty

The equilibrium points are:

1) The origin, Ey(0,0), that clearly exists in R = {(N,P): N >0, P > 0}.
]{12(6 — 62)
(ca—e—1b2)(1—m)
3) The predator extinction point, E»(K,0). Ey always exists in R% since K > 0.

4) The coexistence point, E3(Ns3, Ps3).
If bs + € # ¢1 + ¢c2, N3 and P5 are derived by Cardanos’s formula in [20] i.e

§/Q23|:\/Q§+;7Q? Qlfﬁ B

)

; 34
V2 3§/Q2i«/Q%+5‘7Q? ©

o r N3
Py = l)1<1K) (k1 + N3),

2) The prey extinction point, (O, >, that exists in Ri if 0 <co—e<ba.

Ny =
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with
3AC — B2
O =
0y — 9ABC —2B3 —27A%2D
2T, 27 A3 ’
A = ﬁ(l—m)(b2—01—02+€), ;
k
B = L(l—m) (cl—i—cQ—e—bg)——1(01+2(02—e—b2)) , )
by K
k bok
C = (c1+ca—e)ks+ Tb—l(l —m) [cl +(2—k1)(ca —e) —2by + 2}{1} ,and
1
k
D = Kk {kQ(CQ —e)+ %1(1 —m)(cs —e— bg)] .
1
The point (6) exists in R% if
a) Q3+ 5-Q%>0and
b) 0< N3 < K.
For by + ¢ = ¢1 + co, the value of N3 and P; are as follows.
—C +£+/C?—-4BD r N3
N3 = 55 ,P3b1<1K) (k1 + N3), (8)
with
Cl’l“k‘l
B = 1—
blK ( k m)? b k
C = bgk‘g-ﬁ-%(l—m) (kl(cl —bg)—Cl +21) ,and )
1
rceik
D = k |:k2(b2 — Cl) — bll 1 (1 — m):| .

The coexistence point (8) exists in R% if

a) C?—4BD >0 and
b) 0< N3 < K.

It is found that the discrete system (3) has the exactly same equilibrium points as those in continuous model
studied by Rayungsari et al [18].

For any equilibrium point of System (3), E*, linearization of System (3) around E* yield the Jacobian
matrix

oG, 96,

JE)=| S8 S| (10)

ON OP 1g-
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where
0Gy . 1+ hr <1 hbl(k‘1 +2N*)P*>
g (e )
oG (L+hn)N < by >
T e 5o
0cy (1 + hryhe, P* kr(1+ hr) + hrN* [1 . %}
o [1+h(e+ R T P "JZPP*)} (k1 + N*)2 [1+h(rg* b P )]2 ’ an
9G; _ Lthet (med ) her N*(1+ hr) \ e
or 14+ (o + 2 "5,1’3;*)}2 kN 145 (2 + 25 )]

blclN*( + h’I")P*
2
[1 +he + 7,2121’1((11:”,;))’,’3*} (k1 + N*)2 [1 +h (TN + 2 )]

The eigenvalues of the Jacobian matrix (10) are used to determine the local stability properties of the
equilibrium points of system (3). The results are stated in Theorem 3.1.

Theorem 3.1. The local stability properties of the equilibrium points of (3) are as follows.

1) FEy(0,0) is saddle if co < e and source if cy > e.

k2(6 - 02) . . . ble(e — 02)
2) E11(0, is locally asymtotically stable if r <
1( (ca — e —b2)(1 —m) Yoy Y Fr < e —e—b)(1—m)

ble e — 62)
k‘1(62—8—b2)(1—m). i %
3) E»(K,0) is locally asymtotically stable if c; < (e = ca) (k1 + K) and saddle if ¢; >
4)  E3(Ns, Ps) is locally asymiotically stable if h satisfy all of the following conditions.

a) 1+7(J(E3))+ A(J(Es)) >0,

by 1—7(J(Es)) + AJ(ES)) >0,

c) A(J(Es)—-1<0,

with 7(J(E3)) and A(J(E3)) are the trace and determinant of characteristic equation of the Jacobian

matrix (10) at E3, respectively. All of the three conditions will be computed numerically due to the
terms’ complexity.

Proof:
1) By substituting Ey(0,0) to (10), we get

and

saddle if r >
(6 — CQ)(kl + K)

14 hr 0
1+h62

1+ he
1+h02
1+ he

J(Eo) =

The eigenvalues of J(Ey) are A\; = 1+ hr and \g =
precisely saddle if co < e and source if co > e.
2) The Jacobian matrix for prey extincion point is

1+ hr

1+ hbklP1
1

. Since |A1| > 1, Ey is unstable, more

0

_ hba(1—m)2 P2
J(E) (1 + hr)he, Py Lt he + (tiony) (1 + hes)
D) 2

{1+h(e+k};ﬁl—%>}kl (1—1—%)2 [1+h<e+%”

i
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ko(e — 1+h 1+h
with P; = 2(eb 021) . J(E1) has eigenvalues \; = —i—hb;gl = hb—sz(zfq)
(co — e —bo)( Q—Qm) L2 gy hike(eoe) rkateta)
and Ay = (1 + hey). Through some algebraic manipulations, we find that

hba(1—m)? PE )

1 + h@ + ((k2+(17m)P1)2

e—cC 2
1+h(e+(b2(/2) )
)\2 — 3 (1—|—h02) —

145 (e 2limrs )] L hes
The existence conditions of Fq, 0 < ¢y — e < by, leads to e + (6_1)262)2 < ¢g and thus |Ao] < 1.
If r < e b_lkj(_el; )0(21)_ ™) then |A\;| < 1 and E; is locally asymtotically stable. While, if
r > bika(e = c3) then |A1| > 1 and E; is saddle.

kjl(Cg'— e — bg)(l — m)
3) The Jacobian matrix for Fs is

1 hb1 K

1+ hr (14 hr)(k1 + K)

J E = c )
) 0 1+h(k11+KK +02)
1+ he
so that the eigenvalues are \; = T and Ay = T he . It is clear that |\ < 1.

(e —c2) (k1 + K)

If c1 <

(e —co)(k1 + Kg(

4) The Jacggian matrix for coexistence point is

, then |A\3] < 1 and E3 locally asymptotically stable. Otherwise, if ¢; >

and 5 becomes saddle.

Jin Ji2
J(Es) = [ Jo1 Ja2 ] ’
where
J11 1—|—h7" ( hbl(k1 +2N3)P3) _ 1 ( hbl(k‘l +2N3)P3>
[1+ hr)? (k14 N3)? 1+ hr (k1 + N3)2 ’

Jip = _dAhr)Ns ( hb ) N ( hb )

[1+h7’]2 k1+N3 1—|—h,7” ]C1 +N3 ’
o hey Py (k1 + Ns) [1 + hr] — Na [1+ 22 (ky + 2N3))] > | 12)

2 p2

Jaz = et (%) _ h*reiNs (1 — %) .

[1+ 28 + he [1+ £288 o+ hea] (k + No)(1+ hr)

The eigenvalues of J(E3) are the roots of the characteristic function

N — tr(J(E3))A + A(J(Es3)) =0, (13)
with 7(J(E3)) = Ji1 + J22 and A(J(E3)) = Ji1J22 — Ji2J21. According to Lemma 2.1, E3 is locally
asymtotically stable if all of the following three conditions are satisfied.

(1) 1+7(J(Es)) + A(J(E3)) >0,
(i) 1—7(J(E3))+ A(J(E3)) >0, (14)
(ii5)  A(J(Es)) —1<0.
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4. NUMERICAL SIMULATIONS

Numerical simulations of the system (3) are performed in this section via Matlab software. We apply
three scheme, i.e NSFD, Euler, and 4" order Runge-Kutta. The numerical simulations aim to compare
the consistency of system stability using the three methods. The parameter values used in the numerical
simulations in this paper are assumed hypothetically since there is no available real data.

Table 1: Parameter Values.

Parameter Simulation 1 Simulation 2 Simulation 3 Simulation 4

r 1 1 1 1

K 1 1 1 1

by 0.3 0.5 0.5 0.5
k1 0.3 0.3 0.3 0.3
c1 0.2 0.1 0.3 0.45
ca 0.12 0.2 0.2 0.2
e 0.02 0.3 0.3 0.3
ba 0.2 0.3 0.3 0.3
m 0.3 0.3 0.3 0.3
ko 1 1 1 1

4.1. Simulation 1

By using the parameter values as in Table | (Simulation 1), the prey extinction point exists, i.e. £7(0, 1.4286).
The stability condition of F; in Theorem 3.1 point (ii) is satisfied. It can be seen in Figure | that with a
very small step size, h = 0.05, the system solutions using three methods convergent to F;. This is consistent
with the results obtained in [18]. By increasing the step size to h = 12, the solutions of system (3) by NFSD
remains convergent to £;. Meanwhile, the solutions obtained by Euler and 4" order Runge-Kutta methods
can be negative (see Figure 2), which are not reliable.

2.5 =L 25 . 25 —
, e “ 0 S « N .
R A R
&
)5 \\ R \\n KL \\\
1 E,(0,1.4285) \_ e 1 E, (0, 1.4286) R 1 E, (0, 1.4286)
, (1{0) E, (1}0) E, (1,0)
0.5 0.5 0.5
EO (0,0) E; (0,0) ED (0,0)
N ) o e o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
N N N
(@) (b) ©

Figure 1: Phase portraits of simulation 1 with h = 0.05 using: (a) NSFD, (b) Euler, and (c) 4'" order
Runge Kutta methods.

4.2. Simulation 2

To show the behavior of the solutions regarding the stability of predator extinction point, Es, the parameter
values in Table | (Simulation 2) are chosen. With those parameter values, the stability conditons of E5(1,0)
are hold. This is in accordance with the results of the numerical simulation shown in Figure 3, with the step
size used is h = 0.05. When the step size used is quite large as shown in Figure 4, i.e. h = 3.6, and by taking
initial values near FE5, the solutions of system (3) by Euler method is nonfeasible since they convergent to
negative solutions, while the solutions by Runge Kutta leads to a periodic solutions of period two. Whereas,
the stability of Ej is still consistent for NFSD scheme.
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Figure 2: Phase portraits of simulation 1 with A = 12 using: (a) NSFD, (b) Euler, and (c) 4" order Runge
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Figure 3: Phase portraits in simulation 2 with h = 0.05 using: (a) NSFD, (b) Euler, and (c) 4*" order
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Figure 4: Phase portraits in simulation 2 with h = 3.6 using: (a) NSFD, (b) Euler, and (c) 4"

4.3. Simulation 3

Kutta methods.

order Runge

With the parameter values in Table | (Simulation 3), the coexistence point exists, i.e. F3(0.6026,0.7174).
For any values of h, all of the stability conditions of F3 in (14) are satisfied, as we can see in Figure 5.
With a step size of h = 0.05 (see Figure 6), E3 is asymptotically stable for the NSFD, Euler, and 4" order
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Runge Kutta methods. By increasing the step size value to h = 7.5 (see Figure 7), with initial values close to
Es3, the solutions of system (2) using Euler and 4*" order Runge Kutta methods lead to nonfeasible solutions
(negative solutions), while the system with NSFD scheme is still consistent (see Figure 6). In Figure 7(c),
the solution for predator goes down first then up.

4 0.12 0
= = 0.1
3 So09
= > 02
3 N L
+2 X o0s g 03
g S T 04
T =003
2 ! 05
00 5 10 15 20 00 5 10 15 20 70.60 5 10 15 20
h h h
(a) (b) (©
Figure 5: Graphics of (a) 1 + 7(J(E3)) + A(J(E3)), (b) 1 — 7(J(E3)) + A(J(E3)), and (c)
A(J(FEs3)) — 1, in simulation 3.
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Figure 6: Phase portraits in simulation 3 with A = 0.05 using: (a) NSFD, (b) Euler, and (c) 4t order
Runge Kutta methods.

4.4. Simulation 4

By increasing the value of ¢q, as in Table | (Simulation 4), the coexistence point is E3(0.2631,0.8299).
The first two stability conditions of F3 in (14) are hold for any h, but the last condition isn’t satisfied for
0 < h < 0.1006 (see Figure 8(c)) and is satisfied for all A > 0.1006 (see Figure 8(d)). This is supported
by the bifurcation diagram in Figure 9. For h < 0.1006, demonstrated particularly by h = 0.05 (Figure 10),
the system convergent to a periodic solution. Meanwhile, for & > 0.1006 which is represented by h = 12
in Figure 11, the system convergent to coexistence point. In the continuous model in [18], with parameter
values as in Table | (Simulation 4), the solutions do not converge to the coexistence point but to a limit
cycle around it. In contrary, in the discrete model in this article, the solutions of system (3) can be stable to
the coexistence point, by choosing the integration step-size larger than 0.1006.

Next, to compare the behavior of the system with the NSFD, Euler, and 4t" order Runge Kutta schemes,
we choose h = 0.05 in simulation illustrated by Figure 12. While, in Figure 13 we choose h = 12. We can
see that in Figure 12, the solutions of the three schemes convergent to a limit cycle around Es. In Figure
13 (h = 12), the solutions of NSFD scheme convergent to F5, whereas the two other schemes with initial
value close to E5 convergent to nonfeasible (negative) solutions. In the results obtained in [18], the stability
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Figure 7: Phase portraits in simulation 3 with h = 7.5 using: (a) NSFD, (b) Euler, and (c) 4*" order Runge
Kutta methods.
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Figure 8: Graphics of (a) 1+ 7(J(E3)) + A(J(E3)), (b) 1 — 7(J(E3)) + A(J(Es)), (¢) A(J(E3)) —1
(for relative small h), and (d) A(J(E3)) — 1 (for 0 < h < 20), in simulation 4.

of F5 is the same as the results in Figure 12. Thus, in this case, the stability properties of the NSFD system
are only consistent with the continuous system for very small values of h. However, the advantage of NFSD

here is that it keeps the solution positive, unlike the Euler and

the solutions turn to negative for large h values.

4*"_order Runge-Kutta schemes which make
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Figure 10: Solution of N and P in simulation 4 with h = 0.05: (a) t — N, (b) t — P.
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Figure 11: Solution of N and P in simulation 4 with h = 12: (a) t — N, (b) t — P.

5. CONCLUSION

In this paper, a discrete system of predator-prey model involving cannibalism and refuge in predator had
been developed using Nonstandard Finite Difference (NFSD) scheme. Based on the analysis results, the
system has four equilibrium points, i.e the origin, the prey extinction point, the predator extinction point,
and the coexistence point which have exactly the same form and existence conditions as the ones in the
continuous system. Furthermore, the local stability conditions for the first three equilibrium points have been
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Figure 12: Phase portraits in simulation 4 with h = 0.05 using: (a) NSFD, (b) Euler, and (c) 4t order
Runge Kutta methods.
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Figure 13: Phase portraits in simulation 4 with h = 12 using: (a) NSFD, (b) Euler, and (c) 4*" order Runge
Kutta methods.

shown to be exactly the same as those in the continuous system. Meanwhile, there are differences in the
coexistence point’s stability conditions. In the discrete system using an NSFD scheme the stability depends on
the integration time step size, which does not occur in the continuous system. This is confirmed in numerical
simulations which show that in some cases, the stability of the coexistence point is only consistent with
the one in continuous system at a relative small step size, and inconsistent for step size that exceeds the
threshold. Nonetheless, unlike the Euler and 4" order Runge-Kutta schemes, the NSFD scheme allows us
to be more flexible in choosing the integration time stepsize for the solution to converge to a feasible point.
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