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Abstract

In this paper, we develop and analyze a mathematical model that describes the dynamic interactions and
competitions among tumor cells, normal cells, immune cells, and transforming growth factor-beta within the
tumor microenvironment. We conducted qualitative analyses to examine the persistence or extinction of each
cell population and analyzed the regions of stability and instability across various equilibria. Additionally, we
formulated and solved an optimal control problem using the Pontryagin’s maximum principle, aiming to min-
imize tumor size and the concentration of transforming growth factor-beta while also reducing chemotherapy
and siRNA drug-induced toxicity in patients. Numerical simulations are performed for the model with and
without treatment. We demonstrate scenarios where neither individual treatment is capable of reducing both
tumor and TGF-β, but their combination achieves a substantial reduction.
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1. INTRODUCTION

Cancer is characterized by out-of-control cell growth and tissue invasion. It is one of the leading causes
of death globally. According to the World Health Organization (WHO), there were an estimated 19.3 million
cases in 2020. This number is projected to rise to 28.4 million cases by 2040 [32]. The majority of cancer
cases occur in developed countries such as the USA and Europe [23]. There are numerous types of cancer,
including prostate, stomach, colorectal, lung, melanoma, breast, uterine, liver, bladder, kidney, and many
other types. Among these, the most common types are lung, breast, colon, melanoma, stomach, and prostate
cancers [23], [26].

Cancer can be classified into a group of diseases that begin when normal cells transform into cancerous
cells, also known as tumor cells. These cancerous cells have the ability to multiply and spread. However, as
cancerous cells develop and proliferate within the body, the immune system identifies them as abnormal and
potentially hazardous, mobilizing to eliminate them from the host organism.

1.1. The immune system

The immune system consists of specialized types of cells and molecules whose function is to protect
the host against infection. These components are divided into two main categories: innate (or natural) and
acquired (or adaptive), according to their operational mechanisms and time of response to the infections.

When it comes to combating tumor cell proliferation, a particular set of immune cells known as tumor-
infiltrating cytotoxic lymphocytes (TICLs), plays a crucial role. These TICLs represent a distinct subset of
immune cells that target and destroy cancer cells. They include components from both the innate and adaptive
immune systems. Moreover, this group includes CD8+ T lymphocytes (CD8+ T cells), CD4+ T lymphocytes
(CD4+ T cells), natural killer (NK) cells, B lymphocytes (B cells), and several other relevant cell types.
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1.2. Dynamics of converting normal cells into tumor cells
Normal cells convert into tumor cells when gene mutations occur, a process clearly observed in many types

of cancer, such as breast cancer, known for its genetic mutations [38]. Furthermore, studies have demonstrated
that the cytokine transforming growth factor-beta (TGF-β) can initiate the conversion of normal cells into
tumor cells, playing a significant role in cancer onset. For instance, Roberts et al. [37] demonstrated that
TGF-β can induce malignant behavior in normal fibroblasts, enabling them to acquire malignant properties
and become cancerous.

It is well-established that normal cells, platelets, osteoblasts, and other bone cells are major sources of
TGF-β secretion. Additionally, activated immune cells such as lymphocytes, macrophages, and neutrophils
are also known to secrete TGF-β. Moreover, tumors and tumor cell lines contribute to the production of
TGF-β [12].

However, while TGF-β suppresses cancer in the early stages of tumorigenesis by inhibiting cell proliferation
and promoting cell death, it can paradoxically promote cancer in advanced stages. At these later stages, TGF-
β facilitates cancer progression by stimulating tumor angiogenesis, progression, and metastasis. It promotes
tumor angiogenesis, aiding in the formation of new blood vessels to support tumor growth [39]. Additionally,
TGF-β enhances the growth and metastasis of tumor cells by inducing a mesenchymal transition in epithelial
cells. This process results in epithelial cells losing their characteristics and acquiring mesenchymal-like
properties, making cancer cells more motile and capable of migrating and invading surrounding tissues from
their primary site [40].

1.3. Cancer treatments
Cancer treatment can be categorized into surgery, radiotherapy, chemotherapy, small interfering RNA

(siRNA), and other hospitalizations [4], [34]. Various methods can be employed for treating cancer, and
at times, a combination of two or more treatments is necessary, such as chemotherapy and radiation, surgery
and radiation therapy, or surgery and chemotherapy [16], [17], [24]. Here, we focus on chemotherapy and
siRNA as primary therapeutic approaches for cancer treatment.

Chemotherapy stands out as one of the most effective and widely used treatments for diverse types of cancer,
including anal, bladder, breast, and gastroesophageal cancer. While chemotherapy yields positive effects on
tumor cells, it also causes side effects impacting the skin, hair, bone marrow, blood, gastrointestinal tract,
kidneys, heart, lungs, and brain. These side effects arise from the fact that chemotherapy not only targets
cancer cells but also affects normal and immune cells [3], [7], [30].

Another method in cancer treatment involves the use of siRNA. SiRNA finds application in treating various
diseases and cancer types [5], [21], though challenges persist in achieving effective delivery to the cancer site
[21]. In cancer treatments, siRNA is designed to directly target and silence specific genes involved in cancer
growth and proliferation through enzymatic cleavage of target mRNA [2], [22], [31]. Additionally, siRNA
can effectively suppress the activity of TGF-β expression in tumors by targeting its mRNA molecules [47],
[1], resulting in reduced invasiveness of cancer cells.

While siRNA is generally considered less toxic compared to chemotherapy [46], it is not without side
effects. One possible side effect is the off-target effect, where siRNA delivery may not accurately reach
its intended target cells, leading to the unintended suppression of genes in other cell types [21]. Moreover,
siRNA may induce an inflammatory response by activating immune cells that recognize siRNA as foreign
[46].

1.4. Mathematical models of tumor-immune interaction dynamics
Over the past few decades, several mathematical models such as those in [10], [11], [18], [20], [25] and

more recently [36], have been developed to understand the mechanisms and dynamics of tumor growth
and their interactions with the immune system. De Pillis et al. [10] presented a model describing the
competition between cancer cells, normal cells, immune cells, and chemotherapy. They qualitatively simulated
the asynchronous tumor-drug interaction known as ”Jeff’s phenomenon.” The model successfully captured the
behavior of asynchronous response. In their subsequent work [11], they developed another model describing
the interaction between the same cell types. They investigated pulsed therapy and optimal control therapy
to determine how each treatment can lead to a desirable basin of attraction. Their findings show that
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optimal control therapy successfully drives the system into a desirable basin of attraction, whereas pulsed
chemotherapy does not.

Itika et al. [18] discussed the interaction between tumor and immune cells, and they used linear time-varying
(LTV) optimal control to investigate the dynamical evolution of tumor cells in a tumor environment. Their
study demonstrated a significant reduction in the number of tumor cells with a small dose of chemotherapy and
a short duration of treatment. Ku-Carrilloa et al. [20] developed a simple tumor model along with normal and
immune cells. Their model focused more on the relationship between cancer and obesity, which investigates
the negative effects of obesity on cancer and the effects of a low or high-caloric diet. Their findings revealed
that a low-calorie diet has a therapeutic effect, which can be used as an adjuvant in anticancer treatment. Oke
et al. [25] developed a model of interaction between tumor, normal, and immune cells. Additionally, their
model includes estrogen as a tumor promoter. To effectively eliminate tumor cells, the researchers employed
a combination of chemotherapy and ketogenic diet treatments while utilizing optimal control techniques for
treatment administration.

Furthermore, cytokines play a crucial role in tumor-immune cell communication and are often integrated
into mathematical models that study these interactions. Numerous mathematical models, encompassing both
earlier works cited in [1], [8], [19], [35], and more recent contributions by [15], [33], [36], have been
developed to illustrate the dynamics of tumor cell growth, the immune system response, and the role of
cytokines, which can either enhance immune responses or promote tumor progression.

Kirschner et al. [19] incorporated the cytokine interleukin-2 (IL-2) into their model to enhance the resistance
of immune cells and aid in the elimination of tumor cells. Their study findings indicated that IL-2 by itself
is not effective in eradicating tumors. However, promising outcomes in cancer eradication were observed
when IL-2 was used in combination with adoptive cellular immunotherapy. Arciero et al. Arciero et al. [1]
extended the work done by Kirschner et al. [19] by incorporating TGF-β and siRNA treatment, where TGF-β
promotes tumor growth, while siRNA suppresses TGF-β production. Their study showed that siRNA alone
is not capable of eradicating tumor cells from the body; rather, it reduces their size. Other studies, such as
[8], [35], have also incorporated various cytokines into their mathematical models to enhance the immune
response against cancer cells.

In this study, we first analyze the dynamics of tumor growth promoted by the cytokine TGF-β and examine
the response of the immune system in the absence of any treatment effects. Secondly, in the optimal control
section, we investigate the effects of chemotherapy and siRNA. Chemotherapy is employed to inhibit the
growth of cancer cells, while siRNA technology targets TGF-β, which converts normal cells into tumor
cells. Specifically, siRNA was employed to effectively suppress the activity of TGF-β by targeting its mRNA
molecules [47], [1].

We chose the combination of chemotherapy and siRNA for tumor treatment due to their numerous
advantages. Chemotherapy remains one of the top selections for cancer treatment for many considerations,
including its ability to target and destroy cancer cells. It can be effectively combined with other treatments,
such as surgery, radiotherapy, or immunotherapy, and improve survival rates. Additionally, chemotherapy can
shrink tumors, alleviating symptoms and improving life quality in advanced-stage cancers where cancer is
not possible to treat [41], [42].

On the other hand, siRNA presents a promising approach for cancer treatment due to its ability to target and
silence oncogenes or genes responsible for tumor growth and enhance sensitivity to chemotherapy. Silencing
these oncogenes reduces tumor cells’ resistance to chemotherapy. Furthermore, siRNA plays a crucial role
in helping stop metastasis by suppressing the activity of TGF-β in the tumor [43], [44], [47].

This paper is structured as follows. In Section (2), we briefly describe how our model is obtained and what
assumptions are made. In Section (3), we discuss the positivity and boundedness of the solutions in our model.
Additionally, we discuss reducing the number of parameters in the model using the non-dimensionalization
technique. Finally, we explore the existence of equilibria and their stability in both tumor-free and coexistence
cases. Section (4) presents the numerical simulations of the system without treatment (without control). In
Section (5), optimal control strategies are formulated. Additionally, we present the numerical simulations for
the optimal control and its discussion. In Section (6), we summarize and present our conclusion.



OPTIMAL CONTROL IN THE TREATMENT OF SOLID TUMORS USING COMBINED THERAPY 127

2. MODEL FORMULATION

In this section, we introduce a new mathematical model that describes the interactions among tumor cells,
normal cells, immune cells, and TGF-β. The cell populations and cytokine concentration at time t are denoted
as follows:

• T(t), the population of tumor cells,
• N(t), the population of normal cells,
• I(t), the population of immune cells,
• K(t), the concentration of TGF-β.

To model the interactions between these populations, we propose a system of ordinary differential equations,
represented as follows:

dT

dt
= αTT − dTT − αcIT + βKKN,

dN

dt
= αNN

(
1− N

NMax

)
− dNN − ξNKN,

dI

dt
= s+

pIT

q + T
− dII,

dK

dt
= αKT − dKK,

(1)

with non-negative initial conditions T (0) = T0, N(0) = N0, I(0) = I0, and K(0) = K0.
In the system (1), the first equation describes the dynamics of tumor cells, which are assumed to grow

exponentially, as indicated by the term αTT , where αT represents the growth rate. This type of exponential
growth has been confirmed in various cancer types, including breast cancer [55] and lung cancer [56]. The
natural death of tumor cells is given by the term dTT , where dT represents the death rate. This natural death
results from a lack of nutrients and oxygen. We assume that tumor cells are killed by TICLs, represented
by the term αcIT , where αc denotes the killing rate. Additionally, the term βKKN represents the increase
in the tumor population through the conversion of normal cells into tumor cells due to their interactions
with TGF-β. Converted normal cells will now form the class of tumor cells, and therefore, the tumor cell
population will increase at a rate βK , resulting in a growth factor of βKKN on the tumor cell population.

The dynamics of normal cells are described by the second equation of the system (1). Normal cells are
assumed to grow logistically, as described by the term αNN(1− N

NMax
), where αN represents the growth rate

and NMax represents the maximum carrying capacity. The term dNN denotes the natural death of normal
cells, with dN representing the death rate. This natural death results from competition for resources such as
nutrients and oxygen or from the accumulation of substances released from cell metabolism within the cells
themselves. TGF-β is assumed to prompt the conversion of normal cells into tumor cells, represented by the
term ξNKN , where ξN denotes the conversion rate (or rate of tumor formation).

The third equation of the system (1) describes the dynamics of immune cells (TICLs). TICLs are assumed
to have a constant source rate, s. Additionally, TICLs are recruited in response to the presence of tumor cells,
with this recruitment given by the Michaelis-Menten term pIT

q+T , where p represents the maximum recruitment
rate, and q is the Michaelis-Menten constant, representing the concentration of tumor antigens required to
achieve half-maximal activation of TICLs. The term dII denotes the natural death of immune cells, with dI
representing the death rate.

The final equation of the system (1) represents the kinetics of TGF-β production. Malignant tumor cells
are assumed to produce TGF-β. This production is represented by the term αKT , where αK represents the
production rate. The term dKK represents the decay of TGF-β, where dK represents the decay rate.

The parameter values in model (1) were collected from published literature and experimental data, and
they are given in Table 1. However, longitudinal data for parameters governing interactions between normal
cells and TGF-β are not available. Therefore, we made assumptions that are consistent with our model.
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Table 1: Parameter definitions, values, and their sources for model system (1).

Parameter Description Estimated value Units Source

αT Tumor cells growth rate 1.5 day−1 [11]
dT Tumor cells death rate 1 × 10−6 day−1 [53]
αc Killing rate of tumor cells by immune cells 1 × 10−2 cell−1 [51]
βK Rate of tumor cell growth from the converted normal cells 0.5 cell.day−1 Assumed
αN Normal cells growth rate 1 day−1 [11]
NMax Normal cells carrying capacity 3 × 105 cell−1 Assumed
dN Normal cells death rate 0.29 day−1 Assumed
ξN Conversion rate of normal cells into tumor cells 1 × 10−12 day−1 Assumed
s Constant source of immune cells 1.3 × 104 cells−1 [10], [25]
dI Immune cells death rate 0.2 day−1 [11]
p Maximum immune cells recruitment rate by tumor cells 0.2 cell.day−1 [14], [25]
q Half-saturation constant of tumor antigens 3 × 105 cell [25], [27]
αK Production rate of TGF-β by tumor cells 2 × 10−4 IU.day−1 [1]
dK decay rate of TGF-β 7 × 10−3 IU.day−1 [52]
CT Killing rate of tumor cells by chemotherapy 0.8 pg.day−1 [9], [13]
CN Killing rate of normal cells by chemotherapy 0.6 pg.day−1 [9], [13]
CI Killing rate of immune cells by chemotherapy 0.6 pg.day−1 [9], [13]

3. MODEL ANALYSIS

In this section, we discuss the positivity and boundedness of solutions. Additionally, we conduct a qualitative
analysis to establish the long-term behavior of the system.

3.1. Model well-posedness
In this subsection, we show that the solutions of the model system (1) have biological meaning. In order

to show that, it is required to prove that the solutions of the system are both positive and bounded for all
time.

Theorem 3.1 (Positivity). Given positive initial conditions T (0), N(0), I(0), K(0), then the solutions
T (t), N(t), I(t), K(t) of the model system (1) will always be non-negative.

Proof: Since all the parameters used in the model system (1) are positive, we obtain the following
inequality from the first equation of the model system (1)

dT

dt
= αTT − dTT − αcIT + βKKN ≥ −dTT − αcIT,

by separating variables and integrating both sides, we get:

T (t) ≥ T (0)e
−
∫ t
0

(
dT + αcI(t)

)
dt
,

this proves that T (t) ≥ 0 for all t > 0.
Similarly, from the second, third, and fourth equations in the model system (1), we have

N(t) ≥ N(0)e
−
∫ t
0

(
dN + ξNK(t)

)
dt

, I(t) ≥ I(0)e−dIt, and K(t) ≥ K(0)e−dKt.

This proves that all the solutions of model system (1) are positive.

Theorem 3.2 (Boundedness). Assume that the following condition holds:

dI > λI ,

then, all solutions T (t), N(t), I(t), K(t) of model system (1) with positive initial conditions T0, N0, I0, K0,
are bounded in the region
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∆ =

{
(T,N, I,K) ∈ R4

+ : T (t) ≤ λT
dT
, N(t) ≤ NMax, I(t) ≤

s

dI − λI
,K(t) ≤ λK

dK

}
.

Proof: From the second equation of the model system (1), we have

dN

dt
≤ αNN

(
1− N

NMax

)
≤ αNN − λNN

2, (2)

where

λN =
αN
NMax

,

by using Bernoulli’s method, we have

N ≤ αN
λN + CαNe−αN t

,

where

C =
αN −N0λN
αNN0

,

and

N0 =
αN

λN + CαN
.

Consequently,

N ≤ αN

λN + αN−N0λN

N0
e−αN t

,

lim
t→∞

sup N(t) ≤ αN
λN

≤ NMax,

this proves that N(t) is bounded.
Similarly, respectively, from the first, fourth, and third equations of the model system (1), we have

dT

dt
≤ λT − dTT,

where λT = αNβKK
λN

. By integrating both sides, we have

T ≤ λT
dT

+ T0e
−dT t

lim
t→∞

sup T (t) ≤ λT
dT
.

dK

dt
≤ λK − dKK,

where λK = αKλT

dT
.

K ≤ λK
dK

+K0e
−dKt,

lim
t→∞

sup K(t) ≤ λK
dK

.
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dI

dt
≤ s+ (λI − dI)I ≤ s− (dI − λI),

where λI = λT

qdT+λT
.

I ≤ s

dI − λI
+ I0e

−(dI−λI)t,

lim
t→∞

sup I(t) ≤ s

dI − λI
.

Therefore, the solutions of model system (1) are bounded.

3.2. Non-dimensionalization
To simplify the analysis of our system (1), we begin by re-scaling the system equations using the following

substitutions:

T = T̂ T̄ , N = N̂N̄ , I = Î Ī , K = K̂K̄, and t = t̂t̄. (3)

The non-dimensionalized system can be written as follows:

dT̄

dt̄
= T̄ − ϕ1T̄ − ϕ2Ī T̄ + ϕ3K̄N̄ ,

dN̄

dt̄
= ψ1N̄

(
1− N̄

)
− ψ2N̄ − ψ3K̄N̄ ,

dĪ

dt̄
= 1− δ1Ī +

δ2Ī T̄

δ3 + T̄
,

dK̄

dt̄
= T̄ − χK̄,

(4)

with non-negative initial conditions T̄ (0) = T̄0, N̄(0) = N̄0, Ī(0) = Ī0, and K̄(0) = K̄0. Where

t̂ =
1

αT
, T̂ =

βK
αT

, ϕ1 =
dT
αT

, ϕ2 =
αcs

α2
T

ϕ3 =
αKβKNMax

α2
T

, N̂ = NMax , ψ1 =
αN
αT

, ψ2 =
dN
αT

ψ3 =
ξNαKβK

α3
T

, Î =
s

αT
, δ1 =

dI
αT

, δ2 =
p

αT

δ3 =
qαT
βK

, K̂ =
αKβK
α2
T

, χ =
dK
αT

.

The dimensionless parameter values are given in Table 2.

3.3. Stability analysis of the tumor-free equilibrium
We find the equilibrium solutions in the absence of tumor cells and TGF-β by equating the right-hand

side of the equations in model system (4) to zero, with T̄ = K̄ = 0. We obtain a dead equilibrium point:

E1
∗(T̄ ∗

1 , N̄
∗
1 , Ī

∗
1 , K̄

∗
1 ) = E1

∗
(
0, 0,

1

δ1
, 0

)
, (5)
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Table 2: Dimensionless parameters.

Parameters Value

ϕ1 6.7 × 10−7

ϕ2 57.778
ϕ3 13.333
ψ1 0.667
ψ2 0.193
ψ3 2.962 × 10−17

δ1 0.1333
δ2 0.1333
δ3 9 × 105

χ 5 × 10−3

and the tumor-free equilibrium point:

E2
∗(T̄ ∗

2 , N̄
∗
2 , Ī

∗
2 , K̄

∗
2 ) = E2

∗
(
0,
ψ1 − ψ2

ψ1
,
1

δ1
, 0

)
. (6)

The tumor-free equilibrium point (6) is biologically meaningful if:

ψ1 − ψ2 =
αN − dN

αT
> 0, (7)

that is, the growth rate of normal cells should be greater than their natural death rate.

Theorem 3.3. The dead equilibrium point E1
∗ of system (4) is locally asymptotically stable if

ψ1 < ψ2 and δ1ϕ1 + ϕ2 > δ1,

otherwise unstable.

Proof: To linearize the system (4) around the dead equilibrium point E1
∗, we need to find the Jacobian

matrix, which is given as follows:

J =


1− ϕ1 − ϕ2Ī ϕ3K̄ −ϕ2T̄ ϕ3N̄

0 ψ1 − 2ψ1N̄ − ψ2 − ψ3K̄ 0 −ψ3N̄
δ2δ3Ī

(δ3+T̄)
2 0 −δ1 + δ2T̄

δ3+T̄
0

1 0 0 −χ

 . (8)

Evaluating (8), at the dead equilibrium point E1
∗, gives

J(E1
∗) =


1− ϕ1 − ϕ2

δ1
0 0 0

0 ψ1 − ψ2 0 0
δ2
δ1δ3

0 −δ1 0
1 0 0 −χ

 , (9)

the eigenvalues of (9) are given by

λ1 = 1− ϕ1 −
ϕ2
δ1

, λ2 = ψ1 − ψ2 , λ3 = −δ1 , λ4 = −χ.

wo note that λ3 and λ4 are always negative, while λ1 and λ2 are negative if ψ1 < ψ2 and δ1ϕ1 + ϕ2 > δ1
respectively. This implies that the dead equilibrium point E1

∗ is locally asymptotically stable if.

ψ1 < ψ2 and δ1ϕ1 + ϕ2 > δ1,
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or
αN < dN and αT <

αcs

dI
+ dT .

Biological interpretation: Theorem (3.3) suggests that the dead equilibrium point exists and is stable when
the natural death rate of normal cells exceeds their growth rate and when the immune system effectively
competes with tumor cells.

Theorem 3.4. The tumor-free equilibrium point E2
∗ of system (4) is locally asymptotically stable if

ϕ1 +
ϕ2
δ1

+ χ > 1

otherwise unstable.

Proof: To linearize the system (4) around the tumor-free equilibrium point E2
∗, we need to calculate

the Jacobian matrix, which is given as follows:

J =


1− ϕ1 − ϕ2Ī ϕ3K̄ −ϕ2T̄ ϕ3N̄

0 ψ1 − 2ψ1N̄ − ψ2 − ψ3K̄ 0 −ψ3N̄
δ2δ3Ī

(δ3+T̄)
2 0 −δ1 + δ2T̄

δ3+T̄
0

1 0 0 −χ

 . (10)

Evaluating (10), at the tumor-free equilibrium point E2
∗, gives

J(E2
∗) =


θ11 0 0 −ϕ3

ψ1
θ22

0 θ22 0 ψ3

ψ1
θ22

δ2
δ1δ3

0 −δ1 0
1 0 0 −χ

 , (11)

where
θ11 = 1− ϕ1 −

ϕ2
δ1

, θ22 = ψ2 − ψ1.

The eigenvalues of (11) are given by

λ1 = θ22 , λ2 = −δ1 , λ3,4 =
1

2
(θ11 − χ)

(
1±

√
1 +

4

θ211

(
θ11χ− ϕ3

ψ1
θ22

))
.

By condition (7), λ1 and λ2 are negative. The tumor-free equilibrium point E2
∗ is locally asymptotically

stable if θ11 − χ < 0, that is

ϕ1 +
ϕ2
δ1

+ χ > 1 ⇒ δ1ϕ1 + ϕ2 + χδ1 > δ1,

or

dIαT
dI(dT + dK) + αcs

< 1 ⇒ αT <
αcs

dI
+ dT + dK .

Biological interpretation: Theorem (3.4) suggests that the tumor-free equilibrium point exists and is stable
if αT < αcs

dI
+ dT + dK . This condition connects the tumor cells’ growth rate, αT , with the ”resistance

coefficient” αcs
dI

, which measures the effectiveness of the immune system in competing with the tumor cells.
In instances of weak resistance from the immune system, the tumor-free equilibrium becomes unstable.
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In Figures (1), (2), (3), and (4), we have conducted numerical simulations to verify the conditions of
stability and instability as outlined in Theorems (3.3) and (3.4). Figure (1) depicts the dynamics of tumor
cells, normal cells, immune cells, and TGF-β. The results demonstrate that under the stability conditions for
the dead equilibrium, the populations of tumor cells, normal cells, and TGF-β approach zero. Conversely, the
population of immune cells stabilizes at 1

δ1
, corroborating the predictions made in Theorem (3.3). Additionally,

Figure (2) shows that failure to meet the dead equilibrium’s stability conditions leads to the emergence of a
co-existing equilibrium point.

Similarly, Figure (3) shows the behavior of the same cell types under the conditions for tumor-free
equilibrium stability. In this scenario, tumor cell size and TGF-β concentration decrease to zero, while normal
and immune cells reach steady-state values of ψ1−ψ2

ψ1
and 1

δ1
, respectively. This supports the assertions made in

Theorem (3.4). Figure (4) further shows that the absence of stability conditions for the tumor-free equilibrium
results in the formation of a dead equilibrium point.

(a) Tumor cell population. (b) Normal cell population.

(c) Immune cell population. (d) TGF-β concentration.

Figure 1: The plot shows the growth behavior of tumor cells, normal cells, immune cells, and the concentration of TGF-β.
It confirms the stability of the dead equilibrium when ψ1 < ψ2 and δ1ϕ1 + ϕ2 > δ1. We selected ψ2 = 0.7, while all
other parameters remain constant, as specified in Table 2. The Initial conditions are T̄ = 0.25, N̄ = 0.5, Ī = 0.2 and
K̄ = 1× 10−5.

3.4. Stability analysis of the coexistence equilibrium
We now find the equilibrium solutions in the presence of tumor cells and TGF-β. By equating the equations

in model system (4) to zero, the biologically meaningful solutions are:

N̄∗∗ = η4 − η5T̄
∗∗, Ī∗∗ =

δ3 + T̄ ∗∗

η2 + η3T̄ ∗∗ , K̄∗∗ = η1T̄
∗∗, (12)



134 Omer, S. and Mambili-Mamboundou, H.

(a) Tumor cell population. (b) Normal cell population.

(c) Immune cell population. (d) TGF-β concentration.

Figure 2: The plot shows the growth behavior of tumor cells, normal cells, immune cells, and the concentration of TGF-β.
It confirms the instability of the dead equilibrium when ψ1 > ψ2. All other parameters remain constant, as specified in
Table 2. The Initial conditions are T̄ = 0.25, N̄ = 0.5, Ī = 0.2 and K̄ = 1× 10−5.

where T̄ ∗∗ satisfy the quadratic equation

a2T̄
2 + a1T̄ + a0 = 0, (13)

with

η1 =
1

χ
, η2 = δ1δ3, η3 = δ1 − δ2, η4 =

ψ1 − ψ2

ψ1
, η5 =

η1ψ3

ψ1
,

and

a2 = η1η3η5ϕ3,

a1 = ϕ2 + η1η2η5ϕ3 + ϕ1η3 − η1η3η4ϕ3 − η3,

a0 = ϕ1η2 + ϕ2δ3 − η2 − η1η2η4ϕ3.

Note that for positive solutions, the following should satisfy

ψ2χ+ ψ3T̄
∗∗

χψ1
< 1 and

δ1δ3 + δ1T̄
∗∗

δ2T̄ ∗∗ > 1, (14)

a2 = η1η3η5ϕ3 =

(
αKβK
dK

)2(
ξNNMax

αN

)(
1

α3
T

)
(dI − p).
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(a) Tumor cell population. (b) Normal cell population.

(c) Immune cell population. (d) TGF-β concentration.

Figure 3: The plot shows the growth behavior of tumor cells, normal cells, immune cells, and the concentration of TGF-β.
It confirms the stability of the tumor-free equilibrium when δ1ϕ1 + ϕ2 + χδ1 > δ1. We have chosen χ = 0.05, and all
other parameters remain constant, as specified in Table 2. The Initial conditions are T̄ = 0.25, N̄ = 0.5, Ī = 0.2 and
K̄ = 1× 10−5.

We can impose that p > dI ⇒ a2 < 0.

a1 = ϕ2 + η1η2η5ϕ3 + ϕ1η3 − η1η3η4ϕ3 − η3

=

(
αcs+ dT dI

(αT )2
+
pdIξNα

2
Kβ

2
K

αNα4
T d

2
K

+
p

αT
+
pαKβKdNNmax

αNα2
T dK

)
−
(
pdT
α2
T

+
dI
αT

+
dIαKβKdNNmax

dKαNα2
T

)
=
αcs

α2
T

+
(dT − αT )(dI − p)

α2
T

+
pdIξNα

2
Kβ

2
K

αNα4
T d

2
K

+
αKβKdNNmax
dKαNα2

T

(p− dI).

Assume that αT > dT , and then a1 > 0, since p > dI .

a0 = ϕ1η2 + ϕ2δ3 − η2 − η1η2η4ϕ3 =

(
dIdT q

αTβK
+

qsαc
αTβK

+
qdIdNαKNmax

αTαNdK

)
−
(
qdI
βk

+
qdIαKNmax

αT dK

)
=

qsαc
αTβK

+
qdI
βK

(
dT
αT

− 1

)
+
qdIαKNmax

αT dK

(
dN
αN

− 1

)
.

We will use Descartes’s Rule of signs to discuss the existence of the positive solutions to the equation (13).
Table 3 shows all possibilities of positive solutions to equation (13).
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(a) Tumor cell population. (b) Normal cell population.

(c) Immune cell population. (d) TGF-β concentration.

Figure 4: The plot shows the growth behavior of tumor cells, normal cells, immune cells, and the concentration of TGF-β.
It confirms the instability of the tumor-free equilibrium when δ1ϕ1+ϕ2+χδ1 < δ1. We have chosen ϕ2 = 0.1, χ = 0.05,
and all other parameters remain constant, as specified in Table 2. The Initial conditions are T̄ = 0.25, N̄ = 0.5, Ī = 0.2
and K̄ = 1× 10−5.

Table 3: Possibilities of positives solutions of Equation (13).

Case a2 a1 a0 Number of positive solutions

(I) - + + 1
(II) - + - 2 or 0

The solutions of equation (13) are given by

T̄ ∗∗ =
−a1 ±

√
a21 − 4a2a0
2a2

=
a1
2a2

(
−1±

√
1− 4a0a2

a12

)
, (15)

from Table 3, when a0 > 0, a unique coexistence equilibrium is obtained as follows:

E1
∗∗(T̄1

∗∗
, N̄1

∗∗
, Ī1

∗∗
, K̄1

∗∗
) with T̄ ∗∗ =

a1
2a2

(
−1−

√
1− 4a0a2

a21

)
, (16)

when a0 < 0, we either have no coexistence equilibrium point when 4a0a2
a21

> 1, or two coexistence equilibrium
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points,
E2

∗∗(T̄2
∗∗
, N̄2

∗∗
, Ī2

∗∗
, K̄2

∗∗
) and E3

∗∗(T̄3
∗∗
, N̄3

∗∗
, Ī3

∗∗
, K̄3

∗∗
), (17)

as given by equation (15), when 4a0a2
a21

< 1.

Stability analysis of the coexistence equilibrium using Gershgorin circle theorem

To analyze the stability of the coexistence equilibrium point, we will employ the Gershgorin circle theorem
[48]. The fundamental idea of this theorem can be outlined as follows:

Let J = (Jij)1≤i,j≤n be a n× n matrix with real coefficients. If the following conditions are satisfied:
1) jii < 0 for 1 ≤ i ≤ n.

2) Ri < |Jii| for 1 ≤ i ≤ n, where Ri =
∑n
j=1,j ̸=i |Jij |

then, the eigenvalues of J are negative or have negative real parts.
The Jacobean of the model system (4) evaluated at the coexistence equilibrium is

J =


1− ϕ1 − ϕ2Ī

∗∗ ϕ3K̄
∗∗ −ϕ2T̄ ∗∗ ϕ3N̄

∗∗

0 ψ1 − 2ψ1N̄
∗∗ − ψ2 − ψ3K̄

∗∗ 0 −ψ3N̄
∗∗

δ2δ3Ī
∗∗

(δ3+T̄∗∗)
2 0 −δ1 + δ2T̄

∗∗

δ3+T̄∗∗ 0

1 0 0 −χ

 , (18)

where

N̄∗∗ =
χ(ψ1 − ψ2)− ψ3T̄i

∗∗

χψ1
, Ī∗∗ =

δ3 + T̄i
∗∗

δ1δ3 + (δ1 − δ2)T̄i
∗∗ , and K̄∗∗ =

1

χ
T̄i

∗∗
, 1 ≤ i ≤ 3. (19)

By applying conditions (1) and (2) of the Gershgorin circles theorem, the coexistence equilibrium points
become locally asymptotically stable if

1− ϕ1 − ϕ2Īi
∗∗
< 0, ψ1 − 2ψ1N̄i

∗∗ − ψ2 − ψ3K̄i
∗∗
< 0, and − δ1 +

δ2T̄i
∗∗

δ3 + T̄i
∗∗ < 0, (20)

or

ϕ1 + ϕ2Īi
∗∗
> 1,

2ψ1N̄i
∗∗

+ ψ2 + ψ3K̄i
∗∗

ψ1
> 1, and

δ2T̄i
∗∗

δ1(δ3 + T̄i
∗∗
)
< 1, (21)

in the first condition, and the second condition implies

ϕ3K̄i
∗∗

+ ϕ2T̄i
∗∗

+
∣∣ϕ3N̄i∗∗∣∣ < ∣∣1− ϕ1 − ϕ2Īi

∗∗∣∣ , (22)

ψ3N̄i
∗∗
<
∣∣ψ1 − 2ψ1N̄i

∗∗ − ψ2 − ψ3K̄i
∗∗∣∣ , (23)

δ2δ3Īi
∗∗

(δ3 + T̄i
∗∗
)2
<

∣∣∣∣−δ1 + δ2T̄i
∗∗

δ3 + T̄i
∗∗

∣∣∣∣ , (24)

χ > 1. (25)

When we substitute i = 1 into Equations (21), (22), (23), (24), and (25), we obtain the stability conditions
for the unique coexistence equilibrium (16). Similarly, substituting i = 2 and i = 3 into Equations (21),
(22), (23), (24), and (25), provides us with the stability conditions for the scenario in which we have two
coexistence equilibrium points (17).
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4. MODEL SIMULATIONS WITHOUT CONTROL VARIABLES

In this section, we present the numerical simulations of model system (1) using MATLAB. The parameter
values used in these simulations are given in Table 1. For some of the parameters, we did not find any
available data; for that reason, we assumed their values to the point where their numerical simulation became
reasonable. The variables in Figure 5 have initial values of T (0) = 1×103, N(0) = 2×104, I(0) = 1×102,
and K(0) = 1×10−3. Figure 5 shows the behavior of population interactions over 500 days. The simulations
reveal that after 450 days of interaction, tumor cells overcome both normal and immune cells. This numerical
solution showed that the host immune system alone is not effective enough to stop the progression of tumor
cells. Consequently, the introduction of treatment becomes imperative to impede tumor cell growth. In the
next section, we introduce chemotherapy and siRNA treatments in order to eliminate tumors.

Figure 5: The plot shows the growth behavior of tumor cells, normal cells, immune cells, and the concentration of TGF-β
without treatment (without control). It demonstrates that the immune system is not able to eradicate the tumor. The initial
conditions are T = 1×103, N = 2×104, I = 1×102, and K = 1×10−3. The parameter values used in this simulation
are listed in Table (1).

Figure 6: Individual plots depict the behavior of tumor cells (T), normal cells (N), immune cells (I), and the concentration
of TGF-β (K) without treatment (control). They illustrate the immune system’s inability to eradicate the tumor. The initial
conditions are T = 1×103, N = 2×104, I = 1×102, and K = 1×10−3. The parameter values used in this simulation
are listed in Table (1).
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5. OPTIMAL CONTROL

In this section, we formulate an optimal control problem for the model system (1) by incorporating the
combined effects of chemotherapy and siRNA. The objective is to minimize not only the tumor size and
concentration of TGF-β, but also the drug-induced toxicity of the treatments to patients. The control variables,
u1(t) for chemotherapy and u2(t) for siRNA, denote the externally administered rates of each drug. These
variables are then integrated into the model system (1), resulting in the following control system, which we
refer to as the state system

dT

dt
= (1− u1(t))αTT − dTT − αcIT + βKKN − CTu1(t)T,

dN

dt
= αNN

(
1− N

NMax

)
− dNN − ξNKN − CNu1(t)N,

dI

dt
= s+

pIT

q + T
− dII − CIu1(t)I,

dK

dt
= (1− u2(t))αKT − dKK,

(26)

The term 1−u1(t) in the first equation represents the drug’s primary function blocking tumor cells replication.
The last terms CTu1(t)T,CNu1(t)N , and CIu1(t)I , in the first, second, and third equations, respectively,
represent toxicity effects of the chemotherapy drug on tumor, normal, and immune cells, with CT , CN , and
CI denoting the toxicity rates. The term 1 − u2(t) in the last equation represents the inhibition of TGF-β
production in the presence of siRNA drug. The side effects of siRNA are ignored.

The objective function which is to be minimized is defined as:

J(u1, u2) =

∫ tf

0

(
A1T (t) + A2K(t) +

1

2
A3u

2
1(t) +

1

2
A4u

2
2(t)

)
dt 0 ≤ t ≤ tf , (27)

where the coefficients A1 and A2 are balancing coefficients associated with the cost of clearing tumor cells
and TGF-β, while coefficients A3 and A4 are associated with the cost of implementing chemotherapy and
siRNA, respectively. tf represents the termination time of the treatment. The optimal combination of control
variables u1 and u2 will be adequate to minimize tumor size and TGF-β concentration, as well as negative
side effects over a fixed period. The first and second terms of the integrand function represent the tumor size
and TGF-β concentration, while the third and fourth terms represent the effectiveness of the applied treatment.
In this context, we employ an optimal control problem related to the model to minimize chemotherapy and
siRNA administration, aiming to reduce side effects.

We made the assumption that the control variables u1 and u2 are bounded and Lebesgue integrable.
Consequently, we aim to find an optimal control pair (u∗1, u

∗
2) ∈ Ω, which minimizes the objective function

(27), where

Ω = {u1, u2 : 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, 0 ≤ t ≤ tf} , (28)

represents the set of admissible controls, with u1(t) = 1 and u2(t) = 1 indicating the maximum administration
of chemotherapy and siRNA treatments, respectively, and u1(t) = 0 and u2(t) = 0 indicating no treatment.

5.1. Necessary conditions for optimality

To find the necessary conditions for our optimal control, we use Pontriagin’s Maximum Principle [28].
We begin the optimality by defining the Hamiltonian [29], which is given as follows:
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H = A1T (t) +A2K(t) +
1

2
A3u

2
1(t) +

1

2
A4u

2
2(t)

+ λ1

(
(1− u1)αTT − dTT − αcIT + βKKN − CTu1T

)
+ λ2

(
αNN

(
1− N

NMax

)
− dNN − ξNKN − CNu1N

)

+ λ3

(
s+

pIT

q + T
− dII − CIu1I

)
+ λ4

(
(1− u2)αKT − dKK

)
,

(29)

where λi, 1 ≤ i ≤ 4 are co-state variables satisfying the equations

dλ1
dt

= −∂H
∂T

= −A1 − λ1

(
(1− u1)αT − dT − αcI − CTu1

)
− λ3

pqI

(q + T )
2 − λ4(1− u2)αK ,

dλ2
dt

= −∂H
∂N

= −λ1βKK − λ2

(
αN − 2αNN

NMax
− dN − ξNK − CNu1

)
,

dλ3
dt

= −∂H
∂I

= λ1αcT − λ3

(
pT

q + T
− dI − CIu1

)
,

dλ4
dt

= −∂H
∂K

= −A2 − λ1βKN + λ2ξNN + λ4dK ,

(30)

with transversality conditions

λ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = 0. (31)

The optimal controls (u∗1, u
∗
2) ∈ U ×U minimizing the Hamiltonian are obtained by solving the equations

∂H

∂u1
= A3u1 − λ1αTT − λ1CTT − λ2CNN − λ3CII = 0, (32)

∂H

∂u2
= A4u2 − λ4αKT = 0. (33)

Consequently,

u1
∗ =

λ1αTT + λ1CTT + λ2CNN + λ3CII

A3
, (34)

u2
∗ =

λ4αKT

A4
. (35)

Imposing the constraints 0 ≤ ui ≤ 1, 1 ≤ i ≤ 2, gives

u1
∗ = min

{
max

(
0,
λ1αTT + λ1CTT + λ2CNN + λ3CII

A3

)
, 1

}
, (36)

and

u2
∗ = min

{
max

(
0,
λ4αKT

A4

)
, 1

}
. (37)

In the next subsection, we will discuss the numerical solutions of our optimal control problem and the
treatment strategies we will follow to effectively eradicate cancer.
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5.2. Numerical simulations of the model under the effect of chemotherapy and siRNA

In this subsection, we numerically solve our optimal control systems (26) and (30) to observe how the
presence of chemotherapy and siRNA treatments can affect the dynamics of tumor cell growth and aid in
controlling the tumor. To determine the optimal controls, we employed the forward-backward method to solve
the optimality systems (26) and (30). First, we solve the state system (26) forward in time using an initial
guess for the optimal controls (u1, u2). Then, applying the transversality conditions (31), we solve the costate
system (30) backward in time.

As demonstrated in subsection (3.3), tumor-free equilibrium can be obtained via sufficient immune surveil-
lance. In our optimal control model simulations, we choose a scenario where the tumor has escaped immune
surveillance and then apply treatments. Chemotherapy is commonly administered for a specific period of
time, such as 6 months or a year [45], whereas siRNA can be administered for days or even years [1]. In
our simulations, we will extend the treatment period to cover 200 days.

The parameters used in the numerical simulations are the same parameters in Table 1. In all numerical
simulations initial conditions for state variables are given by T (0) = 9× 104, N(0) = 1× 105, I(0) =
5 × 102 and K(0) = 1 × 10−3. The weights are given by, A1 = 1 × 105, A2 = 1 × 102, A3 =
3× 103, A4 = 10.

We will consider three different treatment scenarios: a) First scenario: chemotherapy only; b) Second scenario:
siRNA only; c) Third scenario: Combination of chemotherapy and siRNA. Discussing these three scenarios
will allow us to explore the efficacy of each treatment individually and their combined efficacy.

(a) Populations under the effect of chemotherapy
alone. (b) Chemotherapy input.

(c) An individual plot of tumor population under
the effect of chemotherapy alone.

(d) An individual plot of TGF-β concentration
under the effect of chemotherapy alone.

Figure 7: The plot shows the growth behavior of tumor cells (T), normal cells (N), immune cells (I), and the concentration
of TGF-β (K) under chemotherapy control. The results show the ability of tumor regrowth and an increase in the
concentration of TGF-β during the treatment period. The initial conditions are T = 9× 104, N = 1× 105, I = 5× 102,
and K = 1× 10−3. The parameter values used in these simulations are listed in Table (1).
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a) First scenario: chemotherapy
We examine the scenario where chemotherapy is the only treatment administered to the patient. Throughout

our simulation, we maintain u2 = 0, for the entire duration, and the results are depicted in Figure 7. During
the treatment period, which lasts just under 40 days, as shown in Figure (7b), there is a notable reduction in
tumor size as shown in Figure 7c. However, Figure 7c also illustrates that the tumor begins to regrow 20 days
after the cessation of treatment. Additionally, an increase in TGF-β levels during this period is observed,
alongside the impact of toxicity on normal cells, as depicted in Figure 7a.

b) Second scenario: small interfering RNA (siRNA)
In this scenario, only the molecular therapy of siRNA is administered to the patient. Throughout our

simulation, we maintain u1 = 0, for the entire duration, and the results are shown in Figure 8. The results
demonstrate a rapid decrease in the size of the tumor, which is kept at a low level for most of the treatment
period. However, as shown in Figure 8c, there is a possibility of tumor regrowth. Additionally, there is an
increase in the levels of TGF-β during this same period, as shown in Figure 8d.

(a) Cells population under the effect of siRNA alone. (b) siRNA input.

(c) Zoomed-in plot of tumor population under the
effect of siRNA alone.

(d) An individual plot of TGF-β concentration under
the effect of siRNA alone.

Figure 8: The plot shows the growth behavior of tumor cells (T), normal cells (N), immune cells (I), and the concentration
of TGF-β (K) under siRNA control. The results show the ability of tumor regrowth and an increase in the concentration
of TGF-β during the treatment period. The initial conditions are T = 9 × 104, N = 1 × 105, I = 5 × 102, and
K = 1× 10−3. The parameter values used in these simulations are listed in Table (1).

c) Third scenario: chemotherapy and siRNA
In our final scenario, we aim to prevent tumor regrowth and the increase in the concentration of TGF-β by

combining both chemotherapy and siRNA. The results are shown in Figure 9, demonstrate a rapid decrease
in tumor size to very low levels during the treatment period, as presented in Figure 9d. Furthermore, it is
worth noting the decrease in TGF-β levels during this time, as shown in Figure 9e.
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(a) Cell populations under the effect of chemother-
apy and siRNA.

(b) Chemotherapy input. (c) siRNA input.

(d) Zoomed-in plot of tumor population under the
effect of chemotherapy and siRNA.

(e) An individual plot of TGF-β concentration under
the effect of chemotherapy and siRNA.

Figure 9: The plot shows the growth behavior of tumor cells (T), normal cells (N), immune cells (I), and the concentration
of TGF-β (K) under the combined control of chemotherapy and siRNA. The results show a decrease in tumor size and
in the concentration of TGF-β during the treatment period. The initial conditions are T = 9 × 104, N = 1 × 105,
I = 5× 102, and K = 1× 10−3. The parameter values used in these simulations are listed in Table (1).

By comparing the cases of chemotherapy, siRNA treatment, and their combination, we conclude that the
combined approach is the most effective in reducing tumor size. However, it should be noted that while this
combined approach showed better results, it did not completely eliminate tumor cells but rather reduced them
to very low levels.
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Figure 9 demonstrates that tumor size and TGF-β concentration can be significantly reduced by adminis-
tering a combination of chemotherapy and siRNA for 200 days. Our optimal control strategy suggests ceasing
chemotherapy after 40 days and continuing siRNA until the end of the treatment period. This approach is
meaningful for several reasons. Firstly, ceasing chemotherapy after 40 days, once the tumor cells have been
reduced to a very low level, helps minimize the side effects that chemotherapy could cause to normal and
immune cells. Additionally, continuing siRNA treatment for 200 days is crucial to prevent cancer recurrence
by reducing the concentration of TGF-β to a very low level. Furthermore, an increase in TGF-β can contribute
to cancer recurrence, making prolonged siRNA treatment necessary.

Moreover, these results align with clinical evidence. Barnard et al. [54] demonstrated that chemotherapy
can extend for 40 days or more. For siRNA treatment implementations, we found variations in clinical trial
durations [1], [57], [58]. The protocol in this paper approximates the best treatment strategy, pending further
clinical trials.

6. CONCLUSION

In this paper, we investigated the dynamic interactions among tumor cells, normal cells, immune cells,
and TGF-β. These interactions are modeled using a system of non-linear differential equations. The stability
analysis of the system was conducted, examining dead, tumor-free, and coexistence equilibrium states through
eigenvalues and Gershgorin circle theorem criteria. Numerical simulations were performed to observe the
system’s behavior in the absence of treatment. These simulations showed that tumor cells could overcome
normal and immune cells after 450 days of interactions.

We examined the model under the effects of chemotherapy and siRNA treatments. Optimal control the-
ory using Pontryagin’s maximum principle is applied to determine the optimal drug dosing strategy. This
strategy aimed at minimizing tumor size, the concentration of transforming growth factor-beta, and reducing
chemotherapy and siRNA-induced toxicity in patients. Three scenarios were examined to assess the efficacy
of these treatments individually and in combination.

The first scenario focused on chemotherapy as the primary approach for tumor therapy, but it demonstrated
limited effectiveness in eradicating tumor cells. Where a full dosage of chemotherapy is given for nearly 40
days, and after 20 days of stopping the treatment, tumor cells regrew, accompanied by an increase in the
concentration of TGF-β during the treatment period. In the second scenario, we focused on siRNA treatment.
By reducing the dosage of siRNA and extending the treatment period to nearly 200 days, tumor cell levels
were reduced to a very low level. However, despite this initial success, tumor regrowth occurred subsequently.
Additionally, an increase in the concentration of TGF-β is observed, which has the potential to stimulate
tumor regrowth. The third and final scenario explored a combination therapy involving both chemotherapy and
siRNA, which showed promising outcomes in reducing the population of tumor cells and the concentration
of TGF-β. Despite not achieving complete eradication, this approach involved administering full dosages of
chemotherapy and siRNA for approximately 40 and 200 days, respectively. Overall, it resulted in significant
decreases in tumor size and TGF-β concentration.

The findings presented here align with those reported in [1], [49], [50]. Teicher et al. [49] reported that
tumors secreting high levels of TGF-β are more resistant to chemotherapy. Figure (7d) substantiates this
finding, illustrating the increase in siRNA concentration, which, in turn, promotes tumor regrowth, as depicted
in Figure (7c). Arciero et al. [1] demonstrated that siRNA alone is not capable of eradicating tumor cells
from the body; instead, it reduces their size. Figure (8c) shows tumor regrowth after reduction to low levels,
providing robust evidence for this observation. Furthermore, Chen et al. [50] indicated that targeting the
pathways of TGF-β by siRNA enhances chemotherapy efficacy. Figures (9d) and (9e) serve as compelling
evidence, showing a substantial decrease in both tumor cells and TGF-β to extremely low levels.
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