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Abstract

Tuberculosis (TB) remains a pressing global health concern, demanding urgent attention to mitigate its
spread and impact. In this study, we present a rigorous mathematical model of TB transmission that incorporates
early case detection and addresses the critical issue of treatment failure. Through the development of a system
of nonlinear ordinary differential equations, we conduct comprehensive analyses to assess the dynamics of TB
transmission and the efficacy of intervention strategies. Our findings underscore the urgent need for effective TB
control measures. Mathematical analyses reveal that the model exhibits a TB-free equilibrium, which is globally
asymptotically stable only if the control reproduction number falls below one. However, we identify a concern-
ing phenomenon: the model demonstrates a forward bifurcation when the control reproduction number equals
one, suggesting that the disease-free equilibrium loses its stability, while simultaneously, the stable unique
endemic equilibrium begins to emerge. Moreover, sensitivity analysis highlights the complex interplay between
case detection rates, treatment failure probabilities, and TB transmission dynamics. Contrary to expectations,
increasing case detection rates and minimizing treatment failure probabilities may not consistently reduce the
basic reproduction number or the size of the infected population. Instead, there exists a critical threshold
for intervention effectiveness, beyond which TB transmission can be significantly curtailed. Biologically, this
phenomenon may occur if there is no balance between case detection and treatment efforts. If treatment quality
does not improve, then case detection will not have a significant impact, and in the worst case scenario, it
can exacerbate the intervention’s negative effects. These findings underscore the urgency of implementing
targeted intervention strategies to combat TB transmission effectively. Failure to meet the critical intervention
threshold risks undermining TB elimination efforts and exacerbating the global TB burden. Through numerical
simulations, we elucidate potential intervention scenarios necessary for achieving TB elimination goals in
human populations. In conclusion, our study highlights the urgent imperative for coordinated action to control
TB transmission effectively. By elucidating the dynamics of TB spread and intervention efficacy, we provide
valuable insights to inform evidence-based policy decisions and accelerate progress towards TB elimination
on a global scale.
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1. INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis, which
mostly affects the lungs [1], [3]. It gets transmitted when an infected person in the active TB disease stage
in their lungs coughs, sneezes, or inhales the expelled droplets containing TB bacteria [1]. TB infections
generally follow three stages: primary infection, when an individual is initially exposed to the TB bacterium;
latent stage, if there is a delay in diagnosis or treatment such as preventive care; and active TB infection
stage [2].

In recent times, TB has been a disease with high mortality (about 1.6 million TB deaths in 2021) as its
global impact was felt in every region of the world, with the highest number of new cases being reported in the
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WHO (World Health Organization) South-East Asian Region at 46%, followed by the WHO African Region
at 23% and the WHO Western Pacific Region at 18% [3]. The 2021 WHO global statistics identified TB as
the 13th leading cause of death and the second leading infectious killer after COVID-19 (above HIV/AIDS),
with over 10.6 million people falling sick with TB. These infected populations include six million men, 3.4
million women, and 1.2 million children since TB exists in all countries and across age groups [3]. In South
East Asia, Indonesia witnessed the highest number of TB cases as per the WHO.

According to the WHO report [3] in 2021, Indonesia, which had 9.2% of TB cases in the world, came
second in the highest number of TB cases below India (28%) and above China (7.4%). Many interventions
and supporting policies have been implemented by the Indonesian government to eliminate/minimize TB
cases. In 2015, the elimination of TB was one of the priority programs by the President of Indonesia. With
this policy, TB detection was conducted intensively with a district-based public-private mix policy.

TB is a complex disease, which makes the prevention strategy very challenging. Early TB case detection
is a good strategy to identify TB cases in earlier stages and to stop the transmission [5]. This is achieved
through the patient-initiated and screening pathways [7]. Techniques for early detection of TB include chest
X-ray examination, the Mantoux tuberculin skin test, and TB blood tests (interferon-gamma release assay,
QuantiFERON-TB Gold, and T-Spot). Among these, a chest X-ray examination is the best diagnosis/screening
technique recommended for detecting pulmonary abnormalities, such as with TB, since it looks for changes in
the lungs that could show signs of active TB or scars from previous TB infections [8]. Other methodologies for
the early detection of tuberculosis outbreaks (through a statistical approach) are county-based log-likelihood
ratio, cumulative sums, and spatial scan statistics [9]. Early detection/identification of epidemics such as those
caused by TB has remained a critical component in reducing the global burden and has proven to be crucial
in the fight to control the extent of TB outbreaks in many regions of the world where these techniques have
been implemented to date [9]. Incidentally, directly observed treatment short-course (DOTS) is recommended
by WHO as the most effective strategy for TB case detection and control nowadays. However, since the
implementation of DOTS in 1955 in Indonesia, the number of new TB cases reported in hospitals has
continued to be low [6].

Upon diagnosing TB in humans, the active case of TB disease can be treated with a combination of
antibacterial administered for a duration between six to twelve months. The most common treatments for TB
include the use of isoniazid (INH) in combination with three other drugs, namely rifampin, pyrazinamide, and
ethambutol [4]. One of the risks to controlling TB is treatment failure, defined as a patient having a positive
sputum smear or sputum culture at least five months after starting anti-TB treatment. This is due to both its
link to multidrug-resistant TB (MDR TB) and still the fact that infected patients continue to disseminate the
disease [10], [11].

Several modeling approaches have been used to gain insight into the early detection and understanding of the
primary transmission dynamics of TB in the human population, and they provide valuable recommendations on
various ways to limit/stop its spread and prevent it from developing to an advanced stage(s); see the following
reference mathematical modeling approach [12], [13], [29], stochastic approach [16], statistical method [9],
artificial intelligence [17], [19], and so on. In particular, Okuonghaem et al. [14] presented a qualitative and
quantitative study of the TB mathematical model to assess four key factors that impact TB transmission,
namely an effective awareness program, active cough identification, the associated cost factor of identified
cases, and effective treatment applied for a survey TB data in Benin City, Nigeria. The results from their
modeling indicate that improvement in case detection, constant implementation of awareness programs, and
the use of active cough identification as markers for quick detection are vital in reducing the severity of TB in
the presence of treatment. Authors in [12] studied a susceptible-exposed-infected-recovery (SIER) nonlinear
mathematical model of TB with a special focus on analyzing the effect of case detection and treatment while
assuming that susceptible individuals can move to become exposed or infected classes simultaneously based
on their immunity level. The authors conducted a mathematical and numerical analysis that suggested that
an increase in the rate of case detection shifts the backward bifurcation diagram toward the right, therefore
leading to an increase in the threshold value of the basic reproduction number, while treatment reduces the
equilibrium level of the infective population. Liu et al. [27] studied a mathematical model of tuberculosis
incorporating treatment interruptions and two latent periods, which was an extension/modification of the work
presented in [15] as they claimed that the latency period of tuberculosis could not be neglected because of its
importance in analyzing TB models. Results from their modeling framework suggested that the reproduction
numbers and numerical simulations show that the treatment of active TB cases always helps control the
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TB epidemic, while treatment interruptions may have a negative, positive, or no effect on combating the
TB epidemic. Furthermore, Lotfi et al. [28] used five systems of an ordinary differential equation (ODE) to
capture and study the tuberculosis epidemic model with two treatments (i.e., those who fail and effectively
treatment classes) and exogenous re-infection. Mathematical analysis of their model shows that there exists
a backward bifurcation when the stable disease-free equilibrium coexists with a stable endemic equilibrium
for the related basic reproduction number is less than one. Numerous mathematical models that have studied
TB with a particular focus on understanding the transmission dynamics and with a possible prediction on TB
controls are as follows: vaccinations and treatment [20], health education and early therapy [21], screening
and treatment [22], transmission with children and adults groups [23], [18], the two-strain tuberculosis model
in Bangladesh [24], diagnosis [32], parameter estimation [33], optimal control with re-infection and post-
exposure interventions [25], and many others.

Previous discussions in many works in the literature suggest that early TB detection and proper treatment
play a vital role in the TB elimination program. However, only a few mathematical models discuss these
two important interventions. The present study’s aim is to understand the impact of early TB detection
in minimizing the number of TB cases in the long term of interventions. Furthermore, the study aims to
find the minimum quality level of TB treatment success probability such that treatment can be used as
a front-line intervention to combat TB. The rest of the article is structured as follows. The mathematical
model constructed with a detailed assumption is given in Section 2. Parameter estimation using accumulated
TB cases in Indonesia from 2017 to 2021 is discussed in Section 3. The mathematical model analysis to
guarantee the well-defined properties of the proposed model is provided in Section 4. The same section
offers a comprehensive analysis of the existence criteria of equilibrium points along with the respected
control reproduction number. We show the non-existence of backward bifurcation of our model in section 5.
Section 6 discusses some numerical experiments conducted, such as PRCC analysis, sensitivity analysis on
the control reproduction number and endemic size, as well as autonomous simulations. Finally, Section 7
presents the conclusion.

2. MODEL FORMULATION

A mathematical model for TB transmission was formulated by dividing the population into six compart-
ments; namely, susceptible individuals (S), latently undetected individuals (E1), latently detected individuals
(E2), active TB individuals (I), imperfect recovered individuals and should take the second dose of treatment
(R1), and perfect recovered individuals (R2). With this division, the total population (N) is governed by

N(t) = S(t) + E1(t) + E2(t) + I(t) +R1(t) +R2(t).

The transmission diagram used to construct the model is given in Figure 1. The susceptible compartment
includes individuals at risk of TB infection, while perfectly recovered individuals are those who recently
recovered from TB and have a temporal immunity (κ−1) to TB infection. The authors assume that the
susceptible compartment can get infected by TB due to contact with active TB individuals (I) and imperfectly
recovered individuals (R1). We assume that the individuals in R1 compartment still have a chance to spread
the disease since they failed in the previous treatment [26]. Assuming the probability of success infection
given by β and the probability of fast and slow progression given by p and (1− p) respectively, the force of
infection is given by:

F (I,R1) = slow progression case + fast progression case,

= (1− p)β
ηI +R1

N
+ pβ

ηI +R1

N
, (1)

= β
ηI +R1

N
S,

where η ∈ (0, 1] is the correction parameter of infection for I individuals. The first intervention implemented
in the model is the case detection u1, which is given to detect the existence of latent individuals. It is assumed
that the undetected latent individuals E1 do not get treatment, while the detected latent individuals E2 get
the first dose of treatment. If the treatment fails, then the infection status of an individual of E2 will increase
to the active infected patient in the I compartment. The duration of the first dose of treatment is δ−1

1 . The
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Figure 1: Transmission diagram of TB transmission model in (2).

probability of treatment success for E2 is assumed to be r ∈ [0, 1]. The progression rate of E1 to become
active TB is α. Similar to E2, it is also possible that the active TB individuals I2 who received the advanced
first dose of treatment failed the treatment. The probability of treatment success is assumed to be q ∈ [0, 1],
with the duration of the second dose treatment being δ−1

2 . Lastly, it is assumed that the third dose treatment
duration for an imperfectly recovered individual is δ−1

3 , with successful probability u2. Based on the above
model description and the transmission diagram in Figure 1, the governing model can be developed as a
system of nonlinear differential equations given as follows:

dS

dt
= Λ+ κR2 − (1− p)βS

(ηI +R1)

N
− pβS

(ηI +R1)

N
− µS, (2a)

dE1

dt
= (1− p)βS

(ηI +R1)

N
− u1E1 − αE1 − µE1, (2b)

dE2

dt
= u1E1 − (1− r)δ1E2 − rδ1E2 − µE2, (2c)

dI

dt
= pβS

(ηI +R1)

N
+ (1− r)δ1E2 + αE1 − qδ2I − (1− q)δ2I − µI, (2d)

dR1

dt
= (1− q)δ2I − u2δ3R1 − µR1, (2e)

dR2

dt
= u2δ3R1 + rδ1E2 + qδ2I − κR2 − µR2, (2f)

with initial conditions:

S(0) > 0, E1(0) ≥ 0, E2(0) ≥ 0, I(0) ≥ 0, R1(0) ≥ 0, R2(0) ≥ 0.

The description and values of each parameter in model (2) are given in Table 1.

3. PARAMETER ESTIMATION

To fit and estimate the model parameters in system (2), the "lsqnonlin" built-in function in MATLAB
was used. The "lsqnonlin" function in MATLAB is part of the Optimization Toolbox and is primarily
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Table 1: Parameter description, values, and sources.

Parameters Description Value Source
Λ Recruitment rate to the population 270 200 000

71.5×4
human

quarter year [30], [31]
β Probability of successful infection rate 1.3 1

quarter year Estimated
u1 Case detection rate 1 1

quarter year Estimated
u2 Probability of second dose treatment success 0.7 Estimated
η Correction parameter for transmission rate I 0.12 Estimated
p Probability of fast progression 0.063 [32]
α Progression rate of undetected latent individuals 0.3 1

quarter year [34]
δ1 Recovery rate of detected latent individuals 0.8745 1

quarter year [35]
δ2 Recovery rate of active infected individuals 0.5415 1

quarter year [35]
δ3 Recovery rate of imperfectly recovered individuals 0.158 1

quarter year [36]
µ Natural death rate 1

71.5×4
1

quarter year [31]
κ Waning rate of immunity 0.875 1

quarter year [37]
r Probability of successful first dose treatment 0.9 Estimated
q Probability of successful advanced first dose treatment 0.8 Estimated

used for solving nonlinear least squares problems. Nonlinear least squares problems involve minimizing the
sum of the squares of nonlinear functions. This optimization problem arises in various fields, including curve
fitting, parameter estimation, and data fitting. For more explanation and examples on the use of this method,
readers can see [38].

The data sources for this study consist of accumulated quarterly incidence data of Tuberculosis (TB) in
Indonesia spanning from 2017 to 2021. These data were obtained by personal request to the Ministry of
Health, Indonesia. It’s worth noting that Indonesia has a considerable population estimated at around 270
million individuals. The decision to use quarterly time steps, as opposed to weekly, daily, or monthly intervals,
was made since this is the best incidence data that was available from the mentioned source.

Figure 2: The fitted accumulated data, C(t).

Here, the authors wanted to estimate the infection rate β, case detection rate u1, probability of successful
second dose treatment u2, correction parameter of infection rate of actively infected individuals η, probability
of successful first dose treatment r, and the probability of successful advanced first dose treatment q, as well
as the best initial condition for the proposed model. Our aim was to find the best-fit parameter such that the
squared error between simulation results and the accumulated incidence data in the field, which is given by

C =

∫ T

0

[
u1E1 + pβS

(ηI +R1)

N
+ αE1

]
dt,
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could be as minimum as possible, where C is the accumulated infected individuals. Assuming the best-fit
parameters are β∗, u∗1, u

∗
2, η

∗, r∗, and q∗ and the best-fit initial condition X0, the aim was to minimize the
following function

RMSE =

√√√√ 1

20

20∑
i=1

(Cpredictioni − Cdatai)
2,

where 20 is the number of accumulated data points that are available. From the simulation, it was found that
the proposed model fit well to the data as shown in Figure 2. The best fit parameters of model (2) are given
in Table 1, while the best-fit initial condition is given by

S(0) = 257 900 037, E1(0) = 9, 964, E2(0) = 12 501, I(0) = 12 501, R1(0) = 112 494, R2(0) = 195 253.

4. QUALITATIVE ANALYSIS

4.1. Basic properties
Since we are dealing with human populations, it is important that all solutions of the proposed model must

be positive and bounded in a feasible region. To satisfy this condition, the following propositions were made:

Proposition 1. The solution of model (2) is non-negative for t > 0 if the initial condition satisfies

S(0) > 0, E1(0) ≥ 0, E2(0) ≥ 0, I(0) ≥ 0, R1(0) ≥ 0, R2(0) ≥ 0.

Proof: From the first equation of system (2), we have the following inequality:

dS

dt
≥ −

(
(1− p)β

(ηI +R1)

N
+ pβ

(ηI +R1)

N
+ µ

)
S. (3)

Using the integrating factor

exp

∫ t

0

−
(
(1− p)β

(ηI(τ) +R1(τ))

N(τ)
+ pβ

(ηI(τ) +R1)

N(τ)
+ µ

)
dτ

in (3), we have

S(t) > S(0) exp

∫ t

0

−
(
(1− p)β

(ηI(τ) +R1(τ))

N(τ)
+ pβ

(ηI(τ) +R1)

N(τ)

)
dτ + µt > 0,

for all t > 0. The proof for remaining variables E1, E2, I, R1, and R2 can be shown in a similar way. Hence,
it can be concluded that the solution of all variables in model (2) is always non-negative for all time t > 0.

Proposition 2. The feasible region Ω defined by

Ω =

{
(S,E1, E2, I, R1, R2) ∈ R6

+ : N(t) ≤ Λ

µ

}
is positively invariant under system (2).

Proof: Summing up the human population compartment gives
dN

dt
= Λ− µN.

Consequently,

N =
Λ

µ
(1− exp(−µt)) +N(0) exp(−µt).

Taking the lim sup as t → ∞ gives N = Λ
µ . Furthermore, if N(0) ≤ Λ

µ , then for all t > 0, we have
N(t) ≤ Λ

µ . However, if N(0) > Λ
µ , then the solution of N(t) approaches Ω. Therefore, it follows that the

region Ω is positively invariant and attractive.
The implication of the above two propositions is that model (2) is mathematically well-posed in the epidemi-
ologically feasible region Ω.
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4.2. Equilibrium points and the control reproduction number

The first analysis in this section seeks to determine the equilibrium points of system (2) by solving

dS

dt
=
dE1

dt
=
dE2

dt
= 0,

dI

dt
= 0,

dR1

dt
= 0,

dR2

dt
= 0,

respective to each variables S,E1, E2, I, R1, and R2. By solving this problem, the TB model in system (2) has
two types of equilibrium, namely the TB-free equilibrium (denoted by x∗) and the TB-endemic equilibrium
(denoted by x+). The TB-free equilibrium point of system (2) is given by

x† =
(
S†, E†

1, E
†
2, I

†, R†
1, R

†
2

)
=

(
Λ

µ
, 0, 0, 0, 0, 0

)
.

The linear stability of x∗ is established using the concept of the basic reproduction number. Basic reproduction
number, R0, is the endemic indicator for a disease transmission, which presents the expected number of
secondary cases due to one primary case in a completely susceptible population during the infection period
[39]. Many epidemiological models [40], [41], [42], [43], [44] have used the concept of R0 to determine
whether their model tends to the free disease state or endemic state. Most of them found that the disease
has a chance to get eradicated if R0 < 1, and persist if R0 > 1. We calculate the control reproduction
number using the concept of the next-generation matrix approach introduced by authors in [45]. At first, we
linearize our sub-system infected compartment of model (2) in x∗, which only involve dE1

dt ,
dE2

dt ,
dI
dt , and

dR1

dt . Let’s define the matrix J . By separating the transmission term (F) and transition term (V) of J ,
where J = F + V , we have

F =


0 0 (1− p)β η (1− p)β

0 0 0 0

0 0 pβ η pβ

0 0 0 0

 ,

and

V =


−u1 − α− µ 0 0 0

u1 − (1− r) δ1 − rδ1 − µ 0 0

α (1− r) δ1 −qδ2 − (1− q) δ2 − µ 0

0 0 (1− q) δ2 −u2δ3 − µ

 .

Since the second and fourth row of F are zero, we define

E =


1 0

0 0

0 1

0 0

 ,

such that the next-generation matrix of the proposed TB model in (2) is given by

K = −ETFV−1E,

=

[
k11 k12

k21 k22

]
,
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where

k11 =
(1− p) η β (δ1u1(1− r) + αµ+ α δ1)

(µ+ δ2) (µ+ δ1) (u1 + α+ µ)
− (1− p)β L

(u1 + α+ µ) (µ+ δ1) (µ+ δ2) (u2δ3 + µ)
,

k12 =
(1− p) η β

δ2 + µ
+

(1− p)β (1− q) δ2
(µ+ δ2) (u2δ3 + µ)

,

k21 =
pβ η (δ1u1(1− r) + αµ+ α δ1)

(µ+ δ2) (µ+ δ1) (u1 + α+ µ)
− pβ L

(u1 + α+ µ) (µ+ δ1) (µ+ δ2) (u2δ3 + µ)
,

k22 =
pβ η

δ2 + µ
+

pβ (1− q) δ2
(µ+ δ2) (u2δ3 + µ)

,

with

L = (−qrδ1u1 + αµ q + α qδ1 + qδ1u1 + rδ1u1 − αµ− α δ1 − δ1u1) δ2.

Hence, the control reproduction number of model (2) is taken from the spectral radius of K and given by

R0 =
β (η δ3u2 + η µ+ δ2(1− q))

(
prδ1u1 + µ2p+ µ pδ1 + µ pu1 + αµ+ α δ1 + δ1u1(1− r)

)
(u2δ3 + µ) (δ2 + µ) (µ+ δ1) (u1 + µ+ α)

.

In the absence of control parameters u1 and u2, the control reproduction number (R0) reduced into the basic
reproduction number (R∗

0) given by

R∗
0 =

β(ηµ+ δ2(1− q))(µp+ α)

(δ2 + µ)(µ+ α)
.

4.3. Stability of the TB-free equilibrium point

1) Local stability of the TB-free equilibrium: The local stability of the TB-free equilibrium points is given
by the following theorem.

Theorem 1. The TB-free equilibrium point of system (2) is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof: To proof this theorem, the result in [46] is used by showing that the proposed model satisfies
five axioms in [46]. First, let us define model (2) as follows:

dI

dt
= pβS

(ηI +R1)

N
+ (1− r)δ1E2 + αE1 − qδ2I − (1− q)δ2I − µI = f1, (4a)

dR1

dt
= (1− q)δ2I − u2δ3R1 − µR1 = f2, (4b)

dE1

dt
= (1− p)βS

(ηI +R1)

N
− u1E1 − αE1 − µE1 = f3, (4c)

dE2

dt
= u1E1 − (1− r)δ1E2 − rδ1E2 − µE2 = f4, (4d)

dR2

dt
= u2δ3R1 + rδ1 + qδ2I − κR2 − µR2 = f5, (4e)

dS

dt
= Λ+ κR2 − (1− p)βS

(ηI +R1)

N
− pβS

(ηI +R1)

N
− µS = f6. (4f)

Next, we define the TB-free equilibrium as follows:

Xs =

{
x1 = I = 0, x2 = R1 = 0, x3 = E1 = 0, x4 = E2 = 0, x5 = R2 = 0, x6 = S =

Λ

µ

}
.
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The new infection (transmission) part of system (4) is given by

FFF(xxx) =



pβS (ηI+R1)
N

0

(1− p)βS (ηI+R1)
N

0

0

0


,

and the transition part is given by

VVV(xxx) =



(δ2 + µ)I − (1− r)δ1E2 − αE1

(u2δ3 + µ)R1 − (1− q)δ2I

(u1 + α+ µ)E1

δ1E2 + µE2 − u1E1

(κ+ µ)R2 − u2δ3R1 − rδ1 − qδ2I

βS (ηI+R1)
N + µS − κR2 − Λ


,

=



(δ2 + µ)I

(u2δ3 + µ)R1

(u1 + α+ µ)E1

δ1E2 + µE2

(κ+ µ)R2

βS (ηI+R1)
N + µS


−



(1− r)δ1E2 + αE1

(1− q)δ2I

0

u1E1

u2δ3R1 + rδ1 + qδ2I

κR2 + Λ


,

= VVV−(xxx)−VVV+(xxx),

where V−
i and V+

i present the out- and in- flow of each compartment, respectively. Now, we proof the five
axioms in [46] to guarantee the LAS properties of the TB-free equilibrium.

1) If all compartments are non-negative, then Fi,V−
i , and V+

i are always non-negative. Proof: By
substituting S > 0, E1 > 0, E2 > 0, I > 0, R1 > 0 and R2 > 0, into Fi,V−

i , and V+
i , it can

be seen trivially that Fi,V−
i , and V+

i are always non-negative.
2) If all compartments are zero, then V−

i = 0 for i = 1, 2, . . . 6. Furthermore, if all variables are at Xs,
then V−

i = 0 for i = 1, 2, 3, 4. Proof: It is easy to verify that V−
i = 0 for i = 1, 2, . . . 6 when we set

S = E1 = E2 = I = R1 = R2 = 0. Furthermore, when we substitute Xs into Vi for i = 1, 2, 3, 4,
then we have Vi = 0.

3) Fi = 0 for i=5,6. Proof: This is trivial directly from the expression of F5 and F6.
4) If xi ∈ Xs, then Fi = 0 and V+

i = 0 for i = 1, 2, 3, 4. Proof: By substituting Xs into Fi, i = 1, 2, 3, 4,
we have that Fi = 0 and V+

i = 0, i = 1, 2, 3, 4.
5) If F(x) = 0, then all the eigenvalues of Df(Xs), where Df(Xs) is the Jacobian matrix of system (4)

evaluated at Xs, have a negative real part. Proof: By substituting Xs and F(x) = 0 into system (4),
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we obtain the following:

f1 =
dI

dt
= (1− r)δ1E2 + αE1 − (δ2 + µ)I,

f2 =
dR1

dt
= (1− q)δ2I − u2δ3R1 − µR1,

f3 =
dE1

dt
= −u1E1 − αE1 − µE1,

f4 =
dE2

dt
= u1E1 − δ1E2 − µE2,

f5 =
dR2

dt
= u2δ3R1 + rδ1 + qδ2I − κR2 − µR2,

f6 =
dS

dt
= Λ+ κR2 − βS

(ηI +R1)

N
− µS.

Hence, we have

Df(Xs) =



G1 0 α (1− r) δ1 0 0

(1− q) δ2 G2 0 0 0 0

0 0 G3 0 0 0

0 0 u1 G4 0 0

qδ2 u2δ3 0 0 G5 0

−β Sη
N −β S

N 0 0 κ −µ


,

where G1 = −δ2−µ,G2 = −u2δ3−µ,G3 = −α−µ−u1, G4 = −µ−δ1, G5 = −κ−µ, and G6 = −µ.
By standard calculation, we obtain the eigenvalues of Df(Xs), namely −µ,−(µ+ u2δ3),−(α+µ+
u1),−(µ+δ1), −(κ+µ), and −µ. Since all parameters are non-negative, all eigenvalues are negative.

Since all five axioms in [46] were satisfied by the proposed model, we conclude that the TB-free equilibrium
is locally stable if R0 < 1 and unstable if R0 > 1. Hence, the proof is completed.

2) Global stability of the TB-free equilibrium:

Theorem 2. The TB-free equilibrium is globally asymptotically stable if R0 < 1.

Proof: We show that model (2) is globally asymptotically stable (GAS) using the method described in
[47]. First, we re-write system (2) as follows, let

dX

dt
= F

(
X, I

)
,

dI
dt

= G
(
X, I

)
G
(
X, 0

)
= 0,

for X =
(
S,R2

)
∈ R2 and I =

(
E1, E2, I, R1

)
∈ R5, where X and I represent the classes of the

uninfectious and infectious individuals respectively. Next, we redefine the DFE as

M∗ = (X0, 0) =
(
S∗, E∗

1 , E
∗
2 , I

∗, R∗
1, R

∗
2

)
=

(
Λ

µ
, 0, 0, 0, 0, 0

)
.

According to [47], our TB model given in (2) will be GAS at M∗ if the following conditions:
C1. M∗ is locally stable if R0 < 1,

C2. At
dX

dt
= F (X0, 0) the DFE is GAS,

C3. G(X, I) = AI − Ĝ(X, I), Ĝ(X, I) ≥ 0 for (X, I) ∈ Ω, where A = DIG(X, I) is a Metzler matrix
and Ω is the proposed model’s feasible region,

are satisfied. Now, we establish that our model satisfies each of the above-enumerated conditions C1 to C3

to guarantee the GAS of the DFE. Clearly, since the model, basic reproduction number, R0, is calculated
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using the approach in Van den Driessche, and Watmough [45], it implies that M0 is locally asymptotically
stable whenever R0 < 1. Suppose Ψ0 = (µ+ u1 + α), Ψ1 =

(
µ+ (1− r)δ1 + rδ1

)
,

Ψ2 = (µ + qδ2 + (1 − q)δ2), Ψ3 = (µ + u2δ3), Ψ4 = (µ + k), and λ =
β(ηI +R1)

N
· Re-defining system

(2) as to follow the form given in equation (6), we obtain

dX

dt
= F (X, I) =

(
Λ + κR2 −

(
(1− p)λ+ pλ+ µ

)
S

u2δ3R1 + rδ1E2 + qδ2I −Ψ4R2

)
,

dI
dt

= G(X, I) =

 (1− p)λS −Ψ0E1

u1E1 −Ψ1E2

pλS + (1− r)δ1E2 + αE1 −Ψ2I
(1− q)δ2I −Ψ3R1

 ,

and

F (X, 0) =

(
λ− µS

0

)
,

whose solutions yield a unique equilibrium point
(
Λ

µ
, 0, 0, 0, 0, 0

)
, thus being GAS, and therefore C2 is

satisfied. Linearizing the above second matrix gives a Metzler matrix as follows:

A = DI(M
∗, 0) =


−Ψ0 0

β(1− p)ηS0

N0

β(1− p)S0

N0

u1 −Ψ1 0 0

α (1− r)δ1
βpηS0

N0
−Ψ2

βpS0

N0

0 0 (1− q)δ2 −Ψ3

 .

Solving for Ĝ(X, I) and performing some algebraic manipulation yield

Ĝ(X, I) = AI − Ĝ(X, I) :=


β(1− p)(ηI +R1)

[
S0

N0
− S

N

]
0

βp(ηI +R1)

[
S0

N0
− S

N

]
0


.

Consequently,

Ĝ(X, I) ≥


β(1− p)(ηI +R1)S

0

[
1

N0
− 1

N

]
0

βp(ηI +R1)S
0

[
1

N0
− 1

N

]
0


since

(
1

N0
− 1

N

)
=

N −N0

NN0
and N(t) − N0 =

(
Λ
µ − N(0)

)
exp(−µt) is positive. We have that

Ĝ(X, I) ≥ 0, and C3 is satisfied as well. All the three conditions C1 to C3 are satisfied, and therefore, we
can conclude that the DFE of the model system (2) is GAS whenever R0 < 1, which completes the proof.
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4.4. Endemic equilibrium point
The next equilibrium point of system (2) is the endemic equilibrium point, which is given by

EE = (S∗, E∗
1 , E

∗
2 , I

∗, R∗
1, R

∗
2), (6)

where

S∗ =
Λ
(
µδ3u2 + δ2δ3u2 + µ2 + µδ2

) (
αµ+ αδ1 + µ2 + µδ1 + µu1 + δ1u1

)
µβ (ηµ+ (1− q) δ2 + ηδ3u2) (prδ1u1 + µ2p+ µpδ1 + µpu1 + (1− r) δ1u1 + αµ+ αδ1)

,

E∗
1 =

I ∗ (δ2 + µ) (1− p) (δ1 + µ)

((r(1− p) + 1)u1 + µ p+ α) δ1 + µ (µ p+ pu1 + α)
,

E∗
2 =

u1E
∗
1

δ1 + µ
,

R∗
1 =

I ∗ δ2 (1− q)

δ3u2 + µ
,

R∗
2 =

qδ2I
∗ + rδ1E

∗
2 + u2δ3R

∗
1

κ+ µ
,

and I∗ = a0

a1
, where

a0 = (R0 − 1) (δ3u2 + µ) (µ+ δ2) (µ+ δ1) (u1 + α+ µ) ,

a1 = (L1 + L2 + L3 + L4 + L5 + L6 + L7),

with

L1 = (1− q)κ prδ1δ2u1 + (1− q)κ δ1δ2u1 + κ qrδ1δ2u1 + κ rδ1δ2u1 + µ δ1δ2u1,

L2 = (1− r)κ δ1δ3u1u2 + κ prδ1δ3u1u2 + µ δ1δ3u1u2 + (1− q)ακµ δ2,

L3 = (1− pq)κµ2δ2 + µ3δ2 + αµ2δ2 + (1− pq)κµ δ1δ2 + (1− q)ακ δ1δ2 + αµ δ1δ2,

L4 = µ2δ1δ2 + (1− pq)κµ δ2u1 + µ2δ2u1 + (1− r)κµ δ1u1 + κµ prδ1u1 + µ2δ1u1,

L5 = (1− p)κµ δ2δ3u2 + αµ δ2δ3u2 + µ2δ2δ3u2 + (1− p)κ δ1δ2δ3u2 + α δ1δ2δ3u2,

L6 = µ δ1δ2δ3u2 + (1− p)κ δ2δ3u1u2 + µ δ2δ3u1u2 + ακ δ1δ3u2,

L7 = αµ δ1δ3u2 + κµ δ1δ3u2 + κµ δ3u1u2 + µ2δ1δ3u2 + µ2δ3u1u2,

L8 = ακµ2 + αµ3 + κµ3 + µ4 + u1
(
κµ2 + µ3

)
.

Based on the expression of I∗ and the endemic equilibrium in (6), we have the following theorem.

Theorem 3. The tuberculosis model in (2) always has a unique endemic equilibrium point if R0 > 1, and
no endemic equilibrium point otherwise.

5. BIFURCATION ANALYSIS

In this section, we show the non-existence of the backward bifurcation of the proposed model. To analyze
this, the Castillo–Song bifurcation theorem is used[48]. To begin, let us define the TB model in system (2)
as follows:

g1 = Λ+ κx6 − (1− p)βx1
(ηx4 + x5)

N
− pβx1

(ηx4 + x5)

N
− µx1, (7a)

g2 = (1− p)βx1
(ηx4 + x5)

N
− u1x2 − αx2 − µx2, (7b)

g3 = u1x2 − (1− r)δ1x3 − rδ1x3 − µx3, (7c)

g4 = pβx1
(ηx4 + x5)

N
+ (1− r)δ1x3 + αx2 − qδ2x4 − (1− q)δ2x4 − µx4, (7d)

g5 = (1− q)δ2x4 − u2δ3x5 − µx5, (7e)
g6 = u2δ3x5 + rδ1x3 + qδ2x4 − κx6 − µx6, (7f)
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where x1 = S, x2 = E1, x3 = E2, x4 = I, x5 = R1, and x6 = R2. Next, we choose the bifurcation parameter
from our model, in this case, the infection parameter β. Taking R0 = 1 and solving it respect to β, we have

β∗ = − (u1 + µ+ α) (µ+ δ1) (δ2 + µ) (δ3u2 + µ)

(−η µ+ (−1 + q) δ2 − η δ3u2) (((pr − r + 1)u1 + µ p+ α) δ1 + µ (µ p+ pu1 + α))
,

Substituting this β∗ into the Jacobian matrix of system (7) evaluated at the TB-free equilibrium gives simple
zero eigenvalues, while the other five eigenvalues are negative. Hence, we can proceed to the next step. Next,
we calculate the right eigenvector (www) to the respected zero eigenvalues by solving Awww = 000, where A is the
Jacobian matrix of system (7) evaluated at TB-free equilibrium. Hence, we havewww = [w1 w2 w3 w4 w5 w6]

T ,
where

w1 =
(Z1 + Z3κ+ Z2µ− δ1δ2δ3u2 (α+ u1))ψ

(κ+ µ) (δ3u2 + µ) (µ+ δ2) (1− p)u1
,

w2 =
(µ+ δ1)ψ

u1
,

w3 = ψ,

w4 =

(
µ2p+ ((u1 + δ1) p+ α)µ+ (pru1 + (1− r)u1 + α) δ1

)
ψ

(µ+ δ2) (1− p)u1
,

w5 =
δ2 (1− q)

(
µ2p+ ((u1 + δ1) p+ α)µ+ (pru1 + (1− r)u1 + α) δ1

)
ψ

u1 (δ3u2 + µ) (µ+ δ2) (1− p)
,

w6 =
(Z5µ+ Z4 + δ1δ2δ3u2 (α+ u1))ψ

(κ+ µ) (δ3u2 + µ) (µ+ δ2) (1− p)u1
,

with

Z1 = −µ4 + (−δ3u2 − α− κ− δ1 − δ2 − u1)µ
3 + (k1 + k2)µ

2,

Z2 = (k3δ2 + (−δ3u2 + (−pr + r − 1)u1 − α) δ1 − u2δ3 (α+ u1))κ+ k4,

Z3 = (k5δ1 + δ3u2u1 (−1 + p)) δ2 − δ1δ3u2 ((pr − r + 1)u1 + α) ,

Z4 = µ3pqδ2 + ((pqδ1 + qpu1 + pδ3u2 + qα) δ2 + δ1ru1 (1− p))µ2,

Z5 = (k6δ1 + δ3u2 (pu1 + α)) δ2 + δ1δ3ru1u2 (1− p) ,

k1 = ((qp− 1) δ2 − δ3u2 − δ1 − α− u1)κ+ (−δ3u2 − α− δ1 − u1) δ2,

k2 = (−δ3u2 − α− u1) δ1 − u2δ3 (α+ u1) ,

k3 = (qp− 1) δ1 + u2 (−1 + p) δ3 + qpu1 + qα− α− u1,

k4 = ((−δ3u2 − α− u1) δ1 − u2δ3 (α+ u1)) δ2 − δ1δ3u2 (α+ u1) ,

k5 = u2 (−1 + p) δ3 + (q − 1) ((pr − r + 1)u1 + α) ,

k6 = (r (q − 1) p+ (1− r) q + r)u1 + pδ3u2 + qα.

For simplifying the calculation, let w3 = ψ. The left eigenvector for the zero eigenvalue (vvv) is taken by
solving vvvA = 000, which gives vvv = [v1 v2 v3 v4 v5 v6], where

v1 = 0,

v2 =
v5 (((1− r)u1 + α) δ1 + αµ) (η µ+ (1− q) δ2 + η δ3u2)

(µ+ δ1) (α+ u1 + µ) (µ+ δ2)
,

v3 =
v5 ((1− q) δ2 + η (δ3u2 + µ)) (1− r) δ1

(µ+ δ2) (µ+ δ1)
,

v4 =
v5 ((1− q) δ2 + η (δ3u2 + µ))

µ+ δ2
,

v5 = σ,

v6 = 0.
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To determine the type of bifurcation at R0 = 1 of the proposed TB model, we calculate indicators a and b
with the following formula [48]:

a =

n∑
k,i,j=1

vkwiwj
∂2gk
∂xi∂xj

(0, 0),

b =

n∑
k,i=1

vkwi
∂2gk
∂xi∂β

(0, 0),

Therefore, we have

a = w1

(
2v2w4

(1− p)βη

N
+ 2v2w5

(1− p)β

N
+ 2v4w4

pβη

N
+ 2v4w5

pβ

N

)
.

where

w1 = −ψ 1

(κ+ µ) (u2δ3 + µ) (µ+ δ2) (1− p)u1

((
µ4 + (u2δ3 + α+ κ+ δ1 + δ2 + u1)µ

3

+ (((1− pq) δ2 + u2δ3 + δ1 + α+ u1) κ

+ (u2δ3 + α+ δ1 + u1) δ2 + (u2δ3 + α+ u1) δ1 + u2δ3 (α+ u1))µ
2

+ ((1− pq) δ1 + u2 (1− p) δ3 + (u1 (1− pq) + α (1− q) δ2
+ (u2δ3 + (rp+ 1− r)u1 + α) δ1 + u2δ3 (α+ u1))κ

+ ((u2δ3 + α+ u1) δ1 + u2δ3 (α+ u1)) δ2
+ δ1δ3u2(α+ u1)µ+ (((u2 (1− p) δ3
+ (1− q) ((rp+ 1− r)u1 + α)) δ1 + δ3u1u2 (1− p)) δ2
+ δ1δ3u2 ((rp+ 1− r)u1 + α))κ+ δ1δ2δ3u2 (α+ u1))),

v2 =
(η µ+ (1− q) δ2 + η δ3u2) ((u1 (1− r) + α) δ1 + αµ)σ

(µ+ δ1) (α+ u1 + µ) (µ+ δ2)
,

w4 =

(
µ2p+ ((u1 + δ1) p+ α)µ+ (pru1 + u1 (1− r) + α) δ1

)
ψ

(µ+ δ2) (1− p)u1
,

v4 =
σ ((1− q) δ2 + η (u2δ3 + µ))

µ+ δ2
,

w5 =
ψ δ2 (1− q)

(
µ2p+ ((u1 + δ1) p+ α)µ+ (pru1 + u1 (1− r) + α) δ1

)
u1 (u2δ3 + µ) (µ+ δ2) (1− p)

.

Since v2, w4, v4, w5 are positive, and w1 is negative, we have a < 0. Furthermore,

b = v2w4

(
(1− p)ηΛ

Nµ

)
+ v2w5

(
(1− p)Λ

Nµ

)
+ v4w4

(
pηΛ

Nµ

)
+ v4w5

(
pΛ

Nµ

)
,

where v2, v4, w4, and w5 are positive. Hence, we have b > 0. Since a < 0 and b > 0, we have the following
theorem.

Theorem 4. System (2) undergoes forward bifurcation at R0 = 1.

Theorem 4 indicates a change in stability at R0 = 1. For the case where R0 < 1, as established in
the previous section, we know that the disease-free equilibrium is globally stable. However, when R0 = 1,
Theorem 4 reveals that the disease-free equilibrium loses its stability. Simultaneously, the unique stable
endemic equilibrium begins to emerge. The stability of the endemic equilibrium is crucial in determining the
long-term behavior of the disease dynamics. If the endemic equilibrium is stable, the disease will persist at
an endemic level. If it is unstable, small perturbations may lead to the disease dying out or escalating to an
epidemic. Direct consequences from the previous theorem, we have the following corollary.

Corollary 1. The TB-endemic equilibrium in (6) is locally stable if R0 > 1 but close to one and unstable
if R0 < 1 but close to one.
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6. NUMERICAL RESULTS

A mathematical model of tuberculosis introduced in this article includes some important factors that
complicate TB eradication in many countries, such as slow-fast progression and treatment failure. Unlike
other TB models in [49], [50], the proposed model does not show any backward bifurcation phenomena.
Hence, the endemic equilibrium is unique and only appears when the control reproduction number is higher
than one. Furthermore, the control reproduction number becomes the only endemic indicator of the model.
In other words, the best implementation program needs to be determined such that the control reproduction
number is less than one. Once this condition is achieved, TB can be eliminated from the population. Based
on the above explanation, which parameter has the most significant in determining the size of the control
reproduction number needs to be determined. Understanding this, we can focus on several interventions to
minimize the cost of implementation in the field. Our first analysis is the global sensitivity analysis of the
control reproduction number on all parameters in model (2).

6.1. Uncertainty sensitivity analysis
Global sensitivity analysis is a useful technique for determining the variability of model parameters and

how they affect the infection dynamics of an epidemic model. In sensitivity analysis, we use what is
known as the false discovery rate (FDR) to establish the ratio of the number of false positive results to
the number of total positive test results [51]. This subsection is devoted to the investigation of sensitivity
for parameters contained in the proposed model’s reproduction number, R0. To achieve this, we employed
the Latin Hypercube sampling method (LHS) with a combination of the partial rank correlation coefficient
approach as in [52]. To apply this method, we performed 1000 runs for each simulation with a step size
of one using R software that generated Figure 3. Furthermore, we computed the p-values associated with
each PRCC value, presented in Table 2. Simulation results show that the parameter β has a positive PRCC,

Figure 3: Tornado plot for the global sensitivity analysis of parameters within R0.

while parameters u2, δ3, r, and q have negative PRCC values since the PRCC values are strictly greater
than ±0.2. Therefore, the biological implications of an increased transmission rate implies that an increase
in the number of infected TB infections, while an increase in u2, δ3, r, and q leads to a decrease in the
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Table 2: Table of PRCC values for all model parameters in R0. The larger PRCC values are indicated with *, implying
that these corresponding parameters are more significant.

Parameters PRCC value: R0 P-value Keep?
β 0.803812255∗ 0.000000e00 TRUE
u1 −0.162104365 4.824347e−07 TRUE
u2 −0.731077708∗ 0.000000e00 TRUE
η −0.007917008 8.767275e−01 FALSE
p 0.014487159 8.655386e−01 FALSE
α 0.166551573 2.597758e−07 TRUE
δ1 −0.011134247 8.719335e−01 FALSE
δ2 −0.002306109 9.422729e−01 FALSE
δ3 −0.733021841∗ 0.000000e+00 TRUE
µ −0.134391857 3.269048e−05 TRUE
r −0.438655427∗ 0.000000e+00 TRUE
q −0.546904569∗ 0.000000e+00 TRUE

infection dynamics of TB. Hence, we aimed to implement control measures required to reduce the infection
rate to reduce the risk of transmission or the infected population, which are I and R1-individuals. Table 2
shows that the parameters β, u1, u2, α, δ3, µ, r, and q have p-values less than 0.05, which indicates that
they have a significant effect on the reproduction number and consequently on the transmission dynamics of
the model. Hence, we targeted to establish control measures that could reduce the transmission rate, β, and
promote the increase of u1, u2, α, δ3, µ, r, and q. See the following literature [53], [54], [56], [55], where
a similar sensitivity analysis has also been presented to ascertain the model parameter that causes the disease
to spread or affect the basic reproduction number for other epidemic models in the human population.

6.2. Dependency of the endemic level and control reproduction number to the model parameters
Next, we examined the impact of intervention parameters, namely case detection rate (u1) and the proba-

bility of success of second dose treatment (u2) on the size of the control reproduction number and the size of
active TB compartment on the endemic equilibrium. We began by determining the derivative of R0 respect
to u1, which gave us the following:

∂R0

∂u1
= −β (η(µ+ u2δ3) + δ2(1− q))(1− p)(α(rδ1 + µ)− µδ1(1− r))

(µ+ δ2) (µ+ δ1) (u2δ3 + µ) (u1 + α+ µ)
2 .

It can be seen that ∂R0

∂u1
can be either positive or negative. It makes sense that we aimed to reduce the

control reduction number by increasing the case detection rate. However, this is not always the case. The
control reproduction number may increase when the case detection rate increases. To analyze this further, we
examined the effect of case detection (u1) and the quality of first dose treatment (r) on ∂R0

∂u1
. It is easy to

calculate that ∂R0

∂u1
< 0 if and only if

r > r∗ =
µ(δ1 − α)

δ1(α+ µ)
.

Since r is a proportion, which is always non-negative, if α > δ1, then we will always have ∂R0

∂u1
< 0 for

all possible value r. Hence, whenever the progression rate of latent undetected individuals is higher than
the recovery rate of detected latent individuals (δ1 < α), increasing case detection will always succeed in
reducing R0. However, if δ1 > α, then there is a minimum level of probability of success for the first dose
treatment such that increasing case detection could reduce R0. For a numerical experiment, we substituted
all parameter values in Table 1 except u1 and r, which gave the following:

∂R0

∂u1
= −81.667(0.527r − 0.001)

(u1 + 0.303)2
.

We have that ∂R0

∂u1
< 0 if r > 0.0074. If the quality of the first dose treatment is low (for example, less than

0.0074), then increasing case detection will only increase R0. Hence, the quality of treatment should pass
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this threshold (for example, r > r∗ = 0.0074) such that improving case detection causes a reduction of R0

whenever the case detection rate is increased.

To provide a clearer understanding of the findings above, readers can refer to the illustration in Figure 4. We
use all the same parameters as in Table 1. Figure 4(a) shows how ∂R0

∂u1
changes depending on the value of r.

It can be seen that if r = 0.005 < r∗, then ∂R0

∂u1
is always positive. As a result, increasing the control value u1

will always increase R0. This is certainly counterproductive to the vision of increasing case detection, which
aims to reduce the value of the basic reproduction number. Conversely, if r = 0.1 > r∗, then increasing the
value of u1 will decrease R0. This is in line with the expectation that increasing case detection will suppress
the basic reproduction number.

(a)

(b) (c)

Figure 4: Effect of r on ∂R0
∂u1

(panel a). Using specific value of r we show the effect of u1 on R0 when r < r∗ (panel
b) and when r > r∗ (panel c). All parameter used is given in Table 1.
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The derivation of R0 respect to the probability of success of the second dose treatment (u2) is given by

∂R0

∂u2
= −

δ3
(
prδ1u1 + µ2p+ µ pδ1 + µ pu1 + (1− r)δ1u1 + αµ+ α δ1

)
β (1− q) δ2

(µ+ δ2) (µ+ δ1) (u2δ3 + µ)
2
(u1 + α+ µ)

,

Figure 5: Dependency of R0 respect to case detection rate (u1) and probability of success of the second dose treatment.

which is always negative. Hence, improving the quality of the second dose treatment is essential to reduce
R0. To see the impact of u1 and u2 to R0, we set the parameter values as given in Table 1, but left u1 and
u2 free. Substituting these parameter values and applying it on R0, we have:

R0(u1, u2) =
2.802(0.018u2 + 0.108)(0.133u1 + 0.255)

(0.158u2 + .003)(u1 + 0.303)
.

The plot of R0(u1, u2) is given in Figure 5. It can be seen that since r > r∗ = 0.0074, increasing case
detection and the probability of success of the second dose treatment can reduce the size of the control
reproduction number significantly. Another interesting result is given in Figure 6, which presents the impact
of case detection rate and probability of success of the second dose treatment on the size of the total active
TB in the endemic equilibrium point. It can be seen that a higher case detection rate could reduce the number
of active TB at the equilibrium point level. However, an increased probability of success of the second dose
treatment does not always translate to a reduction in the endemic level of active TB. For a relatively small
u2 in Figure 6, we can see that ∂I∗

∂u2
> 0. Hence, increasing u2 in this interval is counterproductive to the

TB control intervention since it will increase the number of I at the endemic equilibrium point. When u2
larger enough, the positive impact of u2 start to appear, since ∂I∗

∂u2
< 0 in this interval. The number of I in

the endemic equilibrium decreases as u2 increases until it reaches its critical point where R0 = 1, where we
have no more I at the equilibrium point.
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Figure 6: Dependency of the endemic size of I∗ respect to the treatment rate (u1) and probability of success of second
dose treatment (u2).

The results given in Figure 5 are relevant to the result shown in Figure 7. Figure 7 shows the impact
of case detection rate on the magnitude of R0 and the size of endemic equilibrium of the active infected
individual compartment (I∗), which is given by EE (6). It can be seen that increasing the case detection rate
could reduce R0 as well as the equilibrium size of the active TB compartment. In the example in Figure 7,
we have that R0 < 1 if u1 > 0.768. As a consequence, based on Theorem 3, there is no endemic equilibrium
when u1 > 0.768. An autonomous simulation on the impact of case detection rate can be seen in Figure 8.
It can be seen that the number of undetected and detected latent TB, active TB, and imperfect recovered TB
could be reduced with a higher rate of case detection. Furthermore, if u1 > 0.768, the dynamics of infected
compartments tend to 0. The larger the case detection rate, the faster the dynamics tend toward the TB-free
equilibrium.

In the following simulation, we analyze the impact of the success probability of the second dose treatment
on the size of endemic equilibrium and the dynamic of active TB-infected individuals. As we already depicted
in Figure 6, the impact of u2 only succeeds sometimes in reducing the number of I at the endemic equilibrium
point. For more details with a fixed value of u1, the impact of u2 on the size of I at the endemic equilibrium
point can be seen in Figure 9. It can be noted that increasing u2 will reduce R0. However, increasing u2 does
not always give a positive result in the reduction of I at the endemic equilibrium point. Figure 9 indicates that
I∗ is monotonically increasing when u2 < 0.151, and its turning point is at u2 = 0.151. When u2 > 0.151,
as can be seen, increasing u2 will reduce the size of I at its endemic equilibrium point. Although the number
of I at the endemic equilibrium point in some intervals of u2 could be increased, the total number of active
TB individuals is always reduced when u2 increases, as shown in Figure 10.

To visualize the impact of u2 when it is less than or larger than its critical value (turning point), we run
several values of u2 to see the dynamic of each infected compartment of our system (2). Figure 11 shows
how the dynamic of each compartment behaves for many values of u2 < u∗2, where u∗2 is the turning point
of u2; see Figure 9. In this case, u∗2 = 0.151. We can see that for a long-term simulation, a larger value
of u2, where u2 < 0.151, will increase E1, E2,, and I but reduce the size of R1. On the other hand, when
u2 > 0.151, as shown in Figure 12, then a larger value of u2 will increase the number of E1, E2, I,, and R1

reach the disease-free equilibrium faster.
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Figure 7: Dependency of R0 and endemic size of I∗ respect to case detection rate (u1).

Figure 8: Dynamic of all infected compartments for various values of case detection rate (u1).
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Figure 9: Dependency of R0 and endemic size of I∗ respect to the probability of success of the second dose of
treatment (u2).

Figure 10: Dependency of R0 and endemic size of I∗ +R∗
1 respect to the probability of success of the second dose of

treatment (u2).
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Figure 11: Dynamic of all infected compartments for various values of u2 less than the critical u2.

Figure 12: Dynamic of all infected compartments for various values of u2 larger than the critical u2.



TUBERCULOSIS CONTROL WITH CASE DETECTION: A MATHEMATICAL MODELING STUDY 83

7. CONCLUSION

TB is a contagious disease that has become a significant health problem in many countries, including
Indonesia, which reported more than 9% of the world’s TB cases in 2021 [3]. Various interventions have
been implemented by the government and WHO to handle the spread of TB, including mass campaigns,
vaccination, treatment, and many more [57], [58]. Many recent reports state that early case detection of TB
cases could be an effective strategy for handling the spread of TB. This intervention aims to give early
treatment for the latent TB-infected individual as soon as possible such that they can be cured faster before
they can spread TB to others. Another critical factor in TB transmission is that TB treatment has a significant
potential for failure if the treated individual does not observe discipline in following the treatment. Unlike
previous studies presenting TB mathematical models [59], [29], this article aimed to understand the impact
of early case detection and treatment failure on TB control programs. The model was constructed as a
system of nonlinear ordinary differential equations as shown in model (2), dividing the human population
based on their health and treatment status as susceptible individuals, individuals with detected and undetected
latent TB, active TB individuals, and imperfectly and perfectly recovered individuals. It has been proved in
Propositions 1 and 2 that the proposed model always has a non-negative solution for all non-negative initial
conditions. This property is vital since our solutions describe the number of individuals, which has a biological
interpretation only when they are non-negative.

Mathematical analysis of the proposed model included the existence of the equilibrium points, the control
reproduction number, local and global stability of the TB-free equilibrium, bifurcation analysis, and sensitivity
analysis. We find that the TB-free equilibrium is globally asymptotically stable if R0 < 1. Furthermore, we
discovered that the TB-endemic equilibrium only exists if R0 > 1. The bifurcation analysis using the Castillo–
Song bifurcation theorem [48] showed that the model only could exhibit a forward bifurcation at R0 = 1.
Unlike other TB transmission models [60], [61], backward bifurcation phenomena do not appear in this
model. Hence, controlling the size of the control reproduction number is essential to finding the best strategy
to prevent the spread of TB among the population. We used accumulated data on TB cases in Indonesia
from 2017 to 2021 to find the best-fit parameters for our model. These parameters were used in sensitivity
analysis and autonomous simulations. Sensitivity analysis was conducted in this study to understand the
most significant parameters that can be used to control the control reproduction number. With a combination
of the Latin hypercube sampling (LHS) method and the partial rank correlation coefficient (PRCC), we
found that the infection parameter is the most dominant one that can affect the control reproduction number.
The larger the infection parameter, the larger the control reproduction number. Furthermore, we discovered
that increasing the probability of success of the second dose treatment is more significant in reducing the
control reproduction number compared with the case detection rate. Our sensitivity analysis of u2 showed
that increasing u2 could increase the endemic size of the active TB compartment if the implementation of
u2 is smaller than its critical value. Hence, the quality of the second dose treatment should be good enough
to prevent the increase of active TB cases in the population.

As with any mathematical modeling framework, we acknowledge that simplifications and assumptions in
our model may lead to various limitations on its applicability and implementation. Some of the limitations in
our model include that we did not consider possible phenomena of multi-drug resistance (MDR-TB), relapse,
or co-infection with other diseases such as HIV or COVID-19. Despite these limitations, we maintain that
our model is applicable in real-life scenarios in any community induced by tuberculosis disease. Therefore,
future research can be done by incorporating the listed limitation, which can help to improve our model.
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