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Abstract

In this work, we develop a population dynamics model of Mycobacterium tuberculosis (Mtb), the bacteria
responsible for tuberculosis (TB), to evaluate the impact of bacterial competition on infection prevalence.
We consider two types of Mtb population growth: The first is caused by bacteria that grow inside each
infected macrophage and is believed to be correlated with the number of infected macrophages; The second
is that extracellular bacteria grow through self-replication. In this study, we modeled the immune response
to Mtb bacterial infection in the lungs using a five-dimensional differential equation system. This model
represents changes in the number of healthy macrophages, infected macrophages, activated macrophages cells,
extracellular bacterial particles, and naive T cells. Qualitative analysis and numerical results reveal the existence
of two equilibrium points: disease-free equilibrium and endemic equilibrium, which represent latent or active
tuberculosis based on the number of bacteria. In addition, a sensitive analysis of the model parameters shows
that macrophages are not sufficient to control the initial invasion of Mtb. The immune system must therefore
employ more complex defense mechanisms to contain Mtb infection, such as recruiting various elements of
immune system and forming granulomas.
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1. INTRODUCTION

The infectious disease known as tuberculosis (TB) is caused by bacillus Mycobacterium tuberculosis
(Mtb), which is dispersed in the air by patients with TB. Although pulmonary tuberculosis is a disease that
usually affects the lungs, extrapulmonary TB can also affect other sites. One of the main causes of disease and
death globally is tuberculosis (TB). Before the coronavirus (COVID-19) pandemic, TB was the second most
common infectious agent-related cause of death, after HIV [40]. Globally, the number of new and relapse
cases per 100,000 people annually is decreasing, but not fast enough to meet the first milestone of the End
TB Strategy: a 20% decrease in the incidence rate of TB from 2015 to 2020. Globally, between 2015 and
2019, there was a cumulative decrease of 9%, from 142 to 130 new and relapsed cases per 100,000 people.
This decrease included a decrease of 2.3% from 2018 to 2019 [8].

The United Nations (UN) Secretary-General’s 2020 progress report on tuberculosis (TB) is outlined in
the 2020 Global TB Report. This report includes initial evaluations of the potential effects of the 2019
unprecedented coronavirus disease pandemic (COVID-19) on health services, treatment, and efforts to prevent
tuberculosis. However, even before the COVID-19 pandemic struck, efforts to control tuberculosis (TB) were
not progressing as planned, and there is still a significant discrepancy in the number of TB cases worldwide
between estimates and figures provided to public health authorities. Therefore, it cannot be assumed that the
failure to meet the target is due to a discrepancy between the estimated and reported numbers of tuberculosis
cases. Of the 10 million individuals who were thought to have contracted tuberculosis in 2019, 7.1 million
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(71%) were found and reported to national TB programs worldwide; the remaining 2.9 million individuals
(29%) were not included in this figure. Those who were diagnosed with tuberculosis (TB) but did not report
their condition to the private sector or public health authorities, as well as those who were not diagnosed
and therefore did not receive treatment, are among the missing individuals with TB [8].

An estimated 10.0 million people worldwide contracted TB in 2019, accounting for 1.2 million TB-related
deaths among HIV-negative individuals and an additional 208,000 deaths among HIV-positive individuals.
People of all ages and genders are affected by tuberculosis (TB), but adult males bear the greatest burden:
They make up 56% of all cases, compared to 32% for adult women and 12% for children under the age of 15.
8.2% of all TB cases involved HIV-positive individuals. Geographically, the WHO regions of South East Asia
(44%), Africa (25%), and the Western Pacific (18%) had the highest percentages of tuberculosis cases in 2019.
The Eastern Mediterranean (8.2%), the Americas (2.9%), and Europe (2.5%) had the lowest percentages. Two-
thirds of the total worldwide was made up of eight countries: South Africa (3.6%), Nigeria (4.4%), Bangladesh
(3.6%), India (26%), Indonesia (8.5%), China (8.4%), Philippines (6.0%), Pakistan (5.7%), Nigeria (4.4%)
and Bangladesh (3.5%) [8].

Inhalation of Mtb organisms is the first step in the natural history of tuberculosis. After a time of bacterial
propagation and replication, live bacilli are immunologically contained. Asymptomatic latent tuberculosis
infection is the result of this process [18]. According to a 2016 global modeling study, roughly 1.7 billion
people were latently infected with Mtb, representing around 25% of the global population [21]. There is strong
evidence that Mtb infection can self-clear, and recent analyses and commentary point to a lower number of
people currently infected [15]. Most people with immunoreactivity to tuberculosis can manage their infection
and do not progress to active tuberculosis when immunosuppressed, meaning they cannot spread the disease.
This suggests that they have successfully cleared their infection while still having an immunological memory
of it [4]. People with HIV and those exposed to risk factors such as alcohol consumption, smoking, diabetes,
and undernourishment have a significantly higher chance of developing tuberculosis (TB) disease [40].

When Mtb enters the alveolar air sacs of the lungs, the primary infection of tuberculosis (TB) starts when
the pathogen invades and replicates inside the endosomes of alveolar macrophages. Although macrophages are
known to be pathogen-killing professionals, Mtb has developed amazing strategies to avoid host defenses and
create the ideal environment for survival and proliferation [42]. In addition to the formation of granulomas,
macrophages and CD4 + T lymphocytes have long been considered the cornerstones of the immune response
against Mtb, and their importance is evident [12]. Granulomas are central to the immunopathogenesis of
tuberculosis because they are a characteristic of Mtb infection. Reactivation of a granuloma that has already
formed in a latently infected individual or early progression of the primary granuloma during the infection
process can lead to tuberculosis. Granulomas are well-organized and dynamic structures that arise at the
location of bacteria and are mediated during the infection process by particular immune responses. The
primary function of the granuloma is to confine and localize Mtb while focusing the immune response in a
specific area [19].

When inhaled Mtb is consumed and spreads through the alveolar epithelium into lung tissue and surrounding
lymph nodes, as well as through the lymphatics and bloodstream, granuloma formation in human pulmonary
tuberculosis begins shortly after infection. More mononuclear leukocytes are drawn to the infection site as
a result of the immune response that is triggered, which also activates phagocyte antimicrobial activities.
Aggregation of cells surrounding the foci of infected cells results in the granuloma, a mass of cells rich
in macrophages. Immune cells in varying stages of differentiation make up a granuloma, with infected
macrophages at the center of the accumulation of cells. To control the mycobacterial load in infected cells
and activate cytotoxic T cells, recruited T cells secrete cytokines. The cellular makeup of granulomatous TB
lesions is made up of B and T lymphocytes, fibroblasts, foamy macrophages, epithelioid cells (a special type
of differentiated macrophage), blood-derived infected and uninfected macrophages, and multinucleated giant
cells (also known as Langerhans cells) [19].

Mtb is a facultative intracellular pathogen that lives in monocytes [7]. Most infected people have a
successful and defensive cell-mediated response and do not experience active disease. Most Mtb infections are
manageable (not curable) and enter a latent state. Others experience a short-term (primary infection) or long-
term (reactivation) onset of active disease [36]. The usefulness of an experimental model of mycobacterial
persistence for methods in identifying underlying mechanisms related to clinical latency, to direct clinical
evaluation of new interventions, novel diagnostics, and medications, as well as for the detection, treatment
and prevention of disease [4].



112 Dewanti, R.W., Widianto, W.P., Apri, M., Nuraini, N. and Fakhruddin, M.

Many theoretical investigations have been conducted to comprehend the data on Mtb infection, from
immunological and epidemiological perspectives. Different mathematical models, such as [1], [2], [11], [23],
[28], [29], [32], [34], [39], [41], [43], [45], [46], [50], have been proposed to evaluate the influence of factors
such as Mtb population dynamics, immune system, treatment, and bacterial resistance on the progression of
infection.

Specifically, in this work we suggest a model to assess how Mtb growth affects the course of infection.
In this model, the earlier research presented in [27], [22], [24], [25], [26] is continued.

2. MODEL FORMULATION

An important factor in how a Mtb infection turns out is the cell-mediated response. A particular immune
response triggered by macrophages, T cells, and the cytokines they produce results in the formation of a
granuloma at the site of bacteria’s implantation. Using the population of uninfected macrophages, infected
macrophages, activated macrophages, Mtb bacteria, and T cells - represented by the variables M1, M2, M3,
B and T, respectively. We develop a mathematical model for the cell-mediated response against tuberculosis.
The ranges and units of the parameters are shown in Table 1.

Resting or uninfected macrophages (M1) are normally present in the lung [10]. Macrophages have a natural
turnover due to monocyte differentiation at a constant rate s1 and the natural death of cells at a constant rate per
capita d1. We assume that all incoming macrophage cells are equally uninfected M1 and differentiated because
they undergo infection M2 and activation M3. In response to chemokines released by activated and infected
macrophages, more uninfected macrophages are drawn to the lung infection site when bacteria are present.
The macrophage population should remain at M1 = s1/d1, the equilibrium value, in the absence of infection.
Uninfected macrophages experience three distinct dynamics during infection: increased recruitment, infection,
and activation. At a maximum rate of β , uninfected macrophages that cannot eliminate their bacterial load
may develop a chronic infection [30]. It is possible to formulate the differential equation for the concentration
of uninfected macrophages as

dM1

dt
= s1 −d1M1 −βBM1. (1)

The accumulation of infected macrophages leads to the development of the adaptive immune response
against Mtb. Briefly, a type 1 T helper (Th) or CD4+ T cells immune response and produce IFN-γ to activate
bactericidal effector mechanisms of infected macrophages [17]. Additional types of T cells also contribute
to the immune response against M.tb infection, including CD8+ T cells (Tc). CD8+ T cells are important to
induce cytotoxic activity in response kill infected macrophages to control of Mtb infection [19], [33], [48].

Chronic infection results in either infected macrophage killing or natural death (at rate d2 and d2 ≥ d1).
Bacteria that reside intracellularly in infected macrophage cells (M2) will continue to replicate in the cell.
Infected macrophage cells (M2) that cannot accommodate the number of bacteria in the cell will rupture with
a rate of cell rupture due to intracellular bacteria at maximal rate µ2. Both apoptosis and cytotoxic activity are
due to CD4+ or Th cells and CD8+ or Tc cells. Infected macrophages grow at a rate βBM1 and are eliminated
by CD4+ or Th for macrophage activation, occurring at a rate of α1. Furthermore infected macrophages are
eliminated via cytotoxic activity by CD8+ or Tc cells, at a rate of α2. T cells arrive at the site of infection
as fully differentiated Th and Tc. p is the proportion of differentiated T cells, Th = pT and Tc = (1− p)T . T
cells is given by T = Th +Tc. The differential equation for infected macrophage concentration becomes:

dM2

dt
= βBM1 − (α1 pT +α2(1− p)T )M2 −d2M2 −µ2M2. (2)

Although bacteria are enough to cause infection, IFN-γ is necessary to activate macrophages, which happens
at a maximum rate of α1 [16]. The rate at which activated macrophages naturally die is d3. The differential
equation for the concentration of activated macrophages is provided by

dM3

dt
= α1 pT M2 −d3M3. (3)

Immune cells (T ) that have differentiated will migrate to the site of infection through the blood and lymph
nodes [30]. Afterward, chemotactic signals from infected macrophages attract immune cells to the infection
site [6]. With a proportionality constant γ , the recruitment of T cells is inversely correlated with the number of
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infected macrophages, and their death occurs at a constant rate per capita d4. Here we obtain the T dynamics
formula:

dT
dt

= s4 + γM2T −d4T. (4)

The growth rate of extracellular bacteria (B) is r due to self-replication, and their natural death rate is d5
per capita. We assume that each macrophage has a bacterial carrying capacity of N. An infected macrophage’s
intracellular bacterial load builds up until it reaches a breaking point, at which point the macrophage bursts.
Hence, we get Nµ2M2 as the representation of the number of new extracellular bacteria due to the bursting of
infected macrophages at a rate of µ2. At a rate k1, extracellular bacteria infect macrophages or are consumed
and eliminated by uninfected macrophages. Activated macrophages also kill them at a rate k3 [36], [50]. In
total, we obtain the dynamics formula of B.

dB
dt

= rB−d5B− (k1M1 + k3M3)B+Nµ2M2. (5)

M2M1

T

M3

B

d1M1 (d2 +µ2)M2 d3M3

d4T k1M1B+ k3M3B

βBM1s1

s4

α2(1− p)T M2

γM2T rB+Nµ2M2

α1 pT M2

d5B

Figure 1: The flow chart for bacteria, T cells, and macrophages.

The flow diagram of bacteria, T cells, and macrophages as described by the differential equations (1)-
(5) is shown in Figure 1. The interactions and intracellular growth of these three populations have been
visualized by figures and videos in [35]. There are several videos such as macrophage internalization of Mtb
aggregates, death of an Mtb-infected macrophage, pyroptotic death of macrophages, Mtb grows inside a dead
macrophage treated with IFNy prior to infection and cell death cascade following phagocytosis of a dead
infected macrophage in that article. The following system of nonlinear differential equations is satisfied by
the model for the development of Mycobacterium tuberculosis infection in the lungs, which is derived from
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Equations (1)-(5).

dM1

dt
= s1 −d1M1 −βBM1,

dM2

dt
= βBM1 − (α1 p+α2(1− p))T M2 −d2M2 −µ2M2,

dM3

dt
= α1 pT M2 −d3M3,

dT
dt

= s4 + γM2T −d4T,

dB
dt

= rB−d5B− (k1M1 + k3M3)B+Nµ2M2. (6)

The existence and uniqueness conditions of the system (6) are easily verified. In addition, the designated
biological interest region is provided by

Ω =
{
(M1,M2,M3,T,B)T ∈ R5

+ : M1 ≥ 0,M2 ≥ 0,M3 ≥ 0,T ≥ 0,B ≥ 0
}
. (7)

We show that all solutions with initial conditions in Ω stay there for all t ≥ 0 and have biological meaning.
First, we introduce the following lemma.

Lemma 2.1. [51] Suppose Ω ⊂ R×Cn is open, fi ∈ C(Ω,R), i = 1,2,3, ...,n. If fi|xi(t)=0,Xt∈Cn
+0

≥ 0,Xt =

(x1t ,x2t , ...,xnt)
T , i = 1,2,3, ...,n, then Cn

+0 is the invariant domain of the following equations

dxi(t)
dt

= fi(t,Xt), t ≥ 0, i = 1,2, ...,n.

Theorem 2.2. Each solution in System (6) with nonnegative initial conditions is nonnegative for all t > 0.

Proof: Let X = (M1,M2,M3,T,B)T and f (X) = ( f1(X), f2(X), f3(X), f4(X), f5(X))T then we can rewrite
System (6) as Ẋ = f (X) where

f (X) =


f1(X)
f2(X)
f3(X)
f4(X)
f5(X)

=


s1 −d1M1 −βBM1

βBM1 − (α1 p+α2(1− p))T M2 −d2M2 −µ2M2
α1 pT M2 −d3M3
s4 + γM2T −d4T

rB−d5B− (k1M1 + k3M3)B+Nµ2M2

 .

We can easily confirmed that
dM1

dt

∣∣∣∣
M1=0

= s1 ≥ 0,
dM2

dt

∣∣∣∣
M2=0

= βBM1 ≥ 0,
dM3

dt

∣∣∣∣
M3=0

=α1 pT M2 ≥ 0,
dT
dt

∣∣∣∣
T=0

=

s4 ≥ 0,
dB
dt

∣∣∣∣
B=0

= Nµ2M2 ≥ 0. Then it follows from Lemma 2.1 that R5
+ is invariant set. Subsequently, the

solutions with initial conditions in Ω remain there for all t ≥ 0.

3. MODEL ANALYSIS

The following algebraic system solutions provide the equilibrium states of the system (6).

s1 −d1M1 −βBM1 = 0,
βBM1 − (α1 p+α2(1− p))T M2 −d2M2 −µ2M2 = 0,

α1 pT M2 −d3M3 = 0,
s4 + γM2T −d4T = 0,

rB−d5B− (k1M1 + k3M3)B+Nµ2M2 = 0. (8)

The solutions of the system (8) indicate the existence of an infection-free equilibrium, E0 =

(
s1

d1
,0,0,

s4

d4
,0
)

and infected compartments, M2 and B, in which naive T cells control infection. The reproduction number
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can be derived by identifying the infection terms and the transition terms of the compartments, as in Van
den Driessche and Watmough [49]. Therefore, we obtained the matrices F and V as follows.

F =

0
β s1

d1
0 0

 and V =

[
σ 0

−Nµ2 σ1

]
, (9)

with

σ = d2 +µ2 +
s4(α1 p+α2(1− p))

d4
.

σ1 = −r+d5 +
k1s1

d1
. (10)

The eigenvalues that dominate FV−1 are defined in the following Equation (11).

R0 =
β s1Nµ2

d1σσ1
. (11)

The number of secondary (latent) infections caused by a single infectious particle (bacteria) throughout the
mean infectious period is denoted by R0. The endemic equilibrium in which Mtb infection endures. Regarding
E1 = (M∗

U ,M
∗
I ,M

∗
A,T

∗,B∗), the endemic equilibrium. We begin by solving M∗
U , M∗

A, and T ∗ from the first,
third, and fourth equations of (8) to determine this equilibrium:

M∗
U =

s1

βB∗+d1
,M∗

A =
α1 pM∗

I s4

(d4 − γM∗
I )d3

and T ∗ =
s4

d4 − γM∗
I
. (12)

In the second equation of (8), if we substitute M∗
U and T ∗ defined by (12), we obtain

βB∗s1

βB∗+d1
+

(
s4(α1 p+α2(1− p))M∗

2
d4 − γM∗

I

)
− (d2 +µ2)M∗

2 = 0. (13)

We derive the following quadratic equation from (13).

M∗
I

2 −b1(B∗)M∗
I + c1(B∗) = 0, (14)

where

b1(B∗) =
β (σd4 + γs1)B∗+σd1d4

γ(d2 +µ2)(βB∗+d1)
,

c1(B∗) =
β s1d4B∗

γ(d2 +µ2)(βB∗+d1)
. (15)

Solution of (14) is

M∗
I = f1(B∗) =

b1(B∗)±
√

[b1(B∗)]2 −4c1(B∗)

2
. (16)

Currently, we can solve for M∗
I by substituting M∗

U and M∗
A defined in (12) in the fifth equation of (8).

B∗
(

r−d5 −
s1k1

βB∗+d1
− s4k3α1 pM∗

I
(d4 − γM∗

I )d3

)
+Nµ2M∗

I = 0. (17)

We derive the following quadratic equation from (17).

M∗
I

2 +b2(B∗)M∗
I − c2(B∗) = 0, (18)

where

b2(B∗) =
β (s4α1 pk3 + γd3(r−d5))B∗2 +(−βNd3d4µ2 +α1 pk3d1s4 − γσ1d1d3)B∗−Nd1d3d4µ2

Nγd3µ2(βB∗+d1)
.

c2(B∗) =
d4B∗(βB∗(r−d5)−σ1d1)

Nγµ2(βB∗+d1)
, (19)
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Solution of (18) is

M∗
I = f2(B∗) =

−b2(B∗)±
√
[b2(B∗)]2 +4c2(B∗)

2
. (20)

It is important to study the intersections of the aforementioned functions to determine the intersections of
the functions (14) and (18). Based on our observation, f1 and f2 represent two different expressions for M∗

I
and B∗. We find that the solutions of the functions (14) and (18) are

f1(B∗) =
b1(B∗)±

√
[b1(B∗)]2 −4c1(B∗)

2
,

f2(B∗) =
−b2(B∗)±

√
[b2(B∗)]2 +4c2(B∗)

2
. (21)

As f1 defined in (14) is positive, strictly increasing, and concave, we also obtain that f1(0) = f2(0) from
(21). Some obvious properties of f1 and f2 are established by the following theorem.

Theorem 3.1. In B∗ = 0, the functions f1 and f2 intersect. Furthermore, f1 is concave in the first quadrant,
strictly increasing, and positive.

Proof: The roots of the quadratic equation f1(0) are M
f−1
I = 0 and the roots of the quadratic equation

f2(0) are M
f−2
I = 0 and

M
f+1
I =

b1(B∗)+
√
[b1(B∗)]2 −4c1(B∗)

2

=
d4σ

γ(d2 +µ2)
=

d4

γ

(
1+

s4(α1 p+α2(1− p))
d4(d2 +µ2)

)
,

M
f+2
I =

−b2(B∗)+
√
[b2(B∗)]2 +4c2(B∗)

2

=
d4

γ
. (22)

Furthermore, we see that the derivatives of f1 and f2 are given by

f̄ ′1(B
∗) =

1
2

[
b′1(B

∗)± b1(B∗)b′1(B
∗)−2c′1(B

∗)√
b1(B∗)2 −4c1(B∗)

]
, (23)

where

b′1(B
∗) =

β s1d1

(d2 +µ2)(βB∗+d1)2 ,

c′1(B
∗) =

β s1d1d4

γ(d2 +µ2)(βB∗+d1)2 , (24)

f̄ ′2(B
∗) =

1
2

[
−b′2(B

∗)± b2(B∗)b′2(B
∗)+2c′2(B

∗)√
b2(B∗)2 +4c2(B∗)

]
, (25)

b′2(B
∗) =

pST α1kA (β B+dU )
2 +Bβ γ dA (r−dB)(β B+2dU )− γ σ1 dU

2dA

Nγ dAµI (βB∗+dU )
2 ,

c′2(B
∗) =

dT (β B(r−dB)(β B+2dU )−σ1 dU )

Nγ µI (βB∗+dU )
2 . (26)



MATHEMATICAL MODEL OF MYCOBACTERIUM TUBERCULOSIS INFECTION IN THE LUNGS 117

From Equations (23) and (25), we obtain

f ′1(0)
−

=
β s1

σd1
,

f ′1(0)
+

=
s1s4(α1 p+α2(1− p))β

d1d4(d2 +µ2)σ
,

f ′2(0)
−

=
σ1

Nµ2
,

f ′2(0)
+

= − pα1k3s4

Nγd3µ2
. (27)

Observe that

f ′1(0)
−− f ′2(0)

− =
β s1

σd1
− σ1

Nµ2

=
σ1(R0 −1)

Nµ2
. (28)

From Equation (13), we can also see the derivative of B∗ = h(M∗
I ) as follows

h′(M∗
I ) =

d1s1
(
(d2 +µ2)(d4 − γM∗

I )
2 +(α1 p+α2(1− p))d4s4

)
β
(
γ M∗

I
2 (d2 +µ2)+ sU (d4 − γ M∗

I )−σ M∗
I d4

)2 .

Because h′(M∗
I )> 0, h(M∗

I ) increases for M∗
I > 0. Based on the inverse function theorem, M∗

I = f1(B∗) is also
differentiable and increasing. We compute second-order continuous partial derivatives to evaluate concavity
[3]. The Hessian matrix f1 from (13) is given by

H(B∗,M∗
I ) =


∂ 2 f1

∂B∗2
∂ 2 f1

∂B∗∂M∗
I

∂ 2 f1

∂M∗
I ∂B∗

∂ 2 f1

∂M∗2
I

=

[
0 −a
−a −2γ(d2 +µ2)(βB∗+d1)

]
, (29)

with

a = β (γ (2M∗
I (d2 +µ2)− sU )−d4σ) .

From Equation (29), we obtain

|0| = 0,
∣∣∣∣ 0 −a
−a −2γ(d2 +µ2)(βB∗+d1)

∣∣∣∣ = −a2.

The matrix H is semidefinite negative, since the determinants H are negative and zero. The theorem in [3],
[38] can be used to show that f1 is concave.

We examine two scenarios, R0 < 1 and R0 > 1, to assess the presence of endemic equilibrium. In the first
instance, the outcome is as follows:

Theorem 3.2. If R0 > 1, there exists a unique endemic equilibrium.

Proof: First, assume R0 > 1. We can observe from (22) that in this instance, M
f−2
I = 0 is satisfied

by the roots of f2(0). In the first quadrant, f1 is concave and f2 is convex, f ′1(0) > 0, f ′2(0)
− > 0, and

limB∗→∞ f1(B∗)> 0 are also satisfied by the roots of f1(0). All these conditions implied that f1 and f2 only
cross once in the positive quadrant. For R0 > 1 we have

f ′1(0)
−− f ′2(0)

− =
σ1(R0 −1)

Nµ2
> 0.
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Theorem 3.3. Assume R0 > 0 so that σ1 =−r+d5 +
k1s1

d1
> 0 then

1) There is no endemic equilibrium if R0 < 1 because f1 and f2 do not positively intersect.
2) There is only one endemic equilibrium for f1 and f2 if R0 > 1. This is because they have only one

positive intersection.

This suggests outcomes that are comparable to those found in Theorem 3.2.

3.1. Stability analysis of equilibrium
Conditions for the stability of the equilibrium points are examined in this section. The eigenvalues con-

cerning the system’s Jacobian (6), assessed at the equilibrium points, are determined in this way:

J


M1
M2
M3
T
B

=


−(d1 +βB) 0 0 0 −βM1

βB −a0 0 −a1 βM1
0 α1 pT −d3 α1 pM2 0
0 γT 0 −(d4 − γM2) 0

−k1B Nµ2 −k3B 0 −a2

 , (30)

where,

a0 = (α1 p+α2(1− p))T +d2 +µ2,

a1 = (α1 p+α2(1− p))M2,

a2 = k1M1 + k3M3 − r+d5. (31)

For the infection-free equilibrium E0 = (
s1

d1
,0,0,

s4

d4
,0), the Jacobian is given by

J(E0) =



−d1 0 0 0
−β s1

d1

0 −σ 0 0
β s1

d1

0
α1 ps4

d4
−d3 0 0

0
γs4

d4
0 −d4 0

0 Nµ2 0 0 −σ1


. (32)

Easy computations reveal that the roots of the quadratic equation and λ1 = −d1, λ2 = −d3, and λ3 = −d4
provide the eigenvalues.

λ
2 +(σ +σ1)λ +σσ1(1−R0) = 0. (33)

The Routh-Hurwitz criterion leads us to the conclusion that if and only if R0 < 1, then all of the eigenvalues
of the equation (33) have negative real parts.

Theorem 3.4. The infection-free equilibrium E0 = (1,0,0,1,0) is locally asymptotically stable if R0 < 1, and
unstable when R0 > 1.

We now examine the stability of the endemic equilibrium, which indicates the persistence of the infection.
Following the equilibrium equations (8), we obtain the following equalities.

s1

M1
= d1 +βB,

βBM1

M2
= (α1 p+α2(1− p))T +d2 +µ2,

s4

T
= d4 − γM2,

Nµ2M2

B
= (k1M1 + k3M3)− r+d5. (34)
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Replacing (34) in (30) we obtain

J(E1) =



− s1

M1
0 0 0 −βM1

βB −βBM1

M2
0 −a1 βM1

0 α1 pT −d3 α1 pM2 0
0 γT 0 − s4

T
0

−k1B Nµ2 −k3B 0 −Nµ2M2

B


. (35)

After calculating J(E1), we obtain its characteristic polynomial, which is given by, to obtain the conditions
for negative eigenvalues of J(E1).

p(λ ) =

(
λ +

s1

M1

)(
λ +

βBM1

M2

)
(λ +d3)

(
λ +

s4

T

)(
λ +

Nµ2M2

B

)
+(λ +d3)a1γT

[(
λ +

s1

M1

)(
λ +

Nµ2M2

B

)
−βM1k1B

]
+βM1k3Bα1 pT

[
λ +

s4

T
+ γM2

][
λ +

s1

M1
−βB

]
−βM1 (λ +d3)

(
λ +

s4

T

)[
Nµ2

(
λ +

s1

M1
−βB

)
+

(
λ +

βBM1

M2

)
k1B

]
= λ

5 + s1λ
4 + s2λ

3 + s3λ
2 + s4λ + s5, (36)

where

s1 =
s1

M1
+

βBM1

M2
+d3 +

s4

T
+

Nµ2M2

B
,

s2 =
s1

M1

(
βBM1

M2
+d3 +

s4

T
+

Nµ2M2

B

)
+

βBM1

M2

(
d3 +

s4

T

)
+d3

(
s4

T
+

Nµ2M2

B

)
+

s4

T

(
Nµ2M2

B

)
+a1γT −βM1k1B,

s3 =
s1

M1

βBM1

M2

(
d3 +

s4

T

)
+

(
s1

M1

)
d3

(
s4

T
+

Nµ2M2

B

)
+

s4

T

(
s1

M1

Nµ2M2

B
+d3

(
βBM1

M2
+

Nµ2M2

B

))
+βBM1(k3α1 pT +βNµ2)−βM1k1B

(
βBM1

M2
+d3 +

s4

T

)
+a1γT

(
s1

M1
+d3 +

Nµ2M2

B

)
,

s4 =

(
s1

M1

)
(d3)

( s4

T

)(
βBM1

M2
+

Nµ2M2

B

)
+a1γT

(
d3

(
s1

M1
+

Nµ2M2

B

)
+

s1

M1

Nµ2M2

B

)
+βM1k3Bα1 pT

(
γM2 +

s4

T
+

s1

M1
−βB

)
+BNβ

2M1µ2

(
d3 +

s4

T

)
−βM1k1B

(
d3

(
βBM1

M2

)
+

βBM1

M2

s4

T
+d3

( s4

T

)
+a1γT

)
,

s5 = βM1k3Bα1 p(γT M2 + s4)d1 −βM1k1B(d3)

(
βBM1

M2

s4

T
+a1γT

)
+d3

(
βB

( s4

T

)
Nµ2βM1 +

s1

M1

Nµ2M2

B
a1γT

)
. (37)
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Given the positive values of all the parameters, the coefficient s1 > 0. The remaining coefficients are rewritten
as:

s2 =
s1

M1

βBM1

M2
+
(

d3 +
s4

T

)( s1

M1
+

βBM1

M2

)
+d3

(
s4

T
+

Nµ2M2

B

)
+

s4

T
Nµ2M2

B
+a1γT

+
1

B(βB+d1)

(
β (Nβ µ2M2 − k1s1)B2 +Nµ2M2d1 (2βB+d1)

)
,

s3 =
s1

M1

βBM1

M2

(
d3 +

s4

T

)
+(d3)

s4

T

(
s1

M1
+

βBM1

M2
+

Nµ2M2

B

)
+a1γT

(
s1

M1
+d3 +

Nµ2M2

B

)
+
(

d3 +
s4

T

) 1
B(βB+d1)

(
β (Nβ µ2M2 − k1s1)B2 +Nµ2M2d1 (2βB+d1)

)
+βBM1k3α1 pT +

1
(βB+d1)M2

(β 2BM1)(B(Nβ µ2M2 − k1s1)+Nµ2M2d1) ,

s4 =
s1

M1

βBM1

M2

s4

T
(d3)+a1γT d3

(
s1

M1
+

Nµ2M2

B

)
+βM1k3Bα1 pT

(
γM2 +

s4

T
+d1

)
+
(

d3

( s4

T

)
+a1γT

) 1
B(βB+d1)

(
β (Nβ µ2M2 − k1s1)B2 +Nµ2M2d1 (2βB+d1)

)
+
(

d3 +
s4

T

) 1
(βB+d1)M2

(
β

2BM1
)
(B(Nβ µ2M2 − k1s1)+Nµ2M2d1) ,

s5 = βM1k3Bα1 p(T γM2 + s4)d1 +d3

( s4

T

) 1
(βB+d1)M2

(
β

2BM1
)
(B(Nβ µ2M2 − k1s1)+Nµ2M2d1)

+(a1γT d3)
1

B(βB+d1)

(
β (Nβ µ2M2 − k1s1)B2 +Nµ2M2d1 (2βB+d1)

)
. (38)

A polynomial p(λ ) of order five has a negative real part at its roots if and only if its coefficients satisfy the
Routh-Hurwitz criteria, since s1 > 0.

D1 = s1 > 0,
D2 = s1s2 − s3 > 0,
D3 = (s1s2 − s3)s3 − s2

1s4 + s1s5 > 0,
D4 = (s1s2 − s3)(s3s4 − s2s5)+ s1s4(2s5 − s1s4)− s2

5 > 0. (39)

We define the following constants in order to ascertain the conditions under which the preceding inequalities
are satisfied:

A =
s1

M1
, C =

βBM1

M2
, E = d3,F =

s4

T
, G =

Nµ2M2

B
,

Q = a1γT, V = βM1k3Bα1 pT, H = (d1 + γM2 +
s4

T
), H̄ = d1(γM2 +

s4

T
),

X(M2) = AG−βM1k1B =
1

B(βB+d1)

(
β (Nβ µ2M2 − k1s1)B2 +Nµ2M2d1 (2βB+d1)

)
,

Y (M2) =
1

(βB+d1)M2

(
β

2BM1
)
(B(Nβ µ2M2 − k1s1)+Nµ2M2d1) . (40)

Replacing A,C,E,F,G,Q, Q̄,H, H̄,X(M2) and Y (M2) in s1,s2,s3,s4 and s5 we obtain

s1 = A+C+E +F +G,

s2 = A(C+E +F)+C(E +F)+E(F +G)+FG+Q+X(M2),

s3 = V +AC(E +F)+AEF +FE(C+G)+Q(A+E +G)+(E +F)X(M2)+Y (M2),

s4 = V H +AEFC+QE(A+G)+(EF +Q)X(M2)+(E +F)Y (M2),

s5 = EQX(M2)+EFY (M2)+V H̄. (41)
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Furthermore, after some simplifications, D2, D3 and D3 can be written as

D2 = F
(
(A+E)2 +(C+G)2)+A(C+F)2 +(E +F)2(C+G)+(A+G)(AC+X(M2))

+E(AE +F2 +G2 +(A+C)2)+2AG(E +F)+CGW̄ +W +FQ,

D3 = D2 (V +AC (E +F)+AEF +FE (C+G)+Q(A+E +G)+(E +F)X(M2)+Y (M2))

−(A+C+E +F +G)2 ((EF +Q)X(M2)+V H +AEFC+QE (A+G)+(E +F)Y (M2))

+(A+C+E +F +G)(EFY (M2)+QEX(M2)+V H̄) ,

D4 = D2 (V +AC (E +F)+AEF +FE (C+G)+Q(A+E +G)+(E +F)X(M2)+Y (M2))

((EF +Q)X(M2)+V H +AEFC+QE (A+G)+(E +F)Y (M2))

−D2 (A(C+E +F)+C (E +F)+E (F +G)+FG+Q+X(M2))

(EFY (M2)+QEX(M2)+V H̄)− (A+C+E +F +G)2

((EF +Q)X(M2)+V H +AEFC+QE (A+G)+(E +F)Y (M2))
2

+2(A+C+E +F +G)((EF +Q)X(M2)+V H +AEFC+QE (A+G)+(E +F)Y (M2))

(EFY (M2)+EQX(M2)+V H̄)− (EFY (M2)+EQX(M2)+V H̄)
2
.

with

W = CQ−V = BT βM1(α1 p(γ − k3)+ γα2(1− p)), W̄ = 2d3 +d1

The stability results of the unique bacteria present equilibrium when R0 > 1 are summarized in the following
theorem.

Theorem 3.5. There is a single endemic equilibrium E1 (distinct from the infection-free equilibrium E0) that
is locally asymptotically stable if R0 > 1.

Proof: Theorem 3.2 provides evidence for the existence of a single endemic equilibrium under the
hypothesis of the theorem. The Routh-Hurwitz conditions for the coefficients in (40) and (41) can be easily
verified if

(
β (Nβ µ2M2 − k1s1)B2 +Nµ2M2d1 (2βB+d1)

)
and (B(Nβ µ2M2 − k1s1)+Nµ2M2d1) are bigger

or equal to zero, so it suffices to demonstrate that those expressions are positive when R0 > 1.
It can be seen that, given R0 > 1 in (11), Nβ s1µ2 −d1σσ1 > 0. Moreover, since M2 > 0 and N > 0 represent
the average maximal bacterial carrying capacity per macrophage, it follows that X(M2)≥ 0 and Y (M2)≥ 0.
E1 is locally stable, as demonstrated by these findings.

4. SIMULATION

In this section, we show graphs and numerical simulations showing how the population of Mtb bacteria in
the system is growing (6). It is important to emphasize that the variability of the parameters depends on the
immunological status of each patient. Table 1 contains the values and a description of the parameters used
in the simulations. and (3)

The way in which the parameters α1,α2,k1,k3,r and β interact determines how Mtb infection turns out
because the other parameters (d1,d2,µ2,d3,d4,d5, p, and N) are not affected by the stage of the disease. To
examine how this parameter affects the variations in results, we present numerical simulations with varied
values of α1,α2,k1, and r while holding the other parameters constant. Figures (2(a)) (see Table 1 column 3)
show that, with R0 = 0.25507, α1 = 6∗10−3 and α2 = 2∗10−5. Figure (2(b)) and (2(c)) (see Table 1 column
4 and 5) shows the nullcline analysis that supports the existence of the equilibrium. Figure (3) shows that
extracellular bacterial particles (B) and infected macrophage cells (M2) will increase over time to a maximum
value and then decrease until the extracellular bacterial particles (B) and infected macrophage cells are gone.
It can be seen that healthy macrophage cells will increase to a maximum value and then remain constant,
immune cells will increase to a maximum value and then decrease towards an infection-free equilibrium point,
and activated macrophage cells will increase to a maximum value and then decrease towards an infection-free
equilibrium point. This indicates that Mtb bacteria can be eliminated from the lungs. From this phenomenon,
it can be concluded that by using the parameter values in Table 1 column 3, immune cells and macrophage
cells are able to eliminate Mtb bacterial infection so that infected macrophage cells (M2) can be cleared in
less than two years. We see this behavior in this case, R0 < 1, in Figure (6(a)) and Figure (7(a)), which shows
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the phase plane portrait and the temporal evolution of bacteria for varying initial conditions. It follows that
for R0 < 1, the stable infection-free equilibrium E0 exists and is stable. Using Theorem (3.4), it is possible to
confirm that the infection-free equilibrium is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

((a)) The B and M2 numerical simulations
when R0 = 0.25507 < 1.

((b)) The B and M2 numerical simula-
tions when R0 = 2.28378 > 1.

((c)) The B and M2 numerical simulations
when R0 = 7.99325 > 1.

Figure 2: The graph of functions f1 (solid) and f2 (dash) defined in (21) and R0 ≤ 1 by using parameter values from
Table 1.

Table 1: Information is inferred from published works (references).

Parameter range column 3 column 4 column 5 Units Reference

s1 (3300-7000) 5000 5000 5000 1/day [36]
d1 (0.01-0.011) 0.01 0.01 0.01 1/day [36]
d2 (0.01-0.011) 0.01 0.01 0.01 1/day [36]
d3 (0.01-0.011) 0.01 0.01 0.01 1/day [36]
β (10−8-10−5) 3∗10−8 3∗10−8 3∗10−8 1/(cell · day) [13]
α1 - 6∗10−3 6∗10−4 6∗10−4 1/(cell · day) -
α2 (2∗10−5-3∗10−5) 2∗10−5 2∗10−6 2∗10−6 1/(cell · day) [26]
µ2 (0.05-0.5) 0.11 0.11 0.11 1/day [13]
r (0-0.26) 0.005 0.005 0.005 1/day [36]

d5 - 0 0 0 1/day -
k1 (1.25∗10−9-1.25∗10−7) 8∗10−8 8∗10−8 3∗10−8 1/(cell · day) [13]
k3 1.25∗10−7 1.25∗10−7 1.25∗10−7 1.25∗10−7 1/(cell · day) [36]
N (50-100) 50 50 50 constant [36]
s4 1000 1000 1000 1000 1/day [36]
γ - 0.008 0.008 0.008 1/(cell · day) [43]
d4 - 0.33 0.33 0.33 1/day [36]
p - 0.5 0.5 0.5 constant -

Figure (4) shows that in this case, a numerical simulation of the model is shown when immune cell
capacity decreases with decreasing parameter values α1 and α2 to 6 ∗ 10−4 and 2 ∗ 10−6, respectively.
The resulting value of R0 is 2.28378. Infected macrophages (M2) continue to increase with increasing
extracellular bacterial particles (B) to a maximum value, then decrease to an endemic equilibrium point.
Healthy macrophages, activated macrophages, and naive T cells also increase to a maximum value, then
decrease to an endemic equilibrium point. This indicates that the body’s immune system cannot completely
eliminate infected macrophages (M2) and extracellular bacterial particles (B). Immune cells (T cells) that can
differentiate into cytotoxic T cells or helper T cells are unable to control and eliminate Mtb bacterial infection,
allowing extracellular bacterial particles (B cells) to continuously infect healthy macrophages (M1 cells).
Consistent with findings published by [14], a peak in the bacterial (B cell) and infected macrophage (M2)
populations was observed early in the infection. These results indicate that M0 cells are highly susceptible
to competition between Mtb bacteria, macrophages, and immune cells. These findings may help explain the
need for the immune system to deploy stronger defense mechanisms to prevent Mtb infection, as macrophage
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Figure 3: System numerical simulations (6). The graphs, which use the parameter values listed in Table 1, column 3,
display the time course of bacteria, T cells, and uninfected, infected, and activated macrophages. In this instance, Mtb

is eliminated, and R0 = 0.25507.

Figure 4: System numerical simulations (6). The graphs, which use the parameter values listed in Table 1, column 4,
display the time course of bacteria, T cells, and uninfected, infected, and activated macrophages. In this instance, the

progression of Mtb is regulated and R0 = 2.28378.

responses alone are insufficient to halt the initial bacterial invasion. The activity of immune cells (T cells)
and macrophages allows for the regulation of bacterial growth and the immunological response that occurs
concurrently with granuloma formation [47]. These theoretical findings suggest a trend toward an endemic
equilibrium, meaning that bacterial, macrophage, and immune cell populations coexist. The condition R0 > 1
has been confirmed to be satisfied, resulting in a locally asymptotically stable endemic equilibrium point.
Table 1 column 4 are used to illustrate the dynamic of the population of B and M2 in Figures (4). As
demonstrated by the phase portrait and temporal evolution of B with ten initial conditions in Figure (6(b))
and Figure (7(b)). It is confirmed that conditions R0 > 1 are satisfied, leading to a unique endemic equilibrium
E1 that is locally asymptotically stable, as indicated by Theorem (3.5).

If a small number of bacteria are injected, the model will proceed to either primary TB or clearance,
contingent upon various parameter values. Infections leading to active TB are referred to as primary TB [5].
With parameter values taken from Table 1, column 5, Figures (5) depict the behavior of bacteria and cell
populations for k1 = 3∗10−8. We note that in this case R0 = 7.99325, the population of T cells cannot activate
rapidly enough to stop the infection. Although T cell counts begin to increase quickly, they eventually fail
to control infection. The number of infected macrophages drops precipitously as a result of their burst. As
a result, a significant amount of intracellular bacteria is released, leading to the growth of the out-of-control
population of bacteria. Such a high bacterial load can cause necrosis, cavity formation, and spread [36].
The results presented in [50],[37], [46] are in line with this scenario. Furthermore, a particularly virulent
strain of mycobacteria or an immunosuppressed host may be responsible for the rapid progression to primary
TB. This is probably caused by immune system failure [37]. E1 is locally asymptotically stable, according
to Theorem 3.5. This corresponds to the figures (6(c)) and (7(c)), which depict the phase portrait and the
temporal evolution of the bacteria under varying initial conditions (denoted by circle) and final points denoted
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Figure 5: System numerical simulations (6). The time course of bacteria, T cells, and uninfected, infected, and
activated macrophages are depicted in the graphs using parameter values from Table 1, column 5. In this case, Mtb is

not controlled and R0 = 7.99325.

((a)) ((b)) ((c))

Figure 6: Portrait of phase fields for different initial conditions displays endemic and disease-free equilibrium points
using the parameter values listed in Table 1.

((a)) ((b)) ((c))

Figure 7: Using parameter values from Table 1, the numerical simulations of the temporal course for bacteria with ten
initial conditions demonstrate the stability of the infection-free equilibrium E0 and the endemic equilibrium E1

comparing the three cases: (a) Mtb is eliminated, (b) Mtb progression is controlled, and (c) and Mtb is not controlled.
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by x. Both the bacterial and immune T cell populations were seen to proliferate early in the infection, then
decline until eventually approaching a steady state.

4.1. Sensitivity Analysis
Remember that when all other cell populations are fully susceptible, R0 represents the expected total

number of new infectious particles produced by a single infectious particle (bacteria) during its average life
span [49], [20]. The basic reproductive ratio, R0, is used to provide qualitative analysis of the models.

R0 =
β s1Nµ2

d1σσ1

=
β s1Nµ2

d1(d2 +µ2 +
s4(α1 p+α2(1− p))

d4
)(−r+d5 +

k1s1

d1
)

=
β s1Nµ2

(d2 +µ2 +
s4(α1 p+α2(1− p))

d4
)(−rd1 +d5d1 + k1s1)

, (42)

where d2 and d5 represent the natural death rates of infected bacteria and macrophages, respectively, and
r is the average number of bacteria produced as a result of self-replication; The rate of bacterial death by
uninfected macrophages is k1, β is the infection rate; The removal rates of infected macrophages by pT and
(1− p)T , respectively, are denoted by α1 and α1; p is the proportion of differentiated naive T cells; µ2 is
the maximal bursting rate of infected macrophages. The best way to reduce the number of mtb bacteria is
to assess the sensitivity of various factors responsible for their transmission and prevalence. This study used
a local sensitivity analysis. The index definition sensitivity can be seen in [9]. It should be noted that if
the sensitivity index value is greater, then this parameter is the most influential. Positive and negative signs
indicate the relationship between the parameter and the variable. Given that R0 (42) has an explicit formula,
we can calculate the sensitivity of R0 to each of the parameters listed in Table 1, column 5. For example,
the sensitivity indices of R0 for β are independent of any parameter value.

ϒ
R0
β

=
∂R1

∂β
× β

R1
= 1.

A few partially significant indices with a clear structure are as follows:

ϒ
R0
k1

=
∂R0

∂k1
× k1

R0
=− k1s1(

−r+d5 +
k1s1

d1

)
d1

=−1.5,

ϒ
R0
α1 =

∂R0

∂α1
× α1

R0
=− α1 ps4(

d2 +µ2 +
s4(α1 p+α2(1− p))

d4

)
d4

=−0.88079.

Table 2 presents a summary of our findings regarding the sensitivity of the basic reproductive ratio. The
positive symbol indicates that the basic reproductive ratio will increase as the parameters increase. For each
variation 1% in the parameter, the figure indicates how the basic reproductive ratio will change. For example,
increasing 1% of the elimination rate α1 will decrease R0 −0.88079% since ϒ

R0
α1 = −0.88079. As can be

seen, the most important parameters in the basic reproductive ratio are r,k1,β ,µ2, and α1.
These findings indicate that R0 is highly susceptible to the Mtb bacteria’s production and release by

macrophages. These results for R0 may contribute to understanding why the immune system requires more
complex defensive mechanisms to contain Mtb-causing infections, such as the recruitment of different com-
ponents of the immune system and the formation of granulomas, because an initial bacterial invasion cannot
be controlled by the macrophage response alone.
In Figure 8(a), it can be seen that when parameter r is in the value range 0 < r < r∗, with

r∗ =
−Nβ s1µ2 +(k1s1 +d1d5)σ

σd1
= 0.03107 there is only one equilibrium point, namely the disease-free
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Table 2: R0 (42) sensitivity indices to Mtb Infection model parameter values from Table 1

β r µ2 α1 α2 k1 d2 d5

ϒR0 1 0.5 0.89342 -0.88079 -0.00293 -1.5 -0.00968 0

((a)) Plot of the first quadrant’s exis-
tence and stability (r and R0).

((b)) Plot of the first quadrant’s exis-
tence and stability (α1 and R0).

((c)) Plot of the first quadrant’s exis-
tence and stability (k1 and R0).

Figure 8: The parameter values listed in Column 1 of Table 1.

equilibrium point indicated by the value R0 < 1. For the value 0 < r < 0.03107, the bacterial model of Mtb

will always be stable in a disease-free state. Meanwhile, if parameter r, 0.03107 < r < d5 +
k1s1

d1
= 0.04

causes R0 > 1 and the disease-free equilibrium point becomes unstable. This shows that the body’s immune
system cannot eliminate Mtb bacterial infections which result in the bacteria always being present in the
lungs and continuing to infect uninfected macrophage cells.
As seen in Figure 8(b), there is only one equilibrium point, which is the disease-free equilibrium point,
indicated by the value R0 < 1, when parameter α1 is in the value range α1 > α∗

1 , with

α∗
1 =

Nβ s1µ2d4 +σ1d1(−α2(1− p)s4 −d4(d2 +µ2))

pσ1s4d1
= 1.45651∗10−3. The Mtb bacterial model will always

be stable in a disease-free state for the value α1 > 1.45651 ∗10−3. Meanwhile, if 0 < α1 < 1.45651 ∗ 10−3

causes R0 > 1 and the disease-free equilibrium point to become unstable. This shows that a reduced immune
system causes bacteria to remain in the lungs and can infect uninfected macrophage cells.
As can be observed in Figure 8(c), when parameter k1 is in the value range kU > k∗1, there is only one
equilibrium point, which is the disease-free equilibrium point, denoted by the value R0 < 1, with k∗1 =
Nβ s1µ2 +(r−d5)σd1)

σs1
= 2.785480062∗10−8. If k1 > 2.785480062∗10−8, then the Mtb bacterial model will

remain stable in a disease-free state at all times. Meanwhile, if R0 > 1 and the disease-free equilibrium point
becomes unstable due to parameter 10−8 < k1 < 2.785480062∗10−8. This demonstrates how the decreased
ability of uninfected macrophages to fight off bacteria leads to the persistence of bacteria in the lungs and
their ability to infect uninfected macrophage cells.

5. CONCLUSION

In this study, we investigated the effects of patient immune control and proliferation of the TB bacterial
population on the development of tuberculosis disease. For this reason, we developed a system of non-linear
ordinary differential equations that concisely characterize Mtb’s interactions with macrophages and T cells.
Numerous studies have described the intricate processes of cell differentiation and activation that comprise the
immune response to tuberculosis infection [50], [46]. However, modeling all of these processes is challenging,
so we only take into account the most significant ones.
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The model developed in this work became necessary to supplement the earlier research provided in [27],
[22], [28] [24], [29], [36], [25], [26]. Here, we assume that there are two types of bacterial growth: the first is
internal bacterial growth, as described in earlier research, and the second is external bacterial growth caused
by self-replication and external bacteria from infected macrophage rupture owing to capacity limitations. Both
presumptions are true [44], [31].

Naturally, as the assumptions get more complicated, so does the complexity of the results. A qualitative
analysis of this model indicates various scenarios in which, subject to specific conditions, there is always an
infection-free state. The existence of two different kinds of bi-stability region for a given parameter value is
an intriguing fact. The first is the balance that exists in coexisting bacteria and is free of disease. However,
a sensitive examination of the model parameters reveals why macrophages are insufficient to stop Mtb from
invading the body in the first place and why the immune system must carry out more intricate defense
mechanisms, such as forming granulomas and recruiting other components of the immune system, to contain
the infection. In conclusion, in this study, we show that by including the self-replication of bacteria, the
scenarios observed in the development of pulmonary tuberculosis can be obtained more diverse.
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