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Abstract

In this paper, we explore a classical predator-prey model where the birth rate of the prey is significantly
lower than the mortality rate of the predators, while also considering a limited prey population. We incorporate
an environmental carrying capacity factor for the prey to account for this. Given the different timescales of the
predator and prey populations, some system solutions may exhibit a fast-slow structure. We analyze this fast-
slow behavior using geometric singular perturbation theory (GSPT), which allows us to separate the system
into fast and slow subsystems. Our research investigates the existence and stability of equilibrium solutions and
the behavior of solutions near the critical manifold. Additionally, we use an entry-exit function to analytically
establish the connection between the solutions of the slow subsystem and those of the fast subsystem.
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1. INTRODUCTION

In nature, each system element typically evolves on different time scales. We can gain insights into the
system’s characteristics and behavior by making assumptions about processes that operate on slower or
faster time scales. This phenomenon includes chemical reactions, particle dynamics in fluids, ecological
interactions, and evolutionary processes. Systems that exhibit two distinct time scales are known as fast-slow
systems [7]. Fast-slow systems are widely utilized across various fields, including physics, biology, ecology,
and economics. This concept helps to comprehend the dynamics of systems with two or more components
that evolve at different rates.

Fast-slow systems can be examined using various methods. In 1970, Neil Fenichel introduced a geometric
technique, leveraging the theory of invariant manifolds to investigate these systems, known as Geometric
Singular Perturbation Theory (GSPT). GSPT provides a geometric framework for addressing problems with
distinct time scale separation, explicitly aimed at analyzing fast-slow systems [7]. The fundamental concept is
to simplify the system by reducing it to a lower-dimensional subsystem that is more manageable to analyze.
This approach allows for the overall dynamics of the system to be studied by integrating the dynamics of
each individual subsystem.

There are several articles discussing fast-slow systems and GSPT. In the article [8], Jardon et al. discuss the
fast–slow framework of epidemiological models, specifically SIR, SIRS, and SIRWS. The article examines
these three distinct models and offers an interpretation utilizing GSPT techniques and entry-exit functions.
On the other hand, [3] examines singular perturbations in epidemiological models where transmission occurs
through vectors. Numerous diseases are transmitted indirectly between humans via these vectors, which often
include blood-sucking insects. These insects obtain disease-causing microorganisms by feeding on the blood
of an infected host (human) and then transmitting them to a new host during their next feeding. Generally,
vectors reproduce much faster than their hosts, leading to fast and slow processes within these systems.

The study of population dynamics among species within an ecosystem is essential for understanding their
survival and long-term coexistence [5]. Species interactions often occur on different time scales, which
can significantly impact the dynamics of the model [5]. In 1925-1926, Alfred Lotka and Vito Volterra
independently addressed this phenomenon by formulating a system of differential equations to describe
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ecosystems comprising two species, one serving as the predator and the other as the prey. This framework is
commonly referred to as the predator-prey model [1]. The predation process affects both species’ population
dynamics, helping to maintain a balance between their populations. When the prey population grows, it
provides more food for the predators, leading to a subsequent increase in the predator population after a brief
delay [4].

In the article by Owen and Tuwankotta [12], the dynamics of fast-slow behavior in a basic predator-
prey system are examined, where neither the prey nor the predator populations have a carrying capacity. In
this scenario, both populations can grow indefinitely. One of the aims is to demonstrate how the timescale
parameter influences the construction of an approximation for solutions using singular perturbation techniques.
They introduce a basic predator-prey model that is converted into a dimensionless form. In addition, it is
assumed that the birth rate of the prey is significantly lower than the death rate of the predator.

In this research, the predator-prey model discussed in the article [12] is considered, but with the assumption
that the prey population is limited. Therefore, a carrying capacity for the prey population is added to the
model. The problem and primary purpose is to know how the solution behaves on the model using a geometric
approach, i.e., using entry-exit functions, as done by [8].

2. PRELIMINARIES

2.1. Fast-Slow System
From a mathematical standpoint, one straightforward method to capture different time scales is employing a

system of differential equations characterized by two distinct time scales, commonly referred to as a fast-slow
system [9].

Definition 2.1. The (m,n)-fast-slow system is a system of differential equations that takes the form.

ε dx
dτ = εẋ = f(x, y, ε),
dy
dτ = ẏ = g(x, y, ε),

(1)

where (x, y) ∈ Rm×Rn, f : Rm×Rn×R → Rm, g : Rm×Rn×R → Rn, and ε, with 0 < ε ≪ 1, is a time
scale parameter. The variables x are referred to as fast variables and y are referred to as slow variables [9].

The parameter ε, which tends towards zero and is very small, is used to differentiate the time scales
between two different variables. Let t = τ

ε , then

ε
dx
dτ

= ε
dx
dt

dt

dτ
= ε

dx
dt

1

ε
= x′ = f(x, y, ε)

and
dy
dτ

=
dy
dt

dt

dτ
=

dy
dt

1

ε
=

1

ε
y′ = g(x, y, ε) ⇐⇒ y′ = εg(x, y, ε),

thus obtaining a system equivalent to the system (1) as follows:
dx
dt = x′ = f(x, y, ε),
dy
dt = y′ = εg(x, y, ε),

(2)

where t being the fast time scale and dan τ being the slow time scale. The variables x and y in system (2)
are the updated variables x and y in the system (1) after time scaling. The notation ẋ represents dx

dτ and x′

represents dx
dt .

2.2. Geometric Singular Perturbation Theory (GSPT)
The fundamental idea behind Geometric Singular Perturbation Theory (GSPT) for analyzing fast-slow

systems is to investigate the singular limit cases, particularly when ε = 0. Subsequently, perturbation
techniques are utilized to describe the dynamics of the fast-slow system [8]. This approach is anticipated to
simplify the analysis of systems (1) and (2) compared to scenarios where ε > 0 [8]. By substituting ε = 0
into system (1), we derive a set of differential-algebraic equations known as the slow subsystem, which
is expressed as follows:

0 = f(x, y, 0),
ẏ = g(x, y, 0), (3)
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where the system (3) is the reduced problem or a differential equation with a constraint f(x, y, 0) = 0. The
slow subsystem (3) is constrained to a critical set or critical manifold C0

C0 = {(x, y) ∈ Rm+n|f(x, y, 0) = 0}.

Definition 2.2. A manifold is a generalization of curves and surfaces to higher dimensions. It is classified
as having dimension n if all its connected components share this dimension. Specifically, a one-dimensional
manifold is called a curve, a two-dimensional manifold is called a surface, and an n-dimensional manifold
is known as an n-manifold [14].

It means that C0 is an m+ n-manifold. Some properties of the manifold used are defined as follows:

Definition 2.3. Let M ⊂ Rm be a connected and compact Ck-manifold. Let ϕt(·) denoted trajectories of
solutions of the system (1). M are called invariant manifolds if for every p ∈ M , it holds that ϕt(p) ∈ M
for all t ∈ R. M are called local invariant manifolds if for every p ∈ M , there exists a time interval
Ip = (t1, t2), such that 0 ∈ Ip and ϕt(p) ∈ M for all t ∈ Ip [9].

Definition 2.4. Let M,N ⊂ Rm are an manifold-m. M and N called diffeomorphic if there exist a
diffeomorfism map, i.e. the map F : M → N that has inverse F−1 : N → M , where F and F−1 both are
Ck functions [14].

When ε = 0 is substitute to the system (2), we obtained the parameterized system of differential equation
called fast subsystem, i.e.

x′ = f(x, y, 0),
y′ = 0, (4)

where the system (4) is also called layer equation or layer problem [9]. The relationship between equilibrium
points of the fast subsystem (4) and the critical manifold C0, i.e.

Proposition 2.1. Equilibrium points of the fast subsystem (4) are in one-to-one correspondence with points
in C0 [9].

Proof: Let us consider any value y = y0. If x0 is an equilibrium point of the fast flow x′ = f(x, y0, 0),
then f(x0, y0, 0) = 0, and it can be concluded that (x0, y0) ∈ C0. Similarly, the reverse is also true.

The bases of GSPT is the Fenichel’s theorem, which requires certain assumptions about C0. Specifically,
it is assumed that there is a compact submanifold S of dimension n (or with a boundary), contained in C0

[8]. Consider the (m,n)-fast-slow system (1), with the functions f and g being sufficiently smooth [9].

Definition 2.5. Let S ⊂ C0. Submanifold S is said to be normally hyperbolic if for all p ∈ S , the m×m
matrix (Dxf)(p, 0) has no eigenvalues with real part equal to zero [9].

Definition 2.6. Let S ⊂ C0 be normally hyperbolic. If all eigenvalues of (Dxf)(p, 0) have negative real
parts, then S is called attracting. If all eigenvalues of (Dxf)(p, 0) have positive real parts, then S is called
repelling, and if otherwise, S is of saddle type [9].

For the next theorem, the definition of Hausdorff distance is required:

Definition 2.7. Let U, V ⊂ Rm be manifolds. The Hausdorff distance between U and V is defined as

dH(U, V ) = max
{
max
u∈U

min
v∈V

d(u, v),max
v∈V

min
u∈U

d(u, v)
}
,

where d(u, v) is the distance between u and v [9].

Theorem 2.1. [9] Suppose S = S0 ⊂ C0 is a compact normally hyperbolic submanifold of the critical
manifold C0 of (1) and that f, g ∈ Cr (r < ∞), then for ε > 0 sufficiently small, the following hold:

(i) There exist a locally invariant manifold Sε that diffeomorphic to S0.
(ii) As ε → 0, Sε has Hausdorff distance of order O(ε) from S0, and the flow on Sε converges to the slow

flow
(iii) Sε is Cr-smooth.
(iv) Sε is normally hyperbolic and has the same stability properties with respect to the fast variables as

S0.



GEOMERTIC APPROACH TO PREDATOR-PREY MODEL WITH CARRYING CAPACITY ON PREY 165

(v) Sε is usually not unique.

The manifold Sε is known as the slow manifold. All distinct slow manifolds Sε are closely aligned,
exhibiting a proximity characterized by an order of O(ε−ξ/ε), for some ξ > 0. Consequently, the selection
of Sε does not significantly impact the overall analysis or the numerical results obtained [8].

2.3. Entry-Exit Function
One of the GSPT methods for establishing the relationship between fast and slow flow. This function yields

a version of the Poincaré mapping between two regions of the phase space, allowing for an approximation
of the trajectory behavior around points on the critical manifold where stability shifts (from attracting to
repelling) [8].

Definition 2.8. Consider an n-dimensional system given by x′ = f(x). Let Σ represent (n− 1)-dimensional
surface of section. The Poincaré Mapping Π is defined as a mapping from Σ back to itself. If xi ∈ Σ denotes
the i-th intersection of the trajectory with the surface, then the Poincaré mapping is defined as

xi+1 = Π(xi).

and the illustration is shown in the Figure 1 below

Figure 1: Sketch of the Poincaré mapping [13].

Let x∗ be an equilibrium point of Π, i.e., Π(x∗) = x∗, then trajectories starting from the point x∗ return to
x∗ and form homoclinic trajectories of the system x = f(x) [13].

Consider the (1, 1)-fast-slow system in the form

x′ = xu(x, y, ε),
y′ = εv(x, y, ε),

(5)

with (x, y) ∈ R2, v(0, y, 0) > 0, and u(0, y, 0) < 0 for y ∈ C−, and u(0, y, 0) > 0 for y ∈ C+. Here,
C− = {(x, y) ∈ R2|x = 0 and 0 < y < ỹ}, and C+ = {(x, y) ∈ R2|x = 0 and y > ỹ}, where ỹ is the
ordinate of the point on the critical manifold where stability changes.

When ε = 0, the y-axis contains equilibrium points of the slow subsystem from (6), which are given by

0 = xu(x, y, ε),
y′ = v(x, y, ε),

(6)

resulting in the critical manifold C0 = {(x, y) ∈ R2|x = 0 or u(x, y, ε) = 0}. These equilibria are normally
attracting for y ∈ C− because Dx(xu(x, y, ε))|C− < 0 and normally repelling for y ∈ C+ because
Dx(xu(x, y, ε))|C+ > 0 (using Definition 2.6), with C− ∪ C+ ⊂ C0.

When ε > 0, if the solution starts at (x0, y0) with x0 > 0 and y0 ∈ C−, the solution will quickly approach
the y-axis because C− is attracting. When the solution is close enough to the y-axis, meaning ε → 0 and
x → 0,

dx

dy
=

xu(x, y, ε)

εv(x, y, ε)
→ u(0, y, 0)

v(0, y, 0)
< 0,
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then the solution will move upward along the y-axis and gradually move away from the y-axis because C+

is repelling. Therefore, the solution will intersect the line x = x0 at a point with y-coordinate denoted as
pε(y0). The visualization can be seen in Figure 2.

Figure 2: Visualization of the entry-exit mapping on the line x = x0. The blue-colored line segment represents C−,
and the red-colored segment represents C+.

To achieve the balancing, from the system (6), the limit of the gradient of the tangent lines of the solution
approaching zero can be used, which is expressed as∫ pε(y0)

y0

dx

dy
dy =

∫ pε(y0)

y0

u(x, y, ε)

v(x, y, ε)
dy = 0. (7)

When ε → 0 and x0 = O(ε), then x0 → 0, so pε(y0) approaches the function p0(y0), given implicitly as∫ p0(y0)

y0

u(0, y, 0)

v(0, y, 0)
dy = 0. (8)

3. MODEL FORMULATION

The model employed is a basic predator-prey model in [12], with slight modifications to incorporate the
assumption that the birth rate of the prey is significantly lower than the death rate of the predator. It also
assumes a limited prey population, indicating that the prey population grows logistically. Let p and q denote
the predator and prey population densities at time t, respectively. The system of ordinary differential equations
that describes the simple predation process with a constrained prey population is expressed as follows:

dp
dt = p(βq − γ),
dq
dt = αq

(
1− q

K

)
− βpq,

(9)

where α is the prey birth rate, γ is the predator death rate, and β is the predation rate. The variables p, q,
α, β, γ are all positive. And the detail about all variables and parameters see Table 1.
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Table 1: Variables and parameters along with dimensions of the predator-prey model (9).

Variables and Parameters Dimensions

p [population dimension]
q [population dimension]
α 1

[time]

γ 1
[time]

β 1
[population dimension][time]

K [population dimension]

To simplify the analysis without the dimension of each variable and parameter, the system (9) is transformed
into a dimensionless form by introducing the substitutions x = β

αp, y = 1
K q, and t̃ = γt. Simplifying further

by removing the tilde notation, the system (9) can be written as follows:

dx
dt = x′ = x (ηy − 1) ,
dy
dt = y′ = εy(1− x− y),

(10)

where, ε = α
γ ≪ 1, η = βK

γ , and using the transformation τ = εt, the equivalent system is obtained:

εdx
dτ = εẋ = x (ηy − 1) ,
dy
dτ = ẏ = y(1− x− y),

(11)

where, t represents the fast time scale, and τ represents the slow time scale. The functions in the form of
the system (2) are f(x, y, ε) = x(ηy − 1) and g(x, y, ε) = y(1− x− y).

4. MODEL ANALYSIS

The predator-prey model in the form of the fast-slow system that has been presented will be analyzed as
follows:

4.1. The existence of equilibrium points

In analyzing the dynamic system (10), the initial step is to identify the equilibrium points. To determine
the equilibrium points of the system (10), we solve the system of equations given by setting the right-hand
sides of the equations equal to zero. This involves finding the values of the variables that satisfy the following
conditions

x(ηy − 1) = 0, (12a)
εy(1− x− y) = 0. (12b)

From Equation (12a), we find that x = 0 or y = 1
η . From Equation (12b), we derive y = 0 or y = 1 − x.

This leads us to three equilibrium points:
1. E0 = (0, 0). This point indicates the absence of both prey and predator populations, signifying

extinction,
2. E1 = (0, 1). Here, the prey population is at its carrying capacity K, while the predator population

becomes extinct, as its death rate is lower than the predation rate, and
3. E2 =

(
1− 1

η ,
1
η

)
. This point represents a coexistence equilibrium, where both prey and predator

populations exist at specific levels. Since populations must be positive, we require 1 − 1
η > 0, which

implies that η > 1 for E2 to exist.
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4.2. GSPT analysis on Model
To analyze when ε > 0, we consider the singular limit case ε = 0 for the system (11), resulting in the

slow subsystem
0 = x (ηy − 1) ,
ẏ = y(1− x− y),

(13)

where the critical manifold is the set

C0 =
{
(x, y) ∈ R2|x(ηy − 1) = 0

}
and for the system (10), we obtain the fast subsystem

x′ = x (ηy − 1) ,
y′ = 0.

(14)

The equilibrium points of the slow subsystem (13) are (x∗, y∗) = (0, 0) and (x∗, y∗) = (0, 1). The fast flow
along C0 is given by ẏ = y(1 − x − y). Based on Definition 2.5, Definition 2.6, and Proposition 2.1, a
submanifold of C0 is defined as hyperbolic normal, i.e.

C−
0 =

{
(x, y) ∈ R2|x = 0 and 0 < y < 1

η

}
and

C+
0 =

{
(x, y) ∈ R2|x = 0 and y > 1

η

}
.

Therefore, (Dxf)(x, y, 0)|C−
0
< 0, making C−

0 attracting, and (Dxf)(x, y, 0)|C+
0
> 0, making C+

0 repelling,
with a loss of normally hyperbolicity at y = 1

η . All of these are illustrated in Figure 3.

Figure 3: Fast and slow flow diagram. Single arrows: slow flow, and double arrows: fast flow. Blue line segment: stable
manifold C−

0 , and red line segment: unstable manifold C+
0 .

Next, we determine the trajectories of the layer equation (fast subsystem (14)). From Figure 3, it can be
observed that if the initial point is at (x, y) with x > 0 and y > 1

η , its trajectory moves away from C+
0

towards infinity. To obtain the constant of motion describing the trajectory of (14) at a relatively large value
of x, i.e. x = x̃

ε , the system (10) can be written as:

x̃′ = x̃ (ηy − 1) ,
y′ = εy(1− y)− x̃y,

(15)
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Thus, when ε = 0 is substituted into (15), the fast subsystem (14) becomes

x̃′ = x̃ (ηy − 1) ,
y′ = −x̃y.

(16)

From the system (16) obtained the constant of motion for (14) is Γ(x̃, y) = ηy− ln (y)+ x̃, which describes
the trajectory of the layer equation (16).

4.3. Applying the Entry-Exit Function to the Model

Next, we determine the relationship between fast and slow flow or vice versa. By using the entry-exit
formula, the behavior of trajectories around the normal non-hyperbolic point (x, y) = (0, 1

η ) can be explained.
Based on the form of (6), from the system (10), where u(0, y, 0) = ηy − 1 and v(0, y, 0) = y(1− y), when
x0 > 0 and y ∈ (0, 1), v(0, y, 0) > 0. Also, for y ∈

(
0, 1

η

)
, u(0, y, 0) < 0, and for y ∈

(
1
η , 1
)

, u(0, y, 0) > 0.
Therefore, the entry–exit formula can be applied by implementing the integral equation (8). This yields p0(y0),
which is a positive root of the equation ∫ p0(y0)

y0

ηy − 1

y(1− y)
dy = 0,

(η − 1) ln

(
1− y0

1− p0(y0)

)
+ ln

(
y0

p0(y0)

)
= 0. (17)

Let us consider a mapping

Π1 : R×
(1
η
, 1
)
→ R×

(
0,

1

η

)
.

and
Π2 : R×

(
0,

1

η

)
→ R×

(1
η
, 1
)
,

as illustrated in Figure 4.

Figure 4: Sketch of Π1 and Π2.

Examining the composition of Π1 and Π2 provides a Poincaré mapping

Π : A → B,
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where A =
{
(x, y) ∈ R2|x = x0, y ∈ [y

E2
, 1)
}

and B =
{
(x, y) ∈ R2|x = x0,Π2(Π1(y)) ∈ [y

E2
, 1)
}

.
With Σ = {(x, y)|x = x0} is the 1-dimensional surface of section. Thus, starting from the point P0 ∈ Σ,
this composition will map it to P1 ∈ Σ.

As a notation, let us define Q0 = Π1(P0) and P1 = Π2(Q0). Then, Equation (17) can be written as:

(η − 1) ln

(
1−Q0

1− y

)
+ ln

(
Q0

y

)
= 0.

P1 is the exit point, which is a positive root greater than Q0, of the function

F (y;Q0) = (1− η) ln

(
1−Q0

1− y

)
− ln

(
Q0

y

)
.

In other words, Pi+1 is a positive root of F (y;Qi) = 0, for i = 0, 1, 2, . . . , then we obtain

y(1− y)η−1 −Qi(1−Qi)
η−1 = 0. (18)

Equation (18) can be expanded into the polynomial form using binomial expansion, i.e.
y

η−1∑
i=0

(η − 1)!

i!(η − 1− i)!
(−y)i −Qi(1−Qi)

η−1 = 0, (η > 1) ∈ Z,

y

∞∑
i=0

(η − 1)!

i!(η − 1− i)!
(−y)i −Qi(1−Qi)

η−1 = 0, (η > 1) ∈ R.
(19)

Note that Π(P0) < P0 if and only if Π2(Q0) < Π−1
1 (Q0). Based on Γ(x0, y) = Γ(x0, P0), then Π−1

1 (Qi) >
Qi is a root of the function

G(y;Pi) = η(y − Pi) + ln
(Pi

y

)
.

In other words, Qi is a positive root of G(y;Pi) = 0, for i = 0, 1, 2, · · · , then we obtain

y = −1

η
W
[
−ηPie

−ηPi
]
. (20)

where W [.] is the Lambert W function. Using the properties of W [.], then the value of Qi is given by

Qi =
1

η
W−1

[
−ηPie

−ηPi
]
. (21)

Based on the functions F (y;Qi) and G(y;Pi), we obtain a sequence that converges to 1
η , i.e.

P0, P1 = Π2(Q0), . . . , Pi = Π2(Qi−1), (22)

and
Q0 = Π1(P0), Q1 = Π1(P1), . . . , Qi = Π1(Pi). (23)

Proposition 4.1. The sequences {Pi} and {Qi}, given by (22) and (23), both converge to 1
η .

Proof: It is known that the sequence Pi can be obtained from the equation (18), which is

y(1− y)η−1 − c(Qi) = 0, (24)

with c(Qi) = Qi(1−Qi)
η−1, and Pi+1 is a positive root of (24) that is greater than Qi. The monotonicity

of c(Qi) can be determined using its derivative set to zero, i.e.,

dc(Qi)

dQi
= 0,

(1−Qi)
η−1 − (η − 1)Qi(1−Qi)

η−2 = 0,

(1−Qi)
η−1

(
1− (η − 1)Qi(1−Qi)

−1
)

= 0,
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resulting in Qi = 1 or Qi =
1
η . Thus, in the interval Qi <

1
η , the function c(Qi) is monotonically increasing,

in the interval 1
η < Qi < 1, it is monotonically decreasing, and in the interval Qi > 1, it increases when η

is odd and decreases when η is even, so c(Qi) ≤ 1
η . Using the same property, y(1− y)η−1 is monotonically

increasing in the interval 0 < y < 1
η and monotonically decreasing in the interval 1

η < y < 1. In other words,
the graph of y(1− y)η−1 opens downwards in the interval 0 < y < 1. Since Pi+1 is a root of (24), then

Pi+1(1− Pi+1)
η−1 − c(Qi) = 0,

Choose Qa, Qb ∈
(
0, 1

η

)
, with Qb > Qa. When c(Qi) is monotonically increasing, the graph of Pi+1(1 −

Pi+1)
η−1 − c(Qi) is a shift of the graph of Pi+1(1 − Pi+1)

η−1 downward by c(Qi). This means Pi+1 =
Pb < Pa. And due to the monotonicity property of y(1− y)η−1, Pi is bounded below by 1

η . Therefore, since
Pi is bounded below and monotonically decreasing, it is proved that the sequence Pi converges to 1

η .
Next, for the sequence Qi obtained from Equation (21), to prove the convergence of Qi, we can easily use
the limit, i.e

lim
i→∞

Qi = lim
i→∞

(
−1

η
W−1[−ηPie

−ηPi ]

)
.

Since Pi converges to 1
η , then

lim
i→∞

(
−1

η
W−1

[
−ηPie

−ηPi
])

= −1

η
W−1

[
−η

1

η
e−η 1

η

]
= −1

η
W−1

[
−e−1

]
=

1

η
.

Thus, it is proven that the sequence Qi converges to 1
η .

4.4. Fast-Slow Structure conditions
According to Proposition 4.1 and the monotonicity property of the function G, each trajectory of the solution

to the system (10) when y = 1
η indicates that the value of x reaches a minimum at xmin = O(ε) = εK,

where K > 0 is a constant. Next, we will determine the conditions for the distance between the initial point
and the point E2 using the singular perturbation technique, as done by [12]. Let x = X and ηy − 1 = εσY ,
obtained

X ′ = εσXY,

Y ′ = ε1−σ(εσY + 1)
(
1−X − 1

η (ε
σY + 1)

)
.

(25)

Choose σ = 0.5, and let ε0.5 = µ. Thus, the system (25) can be written as

X ′ = µXY,

Y ′ = µ(1 + µY )
(
1−X − 1

η (µY + 1)
)
.

(26)

With the scaling τ = µt, the system (26) becomes

Ẋ = XY,

Ẏ = (1 + µY )
(
1−X − 1

η (µY + 1)
)
.

(27)

Then, as ε → 0, µ → 0, and the system (27) becomes

Ẋ = XY,

Ẏ = 1− 1
η −X.

(28)

From (28) we get

Φ(x0, y0) =

(
1− 1

η

)
ln
( x0

εK

)
− x0 −

1

2ε
(ηy0 − 1)2 + εK = 0. (29)

The curve Φ(x0, y0) = 0 represents the boundary of the initial values for which the solutions of the system
(10) exhibit a fast-slow structure.
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5. SIMULATION

In the analysis results using GSPT, it is obtained that the equilibrium points are stable with global asymptotic
stability when η > 1, and two converging sequences are formed towards a single value, namely 1

η . As an
illustration, let us determine the values of Pi and Qi with η = 2. Given the known value of P0, from Equation
(21), we obtain that Qi is

Qi = −1

η
W0

[
−2Pie

−2Pi
]
.

The value of Qi is then used to determine the value of Pi+1 using Equation (19), which is

y(1− y)−Qi(1−Qi) = 0,

y2 − y +Qi(1−Qi) = 0, (30)

so the values of y that satisfy the equation are y = 1±(2Qi−1)
2 , namely y = Qi or y = 1 − Qi, and thus

Pi+1 = 1−Qi.

Figure 5: Graphs of functions F (y;Qi) and G(y;Pi) for η = 2 and P0 = 0.98.

The numerical results using Wolfram Mathematica can be seen in Table 2, where the values of Pi and Qi

converge to the value 0.5.

Table 2: Values of Pi and Qi up to the 100th iteration, with η = 2 and P0 = 0.98.

i Pi Qi

0 0.98 0.210161
1 0.789839 0.291578
2 0.708422 0.337117
3 0.662883 0.366272
4 0.633728 0.386555
5 0.613445 0.401486
6 0.598514 0.412939
7 0.587061 0.422004
8 0.577996 0.429357
9 0.570643 0.435443
10 0.564557 0.440563

...
...

...

i Pi Qi

...
...

...
90 0.508186 0.491903
91 0.508097 0.491989
92 0.508011 0.492074
93 0.507926 0.492157
94 0.507843 0.492238
95 0.507762 0.492318
96 0.507682 0.492395
97 0.507605 0.492472
98 0.507528 0.492547
99 0.507453 0.492620
100 0.507380 0.492692
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To verify the analysis results using GSPT, a stability analysis of equilibrium points is conducted. First, the
Jacobian matrix of the system (10) is determined, which is

J(x, y) =

(
∂f(x,y,ε)

∂x
∂f(x,y,ε)

∂y
∂g(x,y,ε)

∂x
∂g(x,y,ε)

∂y

)
=

(
ηy − 1 ηx
−εy ε(1− x− 2y)

)
.

For E0, its Jacobian matrix is

J(E0) = J(0, 0) =

(
−1 0
0 ε

)
,

which has eigenvalues λ1 = −1 < 0 and λ2 = ε > 0. The stability type is a saddle point. The matrix J(E0)
also has a determinant value of det(J(E0)) = −ε < 0. We know that the stability type of the point E0 is
also unstable (saddle point). For E1, its Jacobian matrix is

J(E1) = J(0, 1) =

(
η − 1 0
−ε −ε

)
,

which has eigenvalues λ1 = η− 1 and λ2 = −ε < 0. When η < 1, the type of stability is a stable node, and
when η > 1, it is a saddle point. The matrix J(E1) also has a determinant value of det(J(E1)) = −ε(η−1)
and a trace value of trace(J(E1)) = (η − 1)− ε. Therefore, the stability is also as follows.

Table 3: Stability of point E1.

Value of η trace(J(E1))
(r)

det(J(E1))
(s)

Value of
r2 − 4s

Stability Type

< 1 < 0 > 0 > 0 Stable (stable node)
> 1 Indeterminate < 0 < 0 Unstable (saddle point)

For E2, its Jacobian matrix is

J(E2) = J(1− 1

η
,
1

η
) =

(
0 η − 1
− ε

η − ε
η

)
,

which has eigenvalues λ1,2 =
−ε±

√
ε2−4εη(η−1)

2η . When η < 1, the values of λ1 and λ2 are real and have

opposite signs, so the stability type is a saddle point. When 1 < η < 2+
√
4+ε
4 , the values of λ1,2 are

negative, making the stability type a stable node. Finally, when η > 2+
√
4+ε
4 , the values of λ1,2 become

complex, with µ = − ε
2η < 0, leading to a stable spiral stability type. The matrix J(E2) also has determinant

value det(J(E2)) = ε
η (η − 1) and trace value trace(J(E2)) = − ε

η . Therefore, for simplicity we write
2+

√
4+ε
4 = η0, then the stability is also presented in Table 4.

Based on the calculations above, the phase portraits of the system (10) are illustrated in Figure 6. For certain
initial values, when η < 1, the solution’s trajectories converge towards the point E1, and when η > 1, the
solution trajectories converge towards the point E2. (Note: Magenta points represent equilibrium points, with
filled points indicating stable equilibrium and unfilled points indicating unstable equilibrium). In Figure 6a
and Figure 6b, the parameter values used is ε = 1.

In Figure 6a, solution trajectories, when x < 0 and for certain y, tend to approach the point E2 but then are
attracted to point E1, and some move away from E2 over time. When x > 0 and y > 0, trajectories tend to
approach the point E0 and then are attracted to point E2. In Figure 6b, solution trajectories do not converge

Table 4: Stability of point E2.

Value of η trace(J(E2))
(r)

det(J(E2))
(s) r2 − 4s Stability Type

< 1 < 0 < 0 > 0 Unstable (saddle point)
> 1 and < η0 < 0 > 0 > 0 Stable (stable node)

> η0 < 0 > 0 < 0 Stable (stable spiral)
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to any equilibrium point when x < 0 and y > 0, and also when x > 0 and y > 0, solution trajectories spiral
towards point E2.

(a) (b)

(c) (d)

Figure 6: Phase portraits when ε = 1, (a) when η = 0.5, and (b) when η = 2, as well as when ε = 0.01, (c) when
η = 0.5, and (d) when η = 2. The magenta-colored points represent equilibrium points. Filled points indicate stable

equilibrium, while unfilled points indicate unstable equilibrium.

However, for a population considered only in quadrant I, it can be observed that when η < 1, solution
trajectories converge to point E1 = (0, 1). This implies that the predator population will decrease because
the predation rate is smaller than the predator death rate. Eventually, there will be a point of extinction. Due
to the initial assumption y = 1

K q, the prey population will reach the carrying capacity K. When η > 1,
solution trajectories converge to point E2 =

(
1− 1

η ,
1
η

)
. This implies that the predator and prey populations

will grow alternately and approach the same level, which is 1
2 .

For Figure 6c and Figure 6d, the values used are ε = 0.01. On Figure 6c, the behavior of the solution
trajectories is similar to Figure 6a, where for certain values of x < 0 and y, trajectories tend to approach the
point E2 but then are attracted to point E1. Some trajectories move away from E2 throughout the time. When
x > 0 and y > 0, trajectories tend to approach the point E0 and then are attracted to point E2. However, as
ε approaches zero, point E2 will disappear slowly, and all solution trajectories will be attracted to the y-axis,
which is part of the critical manifold C0. As shown in Figure 6d, as the value of ε decreases, the initially
spiraling solution curves will vanish and approach the critical manifold, corresponding to the illustration in
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Figure 3.
Next, for the fast-slow structure conditions of (10), the curve (29) can be observed depicted in the x0y0-

plane as in Figure 7. Region I represents the initial value region where the solution curves of the system (10)
have a fast-slow structure, and vice versa for region II. For example, two initial values are selected, and their
solution curves are plotted in Figure 8. The dashed black curve represents the solution curves for prey and
predator at the initial values (x0, y0) = (0.5, 0.45). In contrast, the solid black curve represents the solution
curves for prey and predator at the initial values (x0, y0) = (0.5, 1).

The dashed curves remain relatively stable, while the solid curves exhibit significant changes at certain
times, indicating a considerable impact. Furthermore, in specific intervals, the variation in the predator
population x(t) is much more pronounced than that of the prey population y(t) in the system (10). The
prey population can demonstrate rapid dynamics, quickly increasing or decreasing in response to predation
rates and resource availability. In contrast, the predator population typically responds slower due to its reliance
on prey availability. This observation strongly reinforces the idea that x(t) functions as a fast variable, while
y(t) acts as a slow variable. A biological example of this can be seen in parasites like malaria (the predator)
that infect human red blood cells (the prey). Red blood cells can increase to a maximum capacity (carrying
capacity). When these parasites invade the cells, they consume nutrients and cause cell death, which affects
the number of healthy red blood cells and triggers an immune response.

Figure 7: The graph of the curve (29), when η = 2, ε = 0,01, K = 1.

(a) (b)

Figure 8: Fast-slow structure on the population of (a) predator and (b) prey.
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6. CONCLUSION

We have investigated the behavior of the predator-prey model with carrying capacity. The model exhibits
two saddle-type equilibria and one stable spiral equilibrium. Specifically, solution trajectories converge to the
unique equilibrium point (E2) in the first quadrant.

Using GSPT, the model is divided into two subsystems: the slow flow given by ẏ = y(1− x− y) and the
fast flow dependent on the critical manifold C0 when ε = 0. The critical manifold is attracting for 0 < y < 1

η ,
repelling for y > 1

η , and loses its hyperbolic normality at y = 1
η .

Specifically, the solution behavior from the slow subsystem to the fast subsystem is analyzed, finding
functions F and G. It has been demonstrated that these solutions converge to the equilibrium point E2. In
conclusion, this research shows that GSPT can be used to analyze and understand the predator-prey model
with carrying capacity on prey. Initial conditions have been identified where the predator-prey model with
carrying capacity on prey exhibits a fast-slow structure.
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