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Abstract

We consider a mathematical model of cervical cancer based on the Natural History of Cervical Cancer.
The model is a five dimensional system of the first order of ordinary differential equations that represents the
interaction between the free Human Papilloma Virus (HPV) population and four cells sub-populations, i.e., the
normal cells, infected cells by HPV, precancerous cells, and cancer cells. We focus our analysis to determine the
existence conditions of the nontrivial equilibrium point, the bifurcations, and the sensitivity of the parameters
that play important roles in metastasis. Based on the basic reproduction ratio of the system, we found that the
infection rate, the new viruses production rate, the free viruses death rate, the infected cells growth rate, and
the precancerous cells progression rate play important roles for the cancer spreads in the cellular level. By
applying sensitivity and numerical bifurcation analysis, we found that there are some important bifurcations
that trigger some irregular behaviours of the system, i.e., fold, Hopf, cusp and Bogdanov-Takens.
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1. INTRODUCTION

Cervical cancer is one of the most common malignant cancer of women in developing countries, so that
various medical studies have been carried out to reduce the incidence and the mortality rates, see [12] and [15].
Developing the Human Papilloma Virus (HPV) vaccines and cervical screening studies are very important to
prevent and to eliminate the spreads of cancer cells, see [10] and [11].

There are some studies of cervical cancer in the perspective of mathematics, such as, the effectiveness of
the HPV vaccine, immunotherapy model of cervical cancer at the cellular level, metastasis’ behaviour model
of cervical cancer in the tissue level, and the global stability analysis for a cervical cancer model, see [16],
[18], [6], [4], [17], and [2]. The implementation of control functions to the model has been done in [13] and
[5], where the authors apply a combination of drug therapies and controlling the number of precancerous
cells to reduce the growth of the cancer. Meanwhile, in [1], the authors applied control theory in two cell
populations, i.e., susceptible cells and virus population. Based on the fact that the virus’ infection to the cells
is depend on the maturity of the cells, the authors in [8], [9], [19] developed an age-structured model for
cervical cancer.

In mathematical perspective, the studies of cancer are focused to understand the characteristics of cancer’s
spreads in the cellular level and the effectiveness of the vaccinations and treatments. They consider the
existence and stability of the non endemic and the endemic equilibrium points that represent the spread of
the cancer cells, and the behaviour of the cells populations with respect to time numerically. However, in
most cases, not all behaviour of the solution near the endemic equilibrium points have been studied.

In [4], the authors introduced a model for cervical cancer that show the interaction between normal cells
(.5), infected cells by HPV (1), free HPV (V'), precancerous cells (P), and cancer cells (C), which is simply
called SIVPC model, and studied the equilibrium points where the existence depend on the basic reproduction
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ratio. In [3], the authors found the appearance of the cusp bifurcation in a certain parameter space of the
SIVPC model.

Our study is the sequel work of [4] and [3]. We consider the existence conditions of a nontrivial equilibrium
point, which does not depend on the basic reproduction ratio. In application, the appearance of this equilibrium
point is important to understand the conditions for the effective treatments in the high stadium of the cancer
cases. The sensitivity analysis and the numerical bifurcation analysis regarding to the parameter variations
are also studied in this paper. The studies are important to characterize the cancer’ spreads and the possibility
to determine the irregular behaviour based on the parameter space of the model.

We start this paper by the brief introduction of the SIVPC model and the basic reproduction ratio, and
then study the existence conditions of a nontrivial equilibrium point of the model that do not depend on the
basic reproduction ratio. After that, we do continuation of some parameters and analyze the bifurcation of
the system numerically. In this case, we will show some interesting bifurcations that can be used to indicate
the irregular behavior of the system. Lastly, we will close the discussion with the sensitivity analysis of some
parameters and the concluding remarks.

2. PROBLEM FORMULATION

Consider the SIVPC model for cervical cancer on [4], cervical cells divided into four sub-populations
which are susceptible cells (S), infected cells (I), pre-cancer cells (P) and cancer cells (C). The free
Human Papillomavirus compartment (V') also included on this model. The growth of susceptible cells
describe by logistic function with intrinsic growth rate r and decreased while susceptible cells infected
by human papilomavirus with infection rate «.. The growth rate of infected cells, pre-cancer cells and cancer
cells respectively given by a,b and k. By persistent infection, the infected cells will be progress become
precancerous cells with progression rate J and pre-cancer cells progress into cancer cells with maximum
progression rate f. The number of free virus will be increase from the infected cells and decrease with
clearance rate c. The system of differential equation given on system (1) with definition of parameters are
given on Table |.

%er(l—(S—i—]))—aSV,

dI

= — I

o aSV — (a+ )1,

%:m’fcv, (1
dP p?

dc pP?

Eioil—I—PQikC'

Table 1: Parameters and units.

Symbol  Explanation of parameter Unit
r intrinsic growth rate of susceptible cells 1/day
o infection rate 1/(day x number of virus)
a growth rate of infected cells 1/day
0 progression rate from infected to precancerous 1/day
n average number of virions produced by an infected cell constant
c clearance rate of free virus 1/day
b growth rate of precancerous cells 1/day
0 maximal progression rate from precancerous to cancerous 1/day
k growth rate of cancer cells 1/day
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The first three equations are decoupled from the final two, and so the equilibrium values of S, I, and
V' can be found algebraically, as in [4]. Given an equilibrium (S, 7,V’), we may then attempt to find the
equilibrium value of P, and subsequently also the equilibrium value of C. In [4], the five parameter scenarios
for the existences of positive (endemic) equilibria are derived by Sturm sequence condition. Here we will
directly solving ¢ dt = 0 to find the equilibrium, assuming a known value for I. We adopt the values of I

and Ry = (‘1” from [4].

3. EXISTENCE OF THE NON-TRIVIAL EQUILIBRIUM
In the previous article [4] several scenarios for the existence of the equilibrium points of System (1) were
given, focusing on the conditions for the existence of a non-negative real equilibrium point. In this section
we will provide a theorem that guarantees the existence of an equilibrium point by looking at the analytical
solution and focusing on the real solution conditions.

Theorem 3.1 Consider A = “2en—(@H0e) | p— _gAS 4 94420 — 72Ab? — 24402, G = 4A2 — 12430 +
8A%h? 4+ 124262 4 20Ab%6 — 4A93 + 4b4 b202, and H = 36b*0 — 803. There are seven equilibrium points
of the model, i.e.
1) E;=(0,0,0,0,0) and E4 = (1,0,0,0,0) that exlstfor every condition,
2) Ey3= ((),0,(),P1_27 %) and E56 = (1 0,0, Py o, k) that exist if 0 < —2b or 6 > 2b,

3) Fy= (a;—j)c’ anriz—i(;—;é) ’ an’c 25;1;-3)n(' , P, bPJ + 5p(an((’c2;(;:)5)(' )) that exists lfOé > (a—i;lé)c7
G >0, and P; > 0,
where

/02 _4b2
P1.2 = O£VO2—4b2 gb 4b and

4A%2(F+12v3vVGb—H)"/° A-8A0+ (F+12v3vGb—H)*/* +2(F+12v3vGb—H)"/*0-12b% 446>

by = 6b(F+12\/3\/§b—H)1/3
Proof Equilibrium points are obtained by solving = ‘éﬁ = ‘il‘t/ = dd]; =& = () By operating the
equation E =0, we found V = "I . By substituting the value of V' to the equation E = 0, we obtained

anSl (g + ) = 0 which is fulﬁlled ifI=0o0rS = a(fg)c If I =0, we found V = 2L = 0. By

substituting I = V = 0 to the equation % = 0, we obtained 7S(1 — S) = 0 which 1mplies S =0 or

S = 1. When we substitute / = V = § = 0 to the equation % = 0, we found bP — 1 i P2 = 0 which
is satisfied if P =0 or b = 3 + P2 If we substitute P = 0 to the equation % =0, we obtained C' = 0.
Thus, we found E; = (0,0, O 0,0). When we substitute b = 1 + P2 to to the equation W = 0, we obtain

C = ‘% . By solving b = P2 we have P, = eivgi 467 Hence, we found F53 = (0,0,0,Pl.g,?).
For S = 1, we also have Jllree pairs of P and C, ie. P = C = 0 and P = P, with the value of
C for those two P is C = ib. Thus, we obtained E4 = (1,0,0,0,0) and E54 = (1,0,0,P1.2,%).

, 2 3
By substituting S = % and V = 2L to the equation % = 0, we found I = % By
substituting the value of I to V = 2L we obtained V = % By substituting the value of I to

the equation W = 0 we found that P is the real roots of cubic equation bP? + (A — 0)P? +bP + A =0,
iie. Psas and 1+P2 = bP + 6P (w) One root of the cubic equation is in R, i.e. Py =

c2+an
4A% —2(F+12V3vVCb—H)"* A-8A0+(F+12v3vVCb—H)** 12(F+12v/3VGb—H)"/*0—126° 146
6b(F+12v3vGb—H)'/*
of are in C, so that they are not exist in R, i.e. P, 5. By substituting the value 1 i P2 to the equation 4¢ = 0,

! dat
we found C' = 22 + %. By substituting the value of Ps to the value C, we found C' = 2= +
anc?—(a+6)c®

T ran) . Therefore, we found £, = (a;—j)c’ Mwi;fgf)ci wz(;(f;f)mz Ps, b% + —611(@,?((521(2:)6)03)).

Every equilibria exists if every subpopulation in the equilibria expression is defined in R and has a non-
negative value. Fy and F, exist for every condition, because every subpopulation already has defined in R
and has a non-negative value. Existence of Fs, E53, E5, and Fg depend on the value of P 5 while the other
subpopulation already have a non-negative value. Pj o are defined in R if §2 — 4b> > 0 which is satisfied

. The other two roots
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if 6 < —2b or & > 2b. If those condition is satisfied, then the value of P; 5 is always positive, because
0 > /02 — 4b2. Hence, Es, E3, E5, and Ej exist if § < —2b or § > 2b. E; exists if anc? — (a + §)c® > 0,
an?c— (a+5)n62 > 0, and P53 > 0 in order to guarantee that the infected, virus, and pre-cancer subpopulations
have a non-negative value. Beside that, the value of G must also be non-negative in order to guarentee that
the value of pre-cancer subpopulation is defined in R. The first two inequalities are equivalent to o > %

4. BIFURCATIONS OF SOME TREATMENT PARAMETERS

Parameter ¢, §, and b are important, because they have an opportunity to become a treatment target. We
set initial values of the parameters according to [4] and make some continuation of the stable equilibrium
point by varying those parameters to analyze the codimension one and two bifurcations.

4.1. Fold and Hopf Bifurcations

Continuation of the stable equilibrium point by varying ¢ and § generates Fold and Hopf bifurcations in
co-dimension one bifurcation analysis, see Figure 1. Note that H represents Hopf bifurcation, L P represents
Fold bifurcation, and BP represents Branch Point.

16 BP,
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Figure 1: The Fold and Hopf Bifurcations: (a) Hysteresis Constructed by Two Fold Bifurcations as ¢ Varies, (b) Fold
Bifurcations Constructed as ¢ Varies.

Backward and forward continuation of the stable equilibrium point by varying ¢ generate some bifurcation.
Series of Fold bifurcation is found at LP;, two Fold bifurcations are obtained at L P, when ¢ = 143.961734
and LP; when ¢ = 37.3174420887747. Three Hopf bifurcations are found, i.e. at H; when ¢ = —1.0378734,
H, when ¢ = 5.017633 x 10~°, and Hs when ¢ = 0.96322656. Three Branch Point bifurcations occur at
¢ = 54.945055, see Figure 1(a).

Four equilibrium points are detected when the value of c is less than the value of c at the first Fold point.
We found five equilibrium points at the first Fold point as c increases. When the value of ¢ increases beyond
the first Fold point and less than the Branch Point, we found six equilibrium points until the Branch point. We
obtain three equilibrium points at the Branch point and the equilibrium points become six again as c increases
beyond the Branch point until the second Fold point. At the second Fold point, there are five equilibrium
points and they collapse become four equilibrium points again same as the number of equilibrium points in
the initial condition when the value of c pass through the second Fold point. The occurrence of the Fold
bifurcations trigger a hysteresis as an indicator of catastrophe dynamic, whereas the Hopf bifurcations generate
a periodic solution at every Hopf bifurcation points which represents a cycle of the cell transformation. The
Pitchfork bifurcations represent the merging points of some equilibrium points.

In Figure 1(b), independent with the branch points, two Fold bifurcations occur when we make a backward
and forward continuation of the stable equilibrium point by varying d, i.e. at 6 = —0.015479 and § =
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0.025479. We also found fourteen Hopf bifurcations and five branch points. Three of them are obtained at
0 = —0.01 and the others are obtained at 6 = 0.01. The continuation of the first branch point generates
many Fold bifurcations at 6 = —0.01. When the value of § is less than the value of § at the first Fold point,
there is two equilibrium points. Three equilibria is found at the first Fold point and change become four
equilibrium points as the value of ¢ increases beyond the first Fold point until the first three branch point.
At the first three branch point, we found many equilibrium points. When ¢ increases beyond the first three
branch point, there are four equilibrium points until the second branch points which generate two equilibrium
points. Four equilibrium points are found as § increases beyond the second branch point until the second Fold
point which is found independently with the branch point. At this point, we found three equilibrium points
and they collapse become two equilibrium points as § increases beyond it. A cycle of the cell transformation
is found at the Hopf point and the number of steady state condition change at the branch point.

4.2. Cusp and Bogdanov-Takens Bifurcations

Some Cusp and Bogdanov-Takens bifurcations are found by a backward and forward continuation of the
Fold point LPs at § = 0.025479 as shown in Figure 1(b) when § and b are varied in the codimension two
bifurcation analysis as the further analysis of the codimension one bifurcation result, see Figure 2.
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Figure 2: Cusp and Bogdanov-Takens Bifurcations as ¢ and b Vary: (a) The Cusp and Bogdanov-Takens Bifurcations,
(b) Magnification of the Area around C' P, (c) Magnification of the Area around CPs.
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We make a continuation on the Fold Point (LP3), i.e. § = 0.025479 generated on codimension-one
bifurcation (see Figure 1(b)) as § and b vary. It generates four Cusp bifurcations (C'P1,C Py, CP3,CPy)
and two Bogdanov-Takens bifurcations (BT'1, BT5), see Figure 2). The Cusp bifurcations occur at (§,b) =
(0.032932,1.318524), (4,b) = (0.032932, —1.318524), (4,b) = (—0.022932, —1.318524), and (J,b)
(—0.022932,1.318524) while the Bogdanov-Takens bifurcations occur at (d,b) = (0.01,0.002304), (4, b)
(0.009999, —1.015), (§,b) = (0.01000003,1.01500011), and (4,b) = (0.01,—1.1790965 x 10~%). Two
intersecting Fold curves generate Cusp bifurcations as an indication of catastrophe phenomenon. Bogdanov-
Takens bifurcations in our system are generated by the intersection of Hopf, Fold, and Homoclinic curves.
The Homoclinic curve is an indicator of chaotic dynamic.

To get an illustration of the equilibria stability we plot a phase portrait in area I and area II of Figure 2 and
considering for positive 6. While taking § = 0.005 and b = 0.01, which is in area II, the basic reproduction
number Ry is 1.33. In this area there exist 8 equilibrium points and it is according to the previous result
in [4]. One equilibria is locally asymptotically stable, and the others are unstable. Figure 3 show that the
equilibrium point (0.75,0.125, 25, 0.06699250312,0.008980123797) is a locally asymptotically stable.
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(0.75,0.125,25, 0.06699250312, 0.008980123797)

-100 B

I I I I I I I I
0.735 0.74 0.745 0.75 0.755 0.76 0.765 0.77 0.775
S

Figure 3: Phase portrait of S-P in area IL

In area I, taking 6 = 0.005 and b = —2 also giving the same value of Ry and there exist three
equilibrium points. The two equilibrium points are Fy = (0,0,0,0,0),F; = (1,0,0,0,0) which both
are unstable. The third equilibrium is E* = (0.75,0.125,25,0.004182246755, 0.00003515494103) which
is locally asymtotically stable. The phase portrait was given on Figure 4.

From both illustration, it can be seen that there is a difference in the number of equilibrium points in
those two areas, even both having the same basic reproduction number. In area I, negative value of b means
that the apoptosis rates of pre-cancer cells is larger than the proliferation rates of pre-cancer cells, so the
pre-cancer cells population will be decrease. In the medical point of view, this condition giving a bigger
change to recover.
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Figure 4: Phase portrait around E* of S-I in area 1.

5. SENSITIVITY ANALYSIS

For notational convenience, rename the state variables X; =5, Xo =1, X3=V, X, = P and X5 =C.
Select a parameter A from the system of equations, and denote the right hand side of each equation as
fi(X1,..., X5, ), so the system of equations is

dX;
dt

Zfi(Xl,...7X57)\), for 221,,5
At some particular point in the parameter space {r, a, a, d, n, ¢, b, 0, k}, we can calculate the time-dependent

sensitivity, Z;, of each state variable with respect to A. We define

0X;
Zi= 77"

Each sensitivity variable Z; is governed by a differential equation

dZ; d 9X; 9 dX; 9,

o d o Con dr - an K X A)

- Ofi 09X, 0

4= 9X; 0N OA
j=1

5
_ ofi , | 0fi
=2 5%, %" on
Jj=1

We will explore the sensitivity of the state variable X, = P with respect to the parameters b and §. With

A =0, so that Z; = aggi, the differential equations governing the sensitivity variables are
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az,
dt

az,
dt

iz,

dt = nZg — CZ3, (2)
dZy

2P
2 spZy+ (b—0—
a P 2+( (1+ P2)2
dZs 2P
Rl S 4
dt 9(1+P2)2 4= kZs,

=(r(1-28—-1)—aV)Z —rSZy — aSZs,

= OéVZl — (a =+ 6)22 + CYSZg,

>Z4+P7

subject to the initial conditions Z;(0) = 0 for ¢« = 1,...,5. To find the time dependent sensitivity Z,(¢),
this system of equations is adjoined to the system of differential equations governing the state variables (1),
producing a system of 10 differential equations, which must be solved simultaneously.

To calculate the sensitivity of the state variables to 9, the adjoined differential equations are changed to

%:(T(l—?s—[)—OZV)Zl—TSZg—CVSZg,

7

% =aVZ — (a+08)Zs+aSZs — I,

dz

dt3 =nZy — cZs, 3
dZy 2P

84 5pz 0 ) Zy+pI

pr op 2+(b 9(1+P2)2> 4+ pl,

4 2P

4Zs =0——s5724 — kZs,

dt (14 P2)?

subject to the initial conditions Z;(0) = 0 for ¢ = 1,...,5. This set of sensitivity equations differs for those
with respect to b only in the last term of second and fourth equations.

Because the sensitivities are dependent upon the values of all of the model parameters, we should run
simulations of these equations for a few different initial selections of parameter values. At a minimum, we
should calculate the sensitivities for a choice of parameters corresponding to progress to cancer, another
choice of parameters corresponding to successful treatment, and a third choice representing a patient who
would not progress to cancer. We can then compare these to see if there are any noticeable differences. We
focus our attention on Z4, the sensitivity of the precancerous cell population to the parameter A.

Numerical simulations show that a significant change in the sensitivity Z4(t) occurs near b = 1 (Figure
5(a)). For b < 1, Z, remains small for all ¢. For b > 1, Z, remains low for approximately 30 days, before
rapidly rising to a constant positive value. This behavior persists for larger values of b. This change in
sensitivity profile indicates that around b = 1, a bifurcation occurs in the in dynamics of precancerous cells.
Below this threshold, P is relatively insensitive to the value of b, while above this threshold, P is positively
sensitive to b, indicating that P(t) increases as b increases.

Interestingly, the magnitude of the sensitivity to b is largest for b-values that are close to the apparent
bifurcation point. From [4] two positive equilibrium will be exist while 0 < b < g and some certain
conditions. In this simulation we are taking § = 2.03, so it is make sense that the bifurcation point will
appear around b = 1.015.

We next consider A = §, the progression rate of infected cells to precancerous cells. In this case, the
sensitivity of precancerous cells (Z,) exhibits a different behavior (Figure 5(b)). For all values of §, P shows
a high positive sensitivity to & for low ¢ values, which becomes smaller and constant for larger ¢. For very
large ¢ values, a limited period of negative sensitivity occurs, followed by a return to the prior constant value.
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6. BIOLOGICAL INTERPRETATION

All the results presented above are mathematical results. From a biological or medical point of view, not
all of these results can be interpreted. The first is related to parameter variations. In this model, the parameter
values that can be interpreted for ¢ and c are positive values. Parameter § represents the rate of progression
from infected cells to cancer cells, while ¢ represents the rate of death of the virus. Parameter b can be
positive or negative, because it represents the growth rate of pre-cancerous cells which is the difference
between the rate of proliferation and the rate of apoptosis of pre-cancerous cells. On the other hand, the
equilibrium point that can be interpreted is also a positive equilibrium point, considering that each variable
describes the density of the sub-population.

Related to this, on the continuation of parameter ¢, the bifurcation phenomena that can be interpreted
biologically is at ¢ = 37.3174420887747 when Fold appears to a value of ¢ = 54.945055 when the Pitchfork
bifurcation appears. An endemic equilibrium point exists between these two values. Parameter c describes the
clearance rate of free virus with units 1/day. Thus, if condition of the clearance rate of free virus is between
38 and 54 per day, then an endemic equilibrium will be achieved.

For the § parameter, when the value of § = 0.01 then the value of Ry = 1. In accordance with the study
that has been given in [4], this value becomes the border for the existence of an endemic equilibrium point
and its local stability. Thus the bifurcation phenomena that appears at this ¢ value is in line with the previous
results.

On the continuation of two parameters § and b, compartment .S, I and V doesn’t depend on b. In this
simulation positive value of S, I and V' will exist while § < 0.01. On the other side positive value of P and
C exist while b < 1.015. So the possible existence of positive equilibrium point only in two area on Figure
2.

7. CONCLUDING REMARKS

The study of spreads of cervical cancer caused by HPV on the tissue level is important to understand the
behavior of the HPV infections in the perspective of mathematics. The paper is a sequel work of [4], [17],
and [3] that focus on numerical bifurcations and sensitivity analysis of the system. From this study, we found
that there are some bifurcations on the system that trigger the change of the steady state conditions of the
system. The appearance of hysteresis and cusp bifurcations on the system, see Figure | and Figure 2 show
the possibility of the system to have irregular behavior. By understanding the regimes on the parameter space
that the system has the irregular behaviour is important to determine the treatment strategy for the disease.
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