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Abstract

COVID-19 is an infectious disease primarily transmitted to individuals through direct contact with respi-
ratory droplets. The infection, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
continues to spread globally infecting around 776 million confirmed cases, including over 7 million deaths.
Meanwhile, dengue is a vector-borne disease caused by the Flaviviridae virus and is transmitted through
bites from female mosquitoes, primarily Aedes aegypti and Aedes albopictus. It is estimated that 390 million
dengue virus infections occur per year caused by four distinct virus serotypes—DENV-1, DENV-2, DENV-3,
and DENV-4. The COVID-19 pandemic has further strained public health systems, particularly in tropical and
subtropical regions where dengue is endemic. The overlapping presence of these infectious diseases heightens
the risk of co-infection, posing additional diagnostic and treatment challenges. Co-infection of COVID-19 and
dengue cases were already reported and confirmed in several countries. In this study, an 11-compartmentalized
deterministic mathematical model was developed to understand the transmission dynamics of COVID-19 and
dengue co-infection. This modeling approach was described by a system of ordinary differential equations
(ODEs), examining disease progression over time, offering insights into potential co-infection scenarios and
control strategies to help guide public health interventions. The well-posedness of the model was verified,
ensuring the existence and uniqueness of its solutions based on continuity, local Lipschitz conditions, and
invariance over a compact feasible region. The basic reproduction number (Ro), a significant indicator of
disease transmission, was calculated using the Next Generation Method (NGM). Four equilibrium points were
identified: the disease-free, COVID-19-only, dengue-only, and COVID-19-dengue co-infection equilibrium
points. Threshold values of the basic reproduction number were calculated to establish the conditions for
the existence and stability of the equilibrium points. These equilibrium points and threshold values provide
critical insight into the conditions necessary for eradicating or controlling each disease, serving as a guide for
developing interventions during different stages of an epidemic or pandemic. Furthermore, a phase diagram
of two parameters sensitive to Ro (COVID-19 transmission . and dengue vector-to-human transmission
C,1) was established which presented six distinct regions of existence and stability states of the equilibrium
points. These regions described different stable epidemiological scenarios whenever the parameter values were
varied. Numerical simulations were conducted to verify the stability results and to analyze the effects of
varied parameter values on the model solution. The simulations illustrated the positive impacts of reducing
the recovery period on the spread of infections even with increasing transmission rates. This demonstrates the
effectiveness of timely interventions, such as accelerated recovery through early diagnosis and treatment, in
mitigating the severity of outbreaks. All the algebraic calculations, analysis, and numerical simulations were
conducted with the aid of MATLAB R2023b and Maple software.
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1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), first identified in Wuhan, China, in late 2019. The disease rapidly escalated into a global
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pandemic, declared by the World Health Organization (WHO) in March 2020, infecting around 776 million
confirmed cases resulting in over 7 million deaths [36]. COVID-19 spreads primarily through direct contact
with respiratory droplets when an infected person coughs, sneezes, speaks, or breathes [2], [33]. Infected
individuals may experience mild to moderate illness, presenting symptoms such as fever, cough, tiredness,
and loss of taste or smell. However, individuals with comorbidities or the elderly are more likely to develop
severe symptoms such as pneumonia, organ failure, and, in some cases, death [34], [35].

Dengue, a vector-borne disease caused by the Flaviviridae virus, is prevalent in tropical and subtropical
regions. It is transmitted through bites from female mosquitoes, primarily Aedes aegypti and Aedes albopictus,
and presents symptoms such as high fever, severe headache, muscle and joint pains, vomiting, and rash.
Human-to-mosquito transmissions occur when mosquitoes feed on individuals infected with dengue. It is esti-
mated that 390 million dengue virus infections occur per year caused by four distinct virus serotypes—DENV-1,
DENV-2, DENV-3, and DENV-4 [3], [37]. Reinfection with a different serotype increases the risk of severe
dengue, including dengue hemorrhagic fever. While recovery from a particular serotype provides lifelong
immunity to that serotype, reinfection with a different serotype poses a higher risk of developing severe
disease, such as dengue hemorrhagic fever (DHF). This challenge, compounded by the lack of a specific cure
for dengue, complicates public health management in dengue-endemic regions where vaccination strategies
and vector control are key preventive measures [3].

The COVID-19 pandemic has further strained public health systems, particularly in tropical and subtropical
regions where dengue is endemic. The overlapping presence of these infectious diseases heightens the risk
of co-infection, posing additional diagnostic and treatment challenges, as seen in regions such as Southeast
Asia and Latin America.

Cases of COVID-19 and dengue co-infection have been reported in countries such as Brazil [6], India [16],
Thailand [25], Pakistan [27], and the Philippines [28]. In many instances, patients initially diagnosed with
COVID-19 exhibited low platelet count (thrombocytopenia), low white blood cell count (leukopenia), and liver
enzymes were elevated. This is later attributed to concurrent dengue infection. Another case in Thailand [ 18]
where a COVID-19 patient presented with skin rash, a common clinical finding in dengue. In Singapore, two
patients were diagnosed with false-positive dengue from rapid serological tests, then subsequently tested
positive for COVID-19 [38]. These case reports indicate additional challenges to healthcare systems as
COVID-19 and dengue are difficult to distinguish due to overlapping clinical and laboratory features, such
as fever, headache, muscle pain or fatigue, nausea, or vomiting [9]. It was also depicted that the co-infection
had worse outcomes relative to mortality rate, intensive care unit admission, and prolonged hospital stay [12].

In light of these challenges, deterministic mathematical modeling provides a critical tool for understanding
the transmission dynamics of both COVID-19 and dengue, helping guide public health interventions. Using
compartmental models described by ordinary differential equations (ODEs), this approach examines disease
progression over time, offering insights into potential co-infection scenarios and control strategies. These
compartments represent the partition of the population relative to the epidemiological state. Such models
were used in forecasting and exploring case scenarios which are essential in formulating policies on optimal
strategies for controlling and containing the diseases.

Mathematicians have developed models to study the interactions between different diseases, including co-
infections such as tuberculosis-HIV/AIDS [7] and pneumonia-HIV/AIDS [31]. These models have informed
effective intervention strategies in resource-limited settings, demonstrating their importance in managing
complex health challenges. In the paper of Bakare et al. [5], they formulated a malaria-schistosomiasis
co-infection, a parasitic and vector-borne disease model. Furthermore, some studies introduced vector-to-
vector-borne disease models such as the malaria-lymphatic filariasis [30], dengue-chikungunya [24], and
leptospirosis-dengue [1].

During the COVID-19 pandemic, many mathematical models have been developed to project the trajectories
of the outbreak and produce optimal interventions to contain the disease. Since different diseases are already
prevalent before the pandemic, co-infection with COVID-19 is also present. Several papers were published
describing the dynamics of the co-infection of other diseases with COVID-19. The work of Artiono et al. [4]
studied the co-infection modeling of COVID-19 and rubella with vaccination treatments for both diseases.
Mekonen et al. [22] constructed a COVID-19 and tuberculosis co-infection model. In the study of Hezam et
al. [14], optimal control for COVID-19 and cholera co-infection model was analyzed. Similarly, COVID-19-
Malaria with vaccination was studied by Shah et al. [29].

Furthermore, a co-endemic model was established by Fahlena er al. [13]. They studied the dynamics
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of the simultaneous prevalence of COVID-19 and dengue with bifurcation analysis. The model comprises
ten compartments for the human population: susceptible individuals, dengue-infected, COVID-19-infected,
dengue-infected with COVID-19 immunity, recovered from dengue, recovered from COVID-19, COVID-19-
infected with dengue immunity, recovered from both dengue and COVID-19, and two vector compartments:
susceptible vectors and dengue-infected vectors. Moreover, there are already existing studies related to
the co-infection of COVID-19 and dengue. Hye et al. [15] formulated a seven-compartmental model with
optimal control and data-driven analysis in Bangladesh. The model consists of susceptible, dengue-infected,
COVID-19-infected, dengue-COVID-19 co-infected, and recovered from disease human compartments, and
incorporated disease reinfection. Meanwhile, Omame et al. [26] developed an eight-compartmental co-
infection model with optimal control and cost-effectiveness analysis in Brazil.

In this study, we modify and integrate the models formulated in [13], [15] into a new COVID-19-dengue
co-infection model. This paper will discuss the model formulation and its well-posedness in Section 2. Section
3 will cover the calculation of equilibrium point, reproduction numbers, and stability analysis. In Section 4,
numerical simulations are presented. Lastly, Section 5 establishes the conclusions.

2. MODEL FORMULATION

This study builds upon the model developed by Fahlena et al. [13] which examines the co-endemic dynamics
of COVID-19 and dengue. The model is further expanded by incorporating the co-infection compartment and
recovery rates established by Hye et al. [15], allowing for a more comprehensive analysis of the interactions
between the two diseases. The compartmental diagram of the co-infection model is illustrated in Figure 1,
with state variables described in Table 1. The model assumes a homogeneous or well-mixed population where
host and vector population growth follow arithmetic recruitment rates. For simplicity, the model considers
only one dengue serotype (transmitted by Aedes aegypti) and one COVID-19 variant, acknowledging that
this represents a limited case of the full disease dynamics. Individuals who recover from either COVID-
19 or dengue acquire lifetime immunity to the respective disease. The model assumes that neither disease
is transmitted by birth. Furthermore, co-infected individuals in compartment [, are quarantined and closely
monitored, preventing them from transmitting either disease. This assumption aligns with real-world isolation
practices for managing severe co-infections, ensuring that both diseases are contained during the recovery
period.
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Figure 1: COVID-19 and dengue co-infection model diagram.
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Table 1: Model state variable description.

State Variables Description
Sh(t) Number of susceptible individuals at time ¢
Su(t) Number of susceptible vectors at time ¢
I.(t) Number of COVID-19-infected individuals at time ¢
I4(t) Number of dengue-infected individuals at time ¢
I,(t) Number of dengue-infected vectors at time ¢
Lea(t) Number of COVID-19-infected individuals with dengue immunity at time ¢
Tac(t) Number of dengue-infected individuals with COVID-19 immunity at time ¢
I (t) Number of COVID-19-dengue co-infection individuals at time ¢
R.(t) Number of COVID-19 recovered individuals at time ¢
Rq(t) Number of dengue recovered individuals at time ¢
Ry (t) Number of individuals recovered in both COVID-19 and dengue at time ¢

Table 2: Model parameter description.

Parameter Description Value Unit  Reference
An Human recruitment rate 1500 Individual  Assumed
Ay Vectors recruitment rate 10000  Mosquito  Assumed
Be COVID-19 transmission coefficient [0,1] day ™! [13]
Cun Dengue transmission coefficient from vector to human [0,1] day™* [13]
Cun Dengue transmission coefficient from human to vector 0.5 day ™! Assumed
W Human mortality rate 0.003 day™?! Assumed
Lo Vector mortality rate 0.01 day~? [26]
Ye Recovery rate from COVID-19 1/14 day ™! [13]
Yd Recovery rate from Dengue 1/14 day ™! [26]

Ni(0) Human population (initial value) 500000 Individual  Assumed
dsy, 1,
= A — C S 5
7 h "N, + ﬂc + Ph | Sh
dld Sh v
¢ _ I
dt vh N, ﬂc + Yd + h ds
dRg
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dl. Syl I,
= —(Cun L,
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The growth equations for the human and vector populations are given by dNy/dt = A, — up Ny, and
dN,/dt = A, — u, Ny, respectively. These equations assume constant recruitment rates A, and A,, reflecting
stable birth rates and neglecting the impact of other demographic factors such as migration or environmental
changes. The system of 11 nonlinear ODEs (1) captures the net rate of change for each epidemiological
compartment.

The well-posedness of the model ensures that the system of ODEs has a unique solution for any valid
initial condition. This property is crucial for verifying both the mathematical consistency and the biological
relevance of the model. The well-posedness guarantees that small changes in initial conditions do not lead
to chaotic outcomes, ensuring the robustness of the model’s predictions. The theorem from [17] is applied
to demonstrate the well-posedness of the COVID-19-dengue co-infection model.

Theorem 2.1. [/7] Let f(t,x) be piecewise continuous in t and locally Lipschitz in x for all t > to and
all x in domain D C R™. Let W be a compact subset of D, xo € W, and suppose it is known that every

solution of
= f(t,x), x(to) = zo.

lies in W. Then, there is a unique solution that is defined for all t > t.

The succeeding theorems for the feasibility region and nonnegativity of solutions follow the proof structures
in [20], [21].
Theorem 2.2 (Feasible Region). For all t > 0, the compact feasible region of the system (1) is the space

d =), x D,

where

A
oy = {(ShvldaRd7IdC7ICaRCachaRhylx) ‘ 0 < Np, < max {Ahv Th + eh}} ’
h

¢, = {(Shalv) ‘ 0<N, < maX{Avv 21} +€v}}a

v

Ah:maX{Nh(t)|0§t§oo}, AU:maX{NU(t)IOStgoo}.
Proof: From system (1),
dN,
Tth = Ap — ptn N,
dN,
2= A'u - va;
dt H
are linear ODEs, and the following are its respective solutions.
Nu(0) 82 A
= e TR
Nh(t) - ehnt + ,Uzh,7
N, (0) 4= A
Ny(t) = ——F> + .
( ) eﬂut + Ly

A
Thus, the tlim Np(t) = —h. Moreover, for some sufficiently small €, there exists some sufficiently large
— 00

Hh
A
T > 0 such that the limit supremum Ny (t) = —h—|—€h for all t > T. Furthermore, we have A, = sup Np(t)
Mh 0<t<oo
such that
Ay
Nh S max {Ah, — + Eh} .
Hh
for all £ > 0. Similar argument applies to IV,,. ]

Theorem 2.3 (Nonnegativity of the Solutions). Each solution of system (1) with initial condition in the
hyper-octant Ré}+, must also be in Ré}+.
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Proof: From the first equation in (1),

dSh Sh
— =Ap - v Iv cIc N )
= n— (Conly + B )Nh Sk
S
> — (thIU + BCIC) N7h - MhSha
h

since the recruitment ratCe A, > 0.
I I
Now, let u(t) = — [ Cendu+ Bele

— Mh) , the inequality above becomes
Np

ds
— 2z u()Sh. @)

¢
Define ¢(t) = exp ( / u(r)dr). Observe that g(t) > 0 for all values of ¢. Taking the derivative of g with

%g(t) — exp ( /0 tu(r)dr) % /0 ()

By the Fundamental Theorem of Calculus, this differential equation becomes

) 0
respect to time ¢, we have

d
Srat) = g(t) u(t).
As we compute the derivative of Sh(g), the inequality (2) is utilized which leads to
g
o(t) 5(1) — Si(t) S g(1)
d (Sh(t)) _ T
dt \ g(t) [9(D)]?
S 9@ w(®)Sa(t) — Su(t) g()ult) _
- lg(®)]?
This impli Sp(t) . .
is implies that 0 is nondecreasing for any values of .
9
Now,
Sh(t) Z Sh(o) S}L(O)

which simplifies to

Hence, Sy (t) is nonnegative for all ¢ > 0.
Similarly, from equation 2 in (1), we deduce this to
dly I,

7:01) c (' 1
7 hNh — Bl — (Ya + pn)la

> _Bc-[cﬁh - (’yd + ,U/h)-[d-

The rate thFSh > 0 since this term is the number of individuals coming from susceptible S},

compartment into the dengue-infected I; compartment, furthermore, this quantity will not be negative as
infected can not transfer back directly to the susceptible compartment. Following from the same argument
above, we have

t CIC
I; > Id(O) exp |:/ <6 + va + Mh) d'f':| > 0.
o \ N
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The same argument applies to other state variables for all ¢ > 0. Hence, all solutions of the system of
ODEs are nonnegative. [ |

Theorem 2.4 (Well-posedness of the model system). For each initial condition
X(O) = (Sh(o)» Id(o)v Rd(o)v IdC(O)v IC(O)» RC(O)7 ch(O), II(O)v Rh(o)» SU(O), LJ(O)) €9,

the solution to the model system (1) in ® exists and is unique.

Proof:

(1) Continuity. It can be observed that the model system is continuous since each ODE is a polynomial
function of time t.

(2) Local Lipschitz condition. Instead of solving each [ f/0z](t, ) for all state variables, we can present
this through the Jacobian matrix J(x) of the system. The entries of this matrix are all linear relative to its
respective state variable with constant positive parameters which include Nj, and N,,.

(3) Invariance over a compact feasible region. Shown in Theorem 2.2, the compact feasible region of
the model was defined as ®. Furthermore, Theorem 2.3 proved the nonnegativity invariance of each model
compartment. This invariance property will then be carried in the region ® as ® C Ré} L.

Hence, by Theorem 2.1, the model system (1) is well-posed. ]

3. MODEL ANALYSIS

This section outlines the calculation of the four equilibrium points of system (1) which correspond to
key states in the co-infection dynamics: the disease-free state, COVID-19-only state, dengue-only state, and
co-infection state. The existence and local stability of these points are analyzed, with the assumption that
the total populations Nj, and N, are constant. It follows that the parameters Ay, A, represent pip Ny, iy Ny,
respectively. These analyses are conducted with the aid of MATLAB R2023b and Maple software. Addi-
tionally, the basic reproduction number R, a quantity that represents the average number of new infections
caused by a single infectious individual in a completely susceptible population, is derived using the Next
Generation Matrix (NGM) method developed by Diekmann et al. [11].

3.1. Disease-free equilibrium and basic reproduction number

The disease-free equilibrium represents the steady-state solution of system (1) where neither COVID-19
nor dengue persists in human or vector populations. This equilibrium is a critical baseline in epidemiological
models, as it indicates the conditions under which both diseases are eradicated from the population, and no
further transmission occurs.

To calculate the equilibrium, we set all ODEs in system (1) to zero and assume that there are no infected
individuals (I; = Rqg = I4c = I. = R. = I.q = I, = I, = R, = 0). By solving for the state variables, we
determine the steady-state solution where no new infections occur, representing the complete eradication of
both diseases. Denoted as Ej, the resulting equilibrium is given by

Eo = (S, 13, Ry, 13,10, R, 12, I, R}, S, 17)

vV

A A, 3
:<h5070707070107070a70)' ( )
h Mo

The equilibrium FEj exists for any positive parameter values. Using the Next Generation Matrix (NGM)
method, we calculate the basic reproduction number Ry, a crucial indicator of disease transmission. The
value of Rg serves as a key threshold: if Ry < 1, the disease will die out, while if Ry > 1, it will continue
to spread [32].

Theorem 3.1 (Basic Reproduction Number). The basic reproduction number Ry of system (1) is calculated
as

Ro = max {Roc, Roa}
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where Ro. represents the reproduction number for COVID-19, and Ryq represents the reproduction number
for dengue. Specifically,

_ Ahﬁc
Nupin(pn + ve)

_ 1 A]LA’UC’UhChU
Nupeo \| pon(ptn + va)

Roe , describes the spread of COVID-19; and

“

Rod , describes dengue dynamics, including its vector-borne nature.

Proof: By the NGM method, we only need the infected compartments Iy, I, I.q, lic, I, I, to find the
transfer matrix V and incidence matrix F. These matrices have been obtained from the Jacobian matrix of
the said infected compartments, these are as follows

i IC C C v 1
LB 0 _1ap o o Cendh
Np, Ny, CN;R
0 0 0 0 0 e
SnBe — Conl oy
0 0 hFc vhiv 00 — vhic
F — RN% Ny, ’
0 0 ]é c 0 0 0
Icﬁc 0 th-[v '}f_ IdBc 0 0 thIc
Ny, Ny, Ny,
ChvSv ChvSv 0 0 0 0
Ny Np, i
Hh +Yd 0 0 0 0 0
0 Mh + Yd 0 0 0 0
vV — 0 0 Un + Ve 0 0 0
- 0 0 0 Un =+ Ye 0 0
0 0 0 0 wh+vy 0
0 0 0 0 0 Lo
Then, matrix F' has been evaluated at equilibrium Ej
- A -
0 0 0 o0 o AnCun
Nypin
0 0 0 0 0 0
Ahﬁc
0 0 —— 0 0 0
F(Eo) = Nypn
0 0 0 0 0 0
0 0 0 0 0 0
A’U v A’U v
Ch Ch 0 00 0
L Nh/-j’v Nh,uv -
Now, the NGM has been calculated as
_ A _
0 0 0 0 o MnCon
Nhﬂh,uv
0 0 0 0 0 0
Ath
_ 0 0 — 0 0 0
NGM =F(E,) V! = N pon (o + 7ve)
0 0 0 0 0 0
0 0 0 0 0 0
A'UC v AU X%
h Ci 0 0 0 0
| Nupio (b +5a)  Nupoo(pn + va) ]




MODELING THE CO-INFECTION DYNAMICS OF COVID-19 AND DENGUE 185

Solving for the spectral radius of the NGM, that is the eigenvalues of the matrix, this results into two
positive eigenvalues Ro. and Roq as shown in (4). The eigenvalue Ry, is expressed in COVID-19 parameters,
while Roq in dengue parameters. Hence, these eigenvalues are denoted as the basic reproduction number for
COVID-19 and dengue, respectively. Moreover, one can be larger than the other, for some parameter values,
thus, we take the maximum. |

Theorem 3.2 (Stability of Disease-free Equilibrium). The Disease-free Equilibrium Ey is locally asymptot-
ically stable if Ry < 1. Otherwise, Ey is unstable.

Proof: Using the linearization method, the Jacobian matrix of system (1) evaluated at Ly is given as

_ A . A vh]
—un 0 0 0 _Anf 0 0 0 0 _AnCon
Nhuh ANéﬂh
0 —(un+74) 0 0 0 0 0 0 0 b=
Nppn
0 Yo —pn 0 0 0 0 0 0 0 0
0 0 0 —(pn + va) 0 0 0 0 0 0 0
0 0 0 o  AnCon (n +7e) 0 0 0 0 0 0
J(Eo) = Nopin
0 0 0 0 0 Ye —pn 0 0 0 0 0
0 0 0 0 0 0 —(un+7v) O 0 0 0
0 0 0 0 0 0 0 —(un+7v) 0 0 0
0 0 0 Yd 0 0 Ye Y —un 0O 0
0 Dl _AuCh 0 0 0 0 0 —po O
Nh,uv N}éﬁ;
0 v _ vy 0 0 0 0 0 0 —pu
L Nhﬂ/'u Nhﬂ/'u a -

Hereafter, we get the resulting characteristic polynomial Py(A) of matrix J(Ej)

Po(A) =(pun + N)* (1o + N (ve + pn + ) (va + pn + N (7 + s+ X) A+ (a4 70) (1 — Rae)]
[)‘2 + (n + po + V)X + pro (g + va) (1 — Rofﬂ.

It can be observed that the product

(n + N (o + X) (Ve + ptn + A (Ya + pn + A) (Y + g + A),

gives us negative eigenvalues for positive parameter values. Similarly, the factor A + (up +7.)(1 — Ro.) has
negative eigenvalues only if Rg. < 1. Meanwhile, by the Routh-Hurwitz criterion, the quadratic equation

N+ (i + o+ 7a)A + o (g +72) (1 — Roa”) = 0,

has roots of negative real part if the term fu,, (g + va)(1 — ROdz) > (, that happens only when Roq < 1.
Thus, if Roe, Roq < 1, then all eigenvalues of the characteristic polynomial Py(\) have negative real part.

We conclude that the disease-free equilibrium Ej is locally asymptotically stable if Ro., Roq < 1. Otherwise,

unstable. ]

3.2. COVID-19-only equilibrium

The COVID-19-only equilibrium is the steady-state solution of system (1) where only COVID-19 persists,
and no dengue-infected individuals and vectors. To calculate the equilibrium, we let the initial population in
the compartments I; = Ry = I4. = I, = I, = Rj = 0. This equilibrium is denoted as E7, in particular

ET = (S, 1a, R, Lge, 105 Re, 1og, I, By, Sy 1), Q)

crtedr fao
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where A
Sp=—"t_ I"=0 R:;=0, I, =0,
h Roofin d d d
I (Roec — 1) Nupin
¢ Be ’
R* _ (R()c - 1)Nh70 (6)
¢ Be ’
> =0, Ir=0, R;=0,
A
Sr=—" I:=0
o

Certainly, the equilibrium E7 exists if Ro. > 1. Furthermore, the stability of the equilibrium will be discussed
in the following theorem.

Theorem 3.3 (Stability of COVID-19-only Equilibrium). The equilibrium E is locally stable if

Roe>1 and Ry < min {z1, 22},

where
1

zZ1 =
! NpBeetto?(Va + pin)
(ROC/'I‘h + 'Yd)}ﬂc - AvCthvh,U*h:| )
Hh + Ve |: 2
2y = NpBepo™(Ya + ftn):
(F)/d + ,uh)%ﬂcNh [(ROC - 1),uh + 'Yd] /Lv2

(Rocttn +va) — (Ve + va + Mh)AvCthvh} .

|:/lth{ [(Roe + 1)pn + 27va] o + (va + pn)-

N

Otherwise, EY is unstable.

Proof: Customarily, the system’s Jacobian matrix evaluated at E; will result to the characteristic poly-
nomial P.(\), and is given by
Po(N) =(ptn 4+ A)? (o + A) (Ve + s + N (7 + s+ A) (Rockn + A)
(A + a1 A+ az) (A* + b1 A% + bod + b3),
where
a1 =pnRocs
az = (i + 7e) (Roe — 1),

by =Rocttn + 2774 + pin + o,
1

 Nu(Ye + pn) Bepto
— Ye¥a(Rod” = 2) Hiw + (va + pn) (Rockin + va) (ve + Mh))/jc — Ny CroConpin (e + pn) |
by = 1
Ni (Ve + pin) Betvo
—Ya(Roe + V)] 2 NuBe + (29 + 7a) ChohoCon b i, — {112 [(RocRoa” — Roe — 1)7e
— a) NivaBe + Mo¥eChoCon (Ya + Ye) Hon — Vv Napa Be(Roa® — 1))~

by [Nitta ({(Roc + Dz + [(~Rod® + Roc + 1)y + 2l

((NhROCﬂcﬂz - Avchvovh)ﬂ% - {[(,R’OCIR'OCZ2 - R0d2 - ROC)’YC

It can be observed that the equation

(4 2210 + XN (Ve + pn + M) (v + o+ A) (Roepun + A) = 0,

results to negative eigenvalues for any positive parameter values.
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Figure 2: Numerical simulations for Routh-Hurwitz of A\* 4- b1 A% 4 b\ + b3 at Roc > 1 & Roa® < min{z1, 22}

Moreover, by the Routh-Hurwitz criterion for the factor A\? + a3 A + ag has two eigenvalues with negative
real part, whenever a1, as > 0, and this will be true only if R, > 1. In addition, since b; is already positive,
and by the Routh-Hurwitz criterion for expression A + b1 A% + ba A + b3, negative eigenvalues are possible
if R0d2 < z to satisfy by > 0, and R0d2 < zo for bg > 0. To satisfy both coefficients by, by > 0, we take
the solution set of values for Ryq4, that is the minimum of either z;, zo which is the upper bound for R0d2.

Furthermore, we assume that the Routh-Hurtwitz inequality b1b2 > b3 is true such that this condition
has been supported numerically using Monte-Carlo simulation as illustrated in Figure 2. Hence, considering
all inequalities and conditions established, the COVID-19-only equilibrium E7 is stable, if Ro. > 1 and
R0d2 < min {zl, ZQ}. Otherwise, E7 is unstable. [ |

3.3. Dengue-only equilibrium

The dengue-only equilibrium is the steady-state solution of System (1) where only dengue persists among
the populations and there are no COVID-19-infected individuals. To calculate the equilibrium, we let the
initial population in the compartments I; = Ry = I4. = I, = Rj, = 0. This is denoted as E}*, and is given
by

B3 = (S5 13" Ry 1o 10" R g, I, RS, S5, 107), ®)
where
g _ Ny [Nk (va + n) o + ApChy|
Cho(Nnpintio + AoCop) 7
pe = Narttin (Rod” — 1)
Cho (N ptnprs + AyCop) ©
Ry = YaNZ 12 (Roa” — 1)

70}“’ (Nhﬂ“h/‘v + Avcvh) '
Ip=0, I;*=0, R=0, Ilj=0, I;*=0, R;"=0,
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Nu(va + pn) (Npinpro + Ay Cop)
Con [Nh (Ya + pn ) pto + Ahchv}
poNEpn (Ya + pn) (Roa® — 1)

Con [Nu(va + pn)po + ApCho|

Clearly, the equilibrium E3* exists if only Roq > 1.

sk
Syt =

)

sk
" =

Theorem 3.4 (Stability of Dengue-only Equilibrium). The equilibrium E3* is locally stable if
Roqg >1 and Ro. < z3,

where
1

= ApCho? (1, + e
O T BT P G (o i )
+ Cho(Ya + 1) {2NaRoa> i s + tin [YettoNa(Roa® + 1) (10)

+ A ConRod®] + AuConve} — p2BeNp(va + Nh)Q)-

z3

Otherwise, E5™ is unstable.

Proof: Customarily, the Jacobian matrix of System (1) evaluated at E5* will result to the characteristic
polynomial

Pa(N) =N+ 10) O+ o) A+ 96 + pn) X+ 72 + pn) A+ 5 + n)
(Co)\ —+ Cl) (do)\ =+ dl) (/\3 —+ 61)\2 —+ 62)\ —+ 63).

See Appendix | for the expressions of the coefficients ¢y, ¢1, dy, di, e1, ea, e3.
It can be observed that the product

A+ 1) 2N+ o) A+ e + r) A+ va + pn) A+ 7 + p1n),

gives negative eigenvalues for any positive parameter values. For ¢g, ¢; > 0, then factor (coA + ¢1) results to a
negative eigenvalue \ = _—Cl. In (doA + dy), we also have dy > 0 for positive parameter values. Furthermore,

o _ds
dy

by analytical calculation of the coefficient d; > 0, if R, < z3. Therefore, the resulting eigenvalue A =

is also negative.

Similarly, the coefficients e;, ey, es are positive if Rgq is greater than unity which supports one of the
conditions for E5* to exist. Furthermore, we assume the Routh-Hurwitch condition eje; —e3 > 0 to be true.
This condition has been supported numerically for Roqs > 1 using Monte-Carlo simulation as illustrated in
Figure 3. Thus, the expression A3 4 €122 4+ ea\ + e3 has all eigenvalues with negative real parts if Rog > 1.

This concludes that the dengue-only equilibrium FE3* is locally asymptotically stable if Roq > 1 and
Inequality (10) is satisfied. Otherwise, unstable. ]

3.4. COVID-19-dengue co-infection equilibrium

The COVID-19-dengue co-infection equilibrium is the steady-state solution of the system (1) where both
diseases exist and persist among the human and vector populations. Similarly, individuals may contract
these diseases concurrently. Since solving for this equilibrium point does not give analytical closed solution,
we resorted to parameterize the state variable I, along with the other parameters. Thus, the co-infection
equilibrium point, denoted as E3**, is given by

E;** _ (SZ**, ;**»R;**v ;:*71:**7RZ**;I:;*; ;**,RZ**,SZ**)

See Appendix 2 for the complete details of the equilibrium E3** for each state variable. The ordered

10-tuples of the equilibrium are expressed in I7;**.
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Figure 3: Numerical simulations for Routh-Hurwitz of A*> + e; A% + ea\ + e3 at Rog > 1.

dl,

Now, consider substituting E3** in

= 0, and simplify with respect to the state variable I;**, the
resulting equation is given below

no(L3™)° + ma(I57)* + na(I5™)% 4 ng(Iy™)% 4 naly™ +ns

mo(I;f**)s 4 ml(lzf**yx 4 mQ(I:**)S + m3(I{f**)2 + m4I;f** + ms -

See Appendix 3 for the coefficients of equation (11). This co-infection equilibrium does not have a closed

analytical solution; consequently, we cannot conduct the stability analysis using the customary method used in

the previous subsections. Instead, we will show the existence of the equilibrium. Thus, we have the following
theorem.

Theorem 3.5 (Existence of COVID-19-Dengue Co-infection Equilibrium). The COVID-19-dengue co-infection

equilibrium E3** exists if

an

0< I} <z4 and Ro.>1,

where

N,
== [\/4uh(uh +Ye)Roe + 72 — (2un + %)} : (12)
Qth

Proof: To show that the co-infection equilibrium point exists, we need to determine the threshold values

of the parameters together with equation (11) such that all state variables must be

koK koK >k 3k ok 3k k 3k kk koK koK kK >k 3k ok koK ok kK
Sh vId 7Rd s4de v te 7Rc 7ch vIac 7Rh aSv 7Iv >0

Z4

since both diseases exist and persist in this equilibrium.

Now, consider the state variable S;**, given as

(pn +ve)Np + Cop Iy
Be ’

kkk
St =

- c N . . .
Then, S;** is positive if I;** > M for positive-valued C,. Accordingly, it must be I** > 0

to satisfy the nonnegativity of the solutions in Theorem 2.3. This condition also applies to I;**, R%*™ > 0.
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Similarly, for I;*, we need to show that this is positive, that is,

YeCon [pn(ptn +7e) (Roe — V)NR® — (2ptn + o) Con i Npy — (I:%)2Cop %) 13

[ = >0, (13)
! Be(va + 1) (ConLy™ + Nugan) [(un +7e)Ni + L7 Con
The inequality (13) is true if we have the following values for I);**
—N
Lj** >0, I:** > °C h [\/4llh(,ufh + ’YC)ROC + '702 + 2pp + VC} , and
vh
(14
kK N
I < g |V (a7 Roe +71% — (2an +7¢)]
The intersection of the inequalities in (14) is shown by
0< I;™ < 5Cr {\/4/%(,% +Ye)Roc + e — (2un + %)] = 24,
v

and this will be true only if Ry, > 1. Denoting the right-hand side of the inequality as z4. Thus, in this case,
;7 > 0if
Roe>1, and 0< ;™ < z4. (15)
These conditions also apply to state variables I:**, RZ**, I*7*, I;** > 0. Moreover, we have R;** > 0,
since this co-infection state variable point is expressed in variables 17", I*7*, I>** > 0. Furthermore, S;;** >
0 if I;** > 0, that is, for Ro. > 0.
u

4. NUMERICAL SIMULATION

This section presents numerical simulations of COVID-19 and dengue co-infections using Eulers approx-
imation method, based on the parameter values outlined in Table 2. These simulations serve to validate
the analytical results obtained earlier and offer insight into how different parameter values influence dis-
ease dynamics. By analyzing the impact of these parameters, the simulations provide practical inputs for
policymakers seeking to develop strategies for disease containment and management of co-infections.

4.1. Model elasticity analysis

An elasticity analysis was conducted to assess how sensitive the basic reproduction number R is to
changes in various model parameters. This technique, adopted from [8] and [23], calculates the elasticity of
Ro with respect to a parameter p as

YRo = ORo p (16)
P 8]) Ro.
In practical terms, elasticity measures the percentage change in R resulting from a 1% change in the
parameter p. This analysis helps identify the parameters that most strongly influence disease transmission
and control. A positive elasticity value depicts a direct proportional relationship between these parameters.
Otherwise, when the index is negative, it describes an inverse relationship. Since Ry = max {Ro., Rod}, the
analysis is performed separately as shown in Figure 4.

Parameters with high absolute-valued elasticity indices are critical for disease intervention, as they have the
greatest influence on R. These parameters can be targeted for public health measures, such as vaccination
programs or vector control strategies which can significantly reduce the spread of COVID-19, dengue, or
their co-infection.

Model parameters Ay, 8. for COVID-19’s basic reproduction number R, as well as Ay, Ay, Chy, Chy
for dengue’s basic reproduction number R4, have positive elasticity indices. This indicates that increasing
these parameters will lead to an increase in disease spread. Conversely, parameters pp, Ve, Np for Roc,
and pp, tyvd, Np for Roq have negative elasticity indices, meaning that increasing these values can help
in reducing disease transmission. These findings highlight key targets for intervention, such as increasing
recovery rates or reducing transmission coefficients through public health interventions.
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Figure 4: Elasticity analysis of the basic reproduction number Ry.

4.2. Stability and existence plots of equilibrium

This subsection presents the stability and existence regions for the identified equilibrium points using a
phase diagram. The analysis uses varied values for the parameters 5. (COVID-19 transmission coefficient)
and C, (dengue transmission coefficient from vector-to-human). These parameters are chosen due to their
significant influence on disease transmission dynamics, as indicated by the elasticity analysis. The Monte
Carlo numerical simulation method is employed to generate the phase diagram and verify the analytical
results.

Figure 5 shows the six (6) distinct regions of the phase diagram and its equilibrium properties.

1

0.9

0.8

02 03 04 05 06 07 08 09

Be

Figure 5: Phase diagram of the stability of equilibrium points at 8. and Cyp.

I = Ej exists and is stable;

II = Ey exists and unstable, E7 exists and is stable;

111 = Ej exists and unstable, E5* exists and is stable;

1V = Ey, By exist and unstable, E5* exists and is stable;

V = Ey, E5* exist and unstable, E exists and is stable; and
VI = Ey, By, E5* exist and unstable, E3** exists.

4.3. Verification of analytical stability and existence of equilibrium points

Random fj. and C,, values were selected from different regions in the phase diagram (Figure 5) to verify
the stability and existence of equilibrium points. The numerical simulations confirm:
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(Simulation 1) (0.0322284, 0.0407441) shows a stable Disease-Free Equilibrium FE;

(Simulation 2) (0.591375, 0.0772269) shows a stable COVID-19-only Equilibrium E7;

(Simulation 3) (0.324883, 0.589024) shows a stable Dengue-only Equilibrium E3*; and

(Simulation 4) (0.546078, 0.277202) shows the existence of a stable Co-infection Equilibrium E3**.

These simulations highlight the conditions under which each equilibrium can be achieved and maintained,
providing insights into potential strategies for containing one or both diseases depending on the dominant
transmission dynamics. Thus, the existence of a stable equilibrium suggests that the disease dynamics between
COVID-19 and dengue will eventually settle into a predictable pattern which can inform long-term strategies
for disease management among decision and policy makers.

Consider the population initial values of N (0) = 500000, Sy, (0) = 492450, I,;(0) = 2000, I,;.(0) = 300,
R4(0) =0, 1.(0) = 5000, I.4(0) = 200, R.(0) = 0, I,(0) = 50, R,(0) = 0, N,(0) = 100000, S,(0) =
90000, and I,,(0) = 10000 and selected j., C,, values. The graphical results (see Figures 6 to 9), supported
by the tabular values (see Tables 3 to 6), show the convergence of the simulation at ¢ = 5000 days to their
respective equilibrium points which are computed analytically.
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Figure 6: (Simulation 1) Disease-free equilibrium is asymptotically stable. (a) all disease-infected human compartments
(zoomed). (b) vector compartments.

Table 3: (Simulation 1) Simulation value converges to Ej.

Variable Eo E7 ES” E;"* Simulation
Sh 500000 115470472 802134.86 1154704.72 499999.99
Iy 0 0 -12178.18  4.89 x10~4° 295 x10~4°
Ry 0 0 -289956.68  2.69 x10~ 43 0.004
T4 0 0 0 2,60 x10~45 1.67 x10~°2
1. 0 -26389.25 0 -26389.25 7.02 x10~8°
R. 0 -628315.47 0 -628315.47 0.002
I.q 0 0 0  -6.15 x10~%5 6.70 x10~°7
I, 0 0 0 221 x107% 346 x107138
Ry 0 0 0 213 x10743 0.0002
Sy 100000 100000 113866.92 100000 100000
I, 0 0 -113866.92 -1.45 x10~ 1! 3.78 x10~4°

4.4. (Simulation 5) Effect of transmission rate (5.) and recovery rate (7.) on COVID-19 infection,
dengue infection, and COVID-19-dengue co-infection

The simulation shown in Figure 10, with C,;, = 0.5 and 4 = 1/14, illustrates the impact of the COVID-
19 transmission rate (3.) and recovery rate (7.) on the duration and the spread of infection. This can be
observed during the onset of the disease in the first wave. Interventions such as improving the recovery rate
by reducing the recovery period from 21 to 10 days lead to a noticeable flattening of the epidemic curve
in subsequent waves, even as [, remains high. This demonstrates the effectiveness of timely interventions,
such as accelerated recovery through early diagnosis and treatment, in mitigating the severity of outbreaks.
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Figure 7: (Simulation 2) COVID-19-only equilibrium is asymptotically stable. (a) all disease-infected human
compartments (zoomed). (b) vector compartments.

Table 4: (Simulation 2) Numerical simulation value converges to F7.

Variable Eo E; E;* E;** Simulation
Sh 500000 62928.41 484829.12 62928.48 62928.49
Ig 0 0 611.49 0.06 0.06
Rg 0 0 14559.40 0.19 0.20
Igc 0 0 0 0.53 0.54
I. 0 17617.09 0 17616.98 17616.98
R, 0 419454.51 0 419438.88 419428.35
I.q 0 0 0 0.05 0.06
I, 0 0 0 0.04 0.04
Ry 0 0 0 14.78 25.28
S 100000 100000 99392.22 99999.41 99999.39
I, 0 0 607.78 0.59 0.61
10 x10* (a) 10}104 (b)
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Figure 8: (Simulation 3) Dengue-only equilibrium is asymptotically stable. (a) all disease-infected human compartments
(zoomed). (b) vector compartments.

Table 5: (Simulation 3) Numerical simulation value converges to F3™.

Variable Eo E7 ES” E;*F Simulation
Sh 500000 11454673 7402733 14111443 74027.33
I 0 0 17169.72 37595.66 17169.72
Ry 0 0 40880294  -404848.20 408802.82
Tge 0 0 0 -12121.43 239 x10~4°
I, 0 15536.50 0 -14825.51  1.33 x10~ 9t
R, 0 369916.76 0 -52261.58  7.51 x10~4°
I.q 0 0 0 52398.55  1.14 x10~2°
I, 0 0 0 -8304.51 122 x10~°!
R 0 0 0 761252.60 0.13
S, 100000 100000~ 85346.28 79697.64 85346.28
I, 0 0 14653.72 20302.36 14653.72
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Figure 9: (Simulation 4) COVID-19-dengue co-infection equilibrium is asymptotically stable. (a) all disease-infected
human compartments (zoomed). (b) vector compartments.

Table 6: (Simulation 4) Numerical simulation value converges to F3**.

Variable Eo ET ES* EZ™™  Simulation
Sh 500000 68148.30 153025.26 73457.12 73457.12
Ig 0 0 13985.55 4949.52 4949.52
Rg 0 0 332989.20 24178.40 24178.40
I 0 0 0 6730.15 6730.15
I. 0 17406.69 0 10641.35 10641.35
R, 0 414445.01 0 86393.64 86393.64
Ieq 0 0 0 3775.46 3775.46
I, 0 0 0 1601.84 1601.84
Rp, 0 0 0 288272.53 288272.53
Sy 100000 100000 87730.42 89541.81 89541.81
I, 0 0 12269.58 10458.19 10458.19

Moreover, as shown in [19], travel restrictions can lead to a significant decline in transmission rates, though
the risk of new outbreaks may persist in areas with similar transmission potential.

On the other hand, we can observe an inverse relationship between the number of COVID-19 and dengue
infections throughout the simulation. Whenever, (. increases, the magnitude of dengue cases significantly
declines during the first wave. This can be viewed as an inter-specific competition between the diseases. In
addition, the occurrence of the COVID-19-dengue co-infection depends on the prevalence of both diseases.
Whenever one of either disease dies out, the co-infection flattens its epidemiological curve.

4.5. (Simulation 6) Effect of transmission rate (C,;) and recovery rate (74) on COVID-19 infection,
dengue infection, and COVID-19-dengue co-infection

Figure 11 shows a simulation with 5. = 0.3 and 7, = 1/14, illustrating that dengue prevalence increases
significantly as the transmission rate C,;, (vector-to-human) rises. Reducing the transmission rate through
minimizing mosquito-human effective contact rates (i.e. protection against mosquito bites [10]) and vector
control measures (i.e. mosquito eradication programs), or by enhancing recovery rates (4) through improved
clinical management, can effectively shorten the duration of dengue outbreaks. Moreover, dengue vaccination
indirectly reduces C,, by lowering the number of infected individuals who can pass the virus to mosquitoes.
This highlights the importance of targeting vector control alongside medical interventions to reduce dengue
transmission. A similar inverse relation between COVID-19 and dengue was observed. Moreover, these case
simulations resulted to approach different equilibrium solutions depending on the varied parameter values. If
the prevalence of dengue is much greater than that of COVID-19, dengue will persist in the system, and vice
versa. Hence, decision-makers may implement policies for stakeholders a combination of interventions, such
as reducing disease transmission and improving recovery rates for both COVID-19 and dengue to mitigate
its co-infection.
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Figure 10: (Simulation 5) Effects of varying B. and -, values. (a) COVID-19 infection I, first wave. (b) COVID-19
infection I. succeeding outbreaks. (c) Dengue infection I4 first wave. (d) Dengue infection I4 succeeding outbreaks.
(e) COVID-19-dengue infection I, first wave. (f) COVID-19-dengue infection I, succeeding outbreaks.
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Figure 11: (Simulation 6) Effects of varying C,p and yq values. (a) COVID-19 infection I, first wave. (b) COVID-19
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5. CONCLUSION

This study developed an 11-compartmentalized model to explore the transmission dynamics of COVID-19
and dengue co-infection. The well-posedness of the model was verified, ensuring the existence and uniqueness
of its solutions based on continuity, local Lipschitz conditions, and invariance over a compact feasible region.
These findings provide a robust mathematical framework for understanding how the two diseases interact in
a population, offering valuable insights for shaping public health strategies aimed at managing co-infection
which would potentially lead to policy formulation.

The basic reproduction number (Rg) of the model was calculated using the NGM method. Four key
equilibrium points were identified: the disease-free, COVID-19-only, dengue-only, and COVID-19-dengue co-
infection equilibrium points. These equilibrium points provide critical insight into the conditions necessary
for eradicating or controlling each disease, serving as a guide for developing phase-specific interventions
during different stages of an epidemic or pandemic. Threshold values of the basic reproduction number
were calculated to establish the conditions for the existence and stability of the equilibrium points. While an
analytical solution for the co-infection equilibrium could not be derived, numerical simulations were employed
to verify stability and explore the dynamics under different parameter conditions, providing valuable insights
where analytical methods fall short.

An elasticity analysis was conducted to assess the sensitivity of the basic reproduction number () to
various model parameters, helping identify key factors influencing the spread of COVID-19 and dengue.
Parameters with high elasticity, such as 5. (COVID-19 transmission) and C,, (dengue vector-to-human
transmission), were used to construct a phase diagram via Monte Carlo simulations. These high-elasticity
parameters are prime candidates for targeted interventions, such as public health campaigns aimed at reducing
transmission rates or enhancing recovery through vaccination. The phase diagram depicts six distinct regions
that describe the stability and existence of equilibrium points. These regions described different stable
epidemiological scenarios whenever the parameter values were varied.

The numerical simulations provided valuable insights into the transmission dynamics of COVID-19 and
dengue, with practical implications for policy formulation. These findings will be communicated to health
authorities to inform the development of evidence-based policies aimed at controlling co-infections. Such
policies may include enhanced disease surveillance, targeted vaccination campaigns, and vector control
measures to mitigate the spread of both diseases, particularly in regions where co-infection poses a significant
public health threat.
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APPENDIX

A.1. Coefficient of the characteristics polynomial P;(\)
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A.2. COVID-19-dengue Co-infection Equilibrium Point
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A.3. Coefficients of COVID-19-dengue Co-infection /,, Rational Solution

The rational expression of I)** is expressed as
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