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Abstract

COVID-19 is an infectious disease primarily transmitted to individuals through direct contact with respi-
ratory droplets. The infection, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
continues to spread globally infecting around 776 million confirmed cases, including over 7 million deaths.
Meanwhile, dengue is a vector-borne disease caused by the Flaviviridae virus and is transmitted through
bites from female mosquitoes, primarily Aedes aegypti and Aedes albopictus. It is estimated that 390 million
dengue virus infections occur per year caused by four distinct virus serotypes–DENV-1, DENV-2, DENV-3,
and DENV-4. The COVID-19 pandemic has further strained public health systems, particularly in tropical and
subtropical regions where dengue is endemic. The overlapping presence of these infectious diseases heightens
the risk of co-infection, posing additional diagnostic and treatment challenges. Co-infection of COVID-19 and
dengue cases were already reported and confirmed in several countries. In this study, an 11-compartmentalized
deterministic mathematical model was developed to understand the transmission dynamics of COVID-19 and
dengue co-infection. This modeling approach was described by a system of ordinary differential equations
(ODEs), examining disease progression over time, offering insights into potential co-infection scenarios and
control strategies to help guide public health interventions. The well-posedness of the model was verified,
ensuring the existence and uniqueness of its solutions based on continuity, local Lipschitz conditions, and
invariance over a compact feasible region. The basic reproduction number (R0), a significant indicator of
disease transmission, was calculated using the Next Generation Method (NGM). Four equilibrium points were
identified: the disease-free, COVID-19-only, dengue-only, and COVID-19-dengue co-infection equilibrium
points. Threshold values of the basic reproduction number were calculated to establish the conditions for
the existence and stability of the equilibrium points. These equilibrium points and threshold values provide
critical insight into the conditions necessary for eradicating or controlling each disease, serving as a guide for
developing interventions during different stages of an epidemic or pandemic. Furthermore, a phase diagram
of two parameters sensitive to R0 (COVID-19 transmission βc and dengue vector-to-human transmission
Cvh) was established which presented six distinct regions of existence and stability states of the equilibrium
points. These regions described different stable epidemiological scenarios whenever the parameter values were
varied. Numerical simulations were conducted to verify the stability results and to analyze the effects of
varied parameter values on the model solution. The simulations illustrated the positive impacts of reducing
the recovery period on the spread of infections even with increasing transmission rates. This demonstrates the
effectiveness of timely interventions, such as accelerated recovery through early diagnosis and treatment, in
mitigating the severity of outbreaks. All the algebraic calculations, analysis, and numerical simulations were
conducted with the aid of MATLAB R2023b and Maple software.
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1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), first identified in Wuhan, China, in late 2019. The disease rapidly escalated into a global
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pandemic, declared by the World Health Organization (WHO) in March 2020, infecting around 776 million
confirmed cases resulting in over 7 million deaths [36]. COVID-19 spreads primarily through direct contact
with respiratory droplets when an infected person coughs, sneezes, speaks, or breathes [2], [33]. Infected
individuals may experience mild to moderate illness, presenting symptoms such as fever, cough, tiredness,
and loss of taste or smell. However, individuals with comorbidities or the elderly are more likely to develop
severe symptoms such as pneumonia, organ failure, and, in some cases, death [34], [35].

Dengue, a vector-borne disease caused by the Flaviviridae virus, is prevalent in tropical and subtropical
regions. It is transmitted through bites from female mosquitoes, primarily Aedes aegypti and Aedes albopictus,
and presents symptoms such as high fever, severe headache, muscle and joint pains, vomiting, and rash.
Human-to-mosquito transmissions occur when mosquitoes feed on individuals infected with dengue. It is esti-
mated that 390 million dengue virus infections occur per year caused by four distinct virus serotypes–DENV-1,
DENV-2, DENV-3, and DENV-4 [3], [37]. Reinfection with a different serotype increases the risk of severe
dengue, including dengue hemorrhagic fever. While recovery from a particular serotype provides lifelong
immunity to that serotype, reinfection with a different serotype poses a higher risk of developing severe
disease, such as dengue hemorrhagic fever (DHF). This challenge, compounded by the lack of a specific cure
for dengue, complicates public health management in dengue-endemic regions where vaccination strategies
and vector control are key preventive measures [3].

The COVID-19 pandemic has further strained public health systems, particularly in tropical and subtropical
regions where dengue is endemic. The overlapping presence of these infectious diseases heightens the risk
of co-infection, posing additional diagnostic and treatment challenges, as seen in regions such as Southeast
Asia and Latin America.

Cases of COVID-19 and dengue co-infection have been reported in countries such as Brazil [6], India [16],
Thailand [25], Pakistan [27], and the Philippines [28]. In many instances, patients initially diagnosed with
COVID-19 exhibited low platelet count (thrombocytopenia), low white blood cell count (leukopenia), and liver
enzymes were elevated. This is later attributed to concurrent dengue infection. Another case in Thailand [18]
where a COVID-19 patient presented with skin rash, a common clinical finding in dengue. In Singapore, two
patients were diagnosed with false-positive dengue from rapid serological tests, then subsequently tested
positive for COVID-19 [38]. These case reports indicate additional challenges to healthcare systems as
COVID-19 and dengue are difficult to distinguish due to overlapping clinical and laboratory features, such
as fever, headache, muscle pain or fatigue, nausea, or vomiting [9]. It was also depicted that the co-infection
had worse outcomes relative to mortality rate, intensive care unit admission, and prolonged hospital stay [12].

In light of these challenges, deterministic mathematical modeling provides a critical tool for understanding
the transmission dynamics of both COVID-19 and dengue, helping guide public health interventions. Using
compartmental models described by ordinary differential equations (ODEs), this approach examines disease
progression over time, offering insights into potential co-infection scenarios and control strategies. These
compartments represent the partition of the population relative to the epidemiological state. Such models
were used in forecasting and exploring case scenarios which are essential in formulating policies on optimal
strategies for controlling and containing the diseases.

Mathematicians have developed models to study the interactions between different diseases, including co-
infections such as tuberculosis-HIV/AIDS [7] and pneumonia-HIV/AIDS [31]. These models have informed
effective intervention strategies in resource-limited settings, demonstrating their importance in managing
complex health challenges. In the paper of Bakare et al. [5], they formulated a malaria-schistosomiasis
co-infection, a parasitic and vector-borne disease model. Furthermore, some studies introduced vector-to-
vector-borne disease models such as the malaria-lymphatic filariasis [30], dengue-chikungunya [24], and
leptospirosis-dengue [1].

During the COVID-19 pandemic, many mathematical models have been developed to project the trajectories
of the outbreak and produce optimal interventions to contain the disease. Since different diseases are already
prevalent before the pandemic, co-infection with COVID-19 is also present. Several papers were published
describing the dynamics of the co-infection of other diseases with COVID-19. The work of Artiono et al. [4]
studied the co-infection modeling of COVID-19 and rubella with vaccination treatments for both diseases.
Mekonen et al. [22] constructed a COVID-19 and tuberculosis co-infection model. In the study of Hezam et
al. [14], optimal control for COVID-19 and cholera co-infection model was analyzed. Similarly, COVID-19-
Malaria with vaccination was studied by Shah et al. [29].

Furthermore, a co-endemic model was established by Fahlena et al. [13]. They studied the dynamics
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of the simultaneous prevalence of COVID-19 and dengue with bifurcation analysis. The model comprises
ten compartments for the human population: susceptible individuals, dengue-infected, COVID-19-infected,
dengue-infected with COVID-19 immunity, recovered from dengue, recovered from COVID-19, COVID-19-
infected with dengue immunity, recovered from both dengue and COVID-19, and two vector compartments:
susceptible vectors and dengue-infected vectors. Moreover, there are already existing studies related to
the co-infection of COVID-19 and dengue. Hye et al. [15] formulated a seven-compartmental model with
optimal control and data-driven analysis in Bangladesh. The model consists of susceptible, dengue-infected,
COVID-19-infected, dengue-COVID-19 co-infected, and recovered from disease human compartments, and
incorporated disease reinfection. Meanwhile, Omame et al. [26] developed an eight-compartmental co-
infection model with optimal control and cost-effectiveness analysis in Brazil.

In this study, we modify and integrate the models formulated in [13], [15] into a new COVID-19-dengue
co-infection model. This paper will discuss the model formulation and its well-posedness in Section 2. Section
3 will cover the calculation of equilibrium point, reproduction numbers, and stability analysis. In Section 4,
numerical simulations are presented. Lastly, Section 5 establishes the conclusions.

2. MODEL FORMULATION

This study builds upon the model developed by Fahlena et al. [13] which examines the co-endemic dynamics
of COVID-19 and dengue. The model is further expanded by incorporating the co-infection compartment and
recovery rates established by Hye et al. [15], allowing for a more comprehensive analysis of the interactions
between the two diseases. The compartmental diagram of the co-infection model is illustrated in Figure 1,
with state variables described in Table 1. The model assumes a homogeneous or well-mixed population where
host and vector population growth follow arithmetic recruitment rates. For simplicity, the model considers
only one dengue serotype (transmitted by Aedes aegypti) and one COVID-19 variant, acknowledging that
this represents a limited case of the full disease dynamics. Individuals who recover from either COVID-
19 or dengue acquire lifetime immunity to the respective disease. The model assumes that neither disease
is transmitted by birth. Furthermore, co-infected individuals in compartment Ix are quarantined and closely
monitored, preventing them from transmitting either disease. This assumption aligns with real-world isolation
practices for managing severe co-infections, ensuring that both diseases are contained during the recovery
period.
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Figure 1: COVID-19 and dengue co-infection model diagram.
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Table 1: Model state variable description.

State Variables Description
Sh(t) Number of susceptible individuals at time t
Sv(t) Number of susceptible vectors at time t
Ic(t) Number of COVID-19-infected individuals at time t
Id(t) Number of dengue-infected individuals at time t
Iv(t) Number of dengue-infected vectors at time t
Icd(t) Number of COVID-19-infected individuals with dengue immunity at time t
Idc(t) Number of dengue-infected individuals with COVID-19 immunity at time t
Ix(t) Number of COVID-19-dengue co-infection individuals at time t
Rc(t) Number of COVID-19 recovered individuals at time t
Rd(t) Number of dengue recovered individuals at time t
Rh(t) Number of individuals recovered in both COVID-19 and dengue at time t

Table 2: Model parameter description.

Parameter Description Value Unit Reference
Λh Human recruitment rate 1500 Individual Assumed
Λv Vectors recruitment rate 10000 Mosquito Assumed
βc COVID-19 transmission coefficient [0, 1] day−1 [13]
Cvh Dengue transmission coefficient from vector to human [0, 1] day−1 [13]
Cvh Dengue transmission coefficient from human to vector 0.5 day−1 Assumed
µh Human mortality rate 0.003 day−1 Assumed
µv Vector mortality rate 0.01 day−1 [26]
γc Recovery rate from COVID-19 1/14 day−1 [13]
γd Recovery rate from Dengue 1/14 day−1 [26]

Nh(0) Human population (initial value) 500000 Individual Assumed

dSh
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= Λh −
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(1)



MODELING THE CO-INFECTION DYNAMICS OF COVID-19 AND DENGUE 181

The growth equations for the human and vector populations are given by dNh/dt = Λh − µhNh and
dNv/dt = Λv−µvNv , respectively. These equations assume constant recruitment rates Λh and Λv , reflecting
stable birth rates and neglecting the impact of other demographic factors such as migration or environmental
changes. The system of 11 nonlinear ODEs (1) captures the net rate of change for each epidemiological
compartment.

The well-posedness of the model ensures that the system of ODEs has a unique solution for any valid
initial condition. This property is crucial for verifying both the mathematical consistency and the biological
relevance of the model. The well-posedness guarantees that small changes in initial conditions do not lead
to chaotic outcomes, ensuring the robustness of the model’s predictions. The theorem from [17] is applied
to demonstrate the well-posedness of the COVID-19-dengue co-infection model.

Theorem 2.1. [17] Let f(t, x) be piecewise continuous in t and locally Lipschitz in x for all t ≥ t0 and
all x in domain D ⊂ Rn. Let W be a compact subset of D, x0 ∈ W , and suppose it is known that every
solution of

ẋ = f(t, x), x(t0) = x0.

lies in W . Then, there is a unique solution that is defined for all t ≥ t0.

The succeeding theorems for the feasibility region and nonnegativity of solutions follow the proof structures
in [20], [21].

Theorem 2.2 (Feasible Region). For all t ≥ 0, the compact feasible region of the system (1) is the space

Φ = Φh × Φv,

where

Φh =

{
(Sh, Id, Rd, Idc, Ic, Rc, Icd, Rh, Ix)

∣∣∣ 0 ≤ Nh ≤ max

{
∆h,

Λh

µh
+ ϵh

}}
,

Φv =

{
(Sh, Iv)

∣∣∣ 0 ≤ Nv ≤ max

{
∆v,

Λv

µv
+ ϵv

}}
,

∆h = max
{
Nh(t)

∣∣ 0 ≤ t ≤ ∞
}
, ∆v = max

{
Nv(t)

∣∣ 0 ≤ t ≤ ∞
}
.

Proof: From system (1),

dNh

dt
= Λh − µhNh,

dNv

dt
= Λv − µvNv,

are linear ODEs, and the following are its respective solutions.

Nh(t) =
Nh(0)

Λh

µh

eµht
+

Λh

µh
,

Nv(t) =
Nv(0)

Λv

µv

eµvt
+

Λv

µv
.

Thus, the lim
t→∞

Nh(t) =
Λh

µh
. Moreover, for some sufficiently small ϵh, there exists some sufficiently large

T > 0 such that the limit supremum Nh(t) =
Λh

µh
+ϵh for all t > T . Furthermore, we have ∆h = sup

0≤t≤∞
Nh(t)

such that
Nh ≤ max

{
∆h,

Λh

µh
+ ϵh

}
.

for all t ≥ 0. Similar argument applies to Nv .

Theorem 2.3 (Nonnegativity of the Solutions). Each solution of system (1) with initial condition in the
hyper-octant R11

0,+, must also be in R11
0,+.
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Proof: From the first equation in (1),

dSh

dt
= Λh − (CvhIv + βcIc)

Sh

Nh
− µhSh,

≥ − (CvhIv + βcIc)
Sh

Nh
− µhSh,

since the recruitment rate Λh ≥ 0.

Now, let u(t) = −
(
CvhIv + βcIc

Nh
− µh

)
, the inequality above becomes

dSh

dt
≥ u(t)Sh. (2)

Define g(t) = exp

(∫ t

0

u(r)dr

)
. Observe that g(t) > 0 for all values of t. Taking the derivative of g with

respect to time t, we have
d

dt
g(t) = exp

(∫ t

0

u(r)dr

)
d

dt

∫ t

0

u(r)dr.

By the Fundamental Theorem of Calculus, this differential equation becomes

d

dt
g(t) = g(t) u(t).

As we compute the derivative of
Sh(t)

g(t)
, the inequality (2) is utilized which leads to

d

dt

(
Sh(t)

g(t)

)
=

g(t)
d

dt
Sh(t)− Sh(t)

d

dt
g(t)

[g(t)]2

≥ g(t) u(t)Sh(t)− Sh(t) g(t)u(t)

[g(t)]2
= 0.

This implies that
Sh(t)

g(t)
is nondecreasing for any values of t.

Now,
Sh(t)

g(t)
≥ Sh(0)

g(0)
= Sh(0),

which simplifies to
Sh(t) ≥ Sh(0) g(t) ≥ 0.

Hence, Sh(t) is nonnegative for all t ≥ 0.
Similarly, from equation 2 in (1), we deduce this to

dId
dt

= Cvh
Iv
Nh

Sh − βcIc
Id
Nh

− (γd + µh)Id

≥ −βcIc
Id
Nh

− (γd + µh)Id.

The rate Cvh
Iv
Nh

Sh ≥ 0 since this term is the number of individuals coming from susceptible Sh

compartment into the dengue-infected Id compartment, furthermore, this quantity will not be negative as
infected can not transfer back directly to the susceptible compartment. Following from the same argument
above, we have

Id ≥ Id(0) exp

[
−
∫ t

0

(
βcIc
Nh

+ γd + µh

)
dr

]
≥ 0.
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The same argument applies to other state variables for all t ≥ 0. Hence, all solutions of the system of
ODEs are nonnegative.

Theorem 2.4 (Well-posedness of the model system). For each initial condition

x(0) = (Sh(0), Id(0), Rd(0), Idc(0), Ic(0), Rc(0), Icd(0), Ix(0), Rh(0), Sv(0), Iv(0)) ∈ Φ,

the solution to the model system (1) in Φ exists and is unique.

Proof:
(1) Continuity. It can be observed that the model system is continuous since each ODE is a polynomial

function of time t.
(2) Local Lipschitz condition. Instead of solving each

[
∂f/∂x

]
(t, x) for all state variables, we can present

this through the Jacobian matrix J(x) of the system. The entries of this matrix are all linear relative to its
respective state variable with constant positive parameters which include Nh and Nv .

(3) Invariance over a compact feasible region. Shown in Theorem 2.2, the compact feasible region of
the model was defined as Φ. Furthermore, Theorem 2.3 proved the nonnegativity invariance of each model
compartment. This invariance property will then be carried in the region Φ as Φ ⊂ R11

0,+.
Hence, by Theorem 2.1, the model system (1) is well-posed.

3. MODEL ANALYSIS

This section outlines the calculation of the four equilibrium points of system (1) which correspond to
key states in the co-infection dynamics: the disease-free state, COVID-19-only state, dengue-only state, and
co-infection state. The existence and local stability of these points are analyzed, with the assumption that
the total populations Nh and Nv are constant. It follows that the parameters Λh,Λv represent µhNh, µvNv ,
respectively. These analyses are conducted with the aid of MATLAB R2023b and Maple software. Addi-
tionally, the basic reproduction number R0, a quantity that represents the average number of new infections
caused by a single infectious individual in a completely susceptible population, is derived using the Next
Generation Matrix (NGM) method developed by Diekmann et al. [11].

3.1. Disease-free equilibrium and basic reproduction number

The disease-free equilibrium represents the steady-state solution of system (1) where neither COVID-19
nor dengue persists in human or vector populations. This equilibrium is a critical baseline in epidemiological
models, as it indicates the conditions under which both diseases are eradicated from the population, and no
further transmission occurs.

To calculate the equilibrium, we set all ODEs in system (1) to zero and assume that there are no infected
individuals (Id = Rd = Idc = Ic = Rc = Icd = Iv = Ix = Rh = 0). By solving for the state variables, we
determine the steady-state solution where no new infections occur, representing the complete eradication of
both diseases. Denoted as E0, the resulting equilibrium is given by

E0 =
(
S0
h, I

0
d , R

0
d, I

0
dc, I

0
c , R

0
c , I

0
cd, I

0
x, R

0
h, S

0
v , I

0
v

)
=

(
Λh

µh
, 0, 0, 0, 0, 0, 0, 0, 0,

Λv

µv
, 0

)
.

(3)

The equilibrium E0 exists for any positive parameter values. Using the Next Generation Matrix (NGM)
method, we calculate the basic reproduction number R0, a crucial indicator of disease transmission. The
value of R0 serves as a key threshold: if R0 < 1, the disease will die out, while if R0 > 1, it will continue
to spread [32].

Theorem 3.1 (Basic Reproduction Number). The basic reproduction number R0 of system (1) is calculated
as

R0 = max {R0c,R0d} ,
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where R0c represents the reproduction number for COVID-19, and R0d represents the reproduction number
for dengue. Specifically,

R0c =
Λhβc

Nhµh(µh + γc)
, describes the spread of COVID-19; and

R0d =
1

Nhµv

√
ΛhΛvCvhChv

µh(µh + γd)
, describes dengue dynamics, including its vector-borne nature.

(4)

Proof: By the NGM method, we only need the infected compartments Id, Ic, Icd, Idc, Ix, Iv to find the
transfer matrix V and incidence matrix F. These matrices have been obtained from the Jacobian matrix of
the said infected compartments, these are as follows

F =



−Icβc

Nh
0 −Idβc

Nh
0 0

CvhSh

Nh

0 0 0 0 0
CvhRc

Nh

0 0
Shβc − CvhIv

Nh
0 0 −CvhIc

Nh

0 0
Rdβc

Nh
0 0 0

Icβc

Nh
0

CvhIv + Idβc

Nh
0 0

CvhIc
Nh

ChvSv

Nh

ChvSv

Nh
0 0 0 0


,

V =


µh + γd 0 0 0 0 0

0 µh + γd 0 0 0 0
0 0 µh + γc 0 0 0
0 0 0 µh + γc 0 0
0 0 0 0 µh + γ 0
0 0 0 0 0 µv

 .

Then, matrix F has been evaluated at equilibrium E0

F(E0) =



0 0 0 0 0
ΛhCvh

Nhµh
0 0 0 0 0 0

0 0
Λhβc

Nhµh
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

ΛvChv

Nhµv

ΛvChv

Nhµv
0 0 0 0


.

Now, the NGM has been calculated as

NGM = F(E0) V
−1 =



0 0 0 0 0
ΛhCvh

Nhµhµv
0 0 0 0 0 0

0 0
Λhβc

Nhµh(µh + γc)
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

ΛvChv

Nhµv(µh + γd)

ΛvChv

Nhµv(µh + γd)
0 0 0 0


.
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Solving for the spectral radius of the NGM, that is the eigenvalues of the matrix, this results into two
positive eigenvalues R0c and R0d as shown in (4). The eigenvalue R0c is expressed in COVID-19 parameters,
while R0d in dengue parameters. Hence, these eigenvalues are denoted as the basic reproduction number for
COVID-19 and dengue, respectively. Moreover, one can be larger than the other, for some parameter values,
thus, we take the maximum.

Theorem 3.2 (Stability of Disease-free Equilibrium). The Disease-free Equilibrium E0 is locally asymptot-
ically stable if R0 < 1. Otherwise, E0 is unstable.

Proof: Using the linearization method, the Jacobian matrix of system (1) evaluated at E0 is given as

J(E0) =



−µh 0 0 0 − Λhβc

Nhµh
0 0 0 0 0 −ΛhCvh

Nhµh

0 −(µh + γd) 0 0 0 0 0 0 0 0
ΛhCvh

Nhµh

0 γd −µh 0 0 0 0 0 0 0 0
0 0 0 −(µh + γd) 0 0 0 0 0 0 0

0 0 0 0
ΛhCvh

Nhµh
− (µh + γc) 0 0 0 0 0 0

0 0 0 0 γc −µh 0 0 0 0 0
0 0 0 0 0 0 −(µh + γc) 0 0 0 0
0 0 0 0 0 0 0 −(µh + γ) 0 0 0
0 0 0 γd 0 0 γc γ −µh 0 0

0 −ΛvChv

Nhµv
0 −ΛvChv

Nhµv
0 0 0 0 0 −µv 0

0
ΛvChv

Nhµv
0 −ΛvChv

Nhµv
0 0 0 0 0 0 −µv



.

Hereafter, we get the resulting characteristic polynomial P0(λ) of matrix J(E0)

P0(λ) =(µh + λ)4(µv + λ)(γc + µh + λ)(γd + µh + λ)(γ + µh + λ)
[
λ+ (µh + γc)(1−R0c)

][
λ2 + (µh + µv + γd)λ+ µv(µd + γd)(1−R0d

2)
]
.

It can be observed that the product

(µh + λ)4(µv + λ)(γc + µh + λ)(γd + µh + λ)(γ + µh + λ),

gives us negative eigenvalues for positive parameter values. Similarly, the factor λ+(µh + γc)(1−R0c) has
negative eigenvalues only if R0c < 1. Meanwhile, by the Routh-Hurwitz criterion, the quadratic equation

λ2 + (µh + µv + γd)λ+ µv(µd + γd)(1−R0d
2) = 0,

has roots of negative real part if the term µv(µd + γd)(1−R0d
2) > 0, that happens only when R0d < 1.

Thus, if R0c,R0d < 1, then all eigenvalues of the characteristic polynomial P0(λ) have negative real part.
We conclude that the disease-free equilibrium E0 is locally asymptotically stable if R0c,R0d < 1. Otherwise,
unstable.

3.2. COVID-19-only equilibrium

The COVID-19-only equilibrium is the steady-state solution of system (1) where only COVID-19 persists,
and no dengue-infected individuals and vectors. To calculate the equilibrium, we let the initial population in
the compartments Id = Rd = Idc = Iv = Ix = Rh = 0. This equilibrium is denoted as E∗

1 , in particular

E∗
1 = (S∗

h, I
∗
d , R

∗
d, I

∗
dc, I

∗
c , R

∗
c , I

∗
cd, I

∗
x , R

∗
h, S

∗
v , I

∗
v ), (5)
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where
S∗
h =

Λh

R0cµh
, I∗d = 0, R∗

d = 0, I∗dc = 0,

I∗c =
(R0c − 1)Nhµh

βc
,

R∗
c =

(R0c − 1)Nhγc
βc

,

I∗cd =0, I∗x = 0, R∗
h = 0,

S∗
v =

Λv

µv
, I∗v = 0.

(6)

Certainly, the equilibrium E∗
1 exists if R0c > 1. Furthermore, the stability of the equilibrium will be discussed

in the following theorem.

Theorem 3.3 (Stability of COVID-19-only Equilibrium). The equilibrium E∗
1 is locally stable if

R0c > 1 and R0d
2 < min {z1, z2} ,

where
z1 =

1

Nhβcγcµv
2(γd + µh)

[
µvNh

{[
(R0c + 1)µh + 2γd

]
µv + (γd + µh)·

(R0cµh + γd)
}
βc − ΛvChvCvhµh

]
,

z2 =
µh + γc

(γd + µh)γcβcNh

[
(R0c − 1)µh + γd

]
µv

2

[
Nhβcµv

2(γd + µh)·

(R0cµh + γd)− µh(γc + γd + µh)ΛvChvCvh

]
.

(7)

Otherwise, E∗
1 is unstable.

Proof: Customarily, the system’s Jacobian matrix evaluated at E∗
1 will result to the characteristic poly-

nomial Pc(λ), and is given by

Pc(λ) =(µh + λ)2(µv + λ)(γc + µh + λ)(γ + µh + λ)
(
R0cµh + λ

)(
λ2 + a1λ+ a2

)(
λ3 + b1λ

2 + b2λ+ b3
)
,

where

a1 =µhR0c,

a2 =µh(µh + γc)
(
R0c − 1

)
,

b1 =R0cµh + 2γd + µh + µv,

b2 =
1

Nh(γc + µh)βcµv

[
Nhµv

({
(R0c + 1)µ2

h +
[
(−R0d

2 +R0c + 1)γc + 2γd
]
µh

− γcγd(R0d
2 − 2)

}
µv + (γd + µh)(R0cµh + γd)(γc + µh)

)
βc − ΛvChvCvhµh(γc + µh)

]
,

b3 =
1

Nh(γc + µh)βcµv

(
(NhR0cβcµ

2
v − ΛvChvCvh)µ

3
h −

{[
(R0cR0d

2 −R0d
2 −R0c)γc

− γd(R0c + 1)
]
µ2
vNhβc + (2γc + γd)ChvΛvCvh

}
µ2
h −

{
µ2
v

[
(R0cR0d

2 −R0c − 1)γc

− γd
]
Nhγdβc + ΛvγcChvCvh(γd + γc)

}
µh − γcγ

2
dNhµ

2
vβc(R0d

2 − 1)
)
.

It can be observed that the equation

(µh + λ)2(µv + λ)(γc + µh + λ)(γ + µh + λ)
(
R0cµh + λ

)
= 0,

results to negative eigenvalues for any positive parameter values.
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Figure 2: Numerical simulations for Routh-Hurwitz of λ3 + b1λ
2 + b2λ+ b3 at R0c > 1 & R0d

2 < min{z1, z2}.

Moreover, by the Routh-Hurwitz criterion for the factor λ2 + a1λ+ a2 has two eigenvalues with negative
real part, whenever a1, a2 > 0, and this will be true only if R0c > 1. In addition, since b1 is already positive,
and by the Routh-Hurwitz criterion for expression λ3 + b1λ

2 + b2λ + b3, negative eigenvalues are possible
if R0d

2 < z1 to satisfy b2 > 0, and R0d
2 < z2 for b3 > 0. To satisfy both coefficients b1, b2 > 0, we take

the solution set of values for R0d, that is the minimum of either z1, z2 which is the upper bound for R0d
2.

Furthermore, we assume that the Routh-Hurtwitz inequality b1b2 > b3 is true such that this condition
has been supported numerically using Monte-Carlo simulation as illustrated in Figure 2. Hence, considering
all inequalities and conditions established, the COVID-19-only equilibrium E∗

1 is stable, if R0c > 1 and
R0d

2 < min
{
z1, z2

}
. Otherwise, E∗

1 is unstable.

3.3. Dengue-only equilibrium

The dengue-only equilibrium is the steady-state solution of System (1) where only dengue persists among
the populations and there are no COVID-19-infected individuals. To calculate the equilibrium, we let the
initial population in the compartments Id = Rd = Idc = Ix = Rh = 0. This is denoted as E∗∗

2 , and is given
by

E∗∗
2 = (S∗∗

h , I∗∗d , R∗∗
d , I∗∗dc , I

∗∗
c , R∗∗

c , I∗∗cd , I
∗∗
x , R∗∗

h , S∗∗
v , I∗∗v ), (8)

where

S∗∗
h =

µvNh

[
Nh(γd + µh)µv + ΛhChv

]
Chv(Nhµhµv + ΛvCvh)

,

I∗∗d =
N2

hµ
2
vµh

(
R0d

2 − 1
)

Chv

(
Nhµhµv + ΛvCvh

) ,
R∗∗

d =
γdN

2
hµ

2
v

(
R0d

2 − 1
)

Chv

(
Nhµhµv + ΛvCvh

) ,
I∗∗dc =0, I∗∗c = 0, R∗∗

c = 0, I∗∗cd = 0, I∗∗x = 0, R∗∗
h = 0,

(9)
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S∗∗
v =

Nh(γd + µh)
(
Nhµhµv + ΛvCvh

)
Cvh

[
Nh(γd + µh)µv + ΛhChv

] ,

I∗∗v =
µvN

2
hµh(γd + µh)

(
R0d

2 − 1
)

Cvh

[
Nh(γd + µh)µv + ΛhChv

] .
Clearly, the equilibrium E∗∗

2 exists if only R0d > 1.

Theorem 3.4 (Stability of Dengue-only Equilibrium). The equilibrium E∗∗
2 is locally stable if

R0d > 1 and R0c < z3,

where

z3 =
1

µhChv(µh + γc) [2Nh(γd + µh)µv + ΛhChv]

(
µhΛhChv

2(µh + γc)

+ Chv(γd + µh)
{
2NhR0d

2µ2
hµv + µh

[
γcµvNh(R0d

2 + 1)

+ ΛvCvhR0d
2
]
+ ΛvCvhγc

}
− µ2

vβcNh(γd + µh)
2
)
.

(10)

Otherwise, E∗∗
2 is unstable.

Proof: Customarily, the Jacobian matrix of System (1) evaluated at E∗∗
2 will result to the characteristic

polynomial

Pd(λ) =(λ+ µh)
2(λ+ µv)(λ+ γc + µh)(λ+ γd + µh)(λ+ γ + µh)(

c0λ+ c1
)(
d0λ+ d1

)(
λ3 + e1λ

2 + e2λ+ e3
)
.

See Appendix 1 for the expressions of the coefficients c0, c1, d0, d1, e1, e2, e3.
It can be observed that the product

(λ+ µh)
2(λ+ µv)(λ+ γc + µh)(λ+ γd + µh)(λ+ γ + µh),

gives negative eigenvalues for any positive parameter values. For c0, c1 > 0, then factor (c0λ+ c1) results to a

negative eigenvalue λ =
−c1
c0

. In (d0λ+ d1), we also have d0 > 0 for positive parameter values. Furthermore,

by analytical calculation of the coefficient d1 > 0, if R0c < z3. Therefore, the resulting eigenvalue λ =
−d1
d0

is also negative.
Similarly, the coefficients e1, e2, e3 are positive if R0d is greater than unity which supports one of the

conditions for E∗∗
2 to exist. Furthermore, we assume the Routh-Hurwitch condition e1e2− e3 > 0 to be true.

This condition has been supported numerically for R0d > 1 using Monte-Carlo simulation as illustrated in
Figure 3. Thus, the expression λ3 + e1λ

2 + e2λ+ e3 has all eigenvalues with negative real parts if R0d > 1.
This concludes that the dengue-only equilibrium E∗∗

2 is locally asymptotically stable if R0d > 1 and
Inequality (10) is satisfied. Otherwise, unstable.

3.4. COVID-19-dengue co-infection equilibrium

The COVID-19-dengue co-infection equilibrium is the steady-state solution of the system (1) where both
diseases exist and persist among the human and vector populations. Similarly, individuals may contract
these diseases concurrently. Since solving for this equilibrium point does not give analytical closed solution,
we resorted to parameterize the state variable Iv along with the other parameters. Thus, the co-infection
equilibrium point, denoted as E∗∗∗

3 , is given by

E∗∗∗
3 = (S∗∗∗

h , I∗∗∗d , R∗∗∗
d , I∗∗∗dc , I∗∗∗c , R∗∗∗

c , I∗∗∗cd , I∗∗∗x , R∗∗∗
h , S∗∗∗

v ).

See Appendix 2 for the complete details of the equilibrium E∗∗∗
3 for each state variable. The ordered

10-tuples of the equilibrium are expressed in I∗∗∗v .
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Figure 3: Numerical simulations for Routh-Hurwitz of λ3 + e1λ
2 + e2λ+ e3 at R0d > 1.

Now, consider substituting E∗∗∗
3 in

dIv
dt

= 0, and simplify with respect to the state variable I∗∗∗v , the
resulting equation is given below

n0(I
∗∗∗
v )5 + n1(I

∗∗∗
v )4 + n2(I

∗∗∗
v )3 + n3(I

∗∗∗
v )2 + n4I

∗∗∗
v + n5

m0(I∗∗∗v )5 +m1(I∗∗∗v )4 +m2(I∗∗∗v )3 +m3(I∗∗∗v )2 +m4I∗∗∗v +m5
= 0. (11)

See Appendix 3 for the coefficients of equation (11). This co-infection equilibrium does not have a closed
analytical solution; consequently, we cannot conduct the stability analysis using the customary method used in
the previous subsections. Instead, we will show the existence of the equilibrium. Thus, we have the following
theorem.

Theorem 3.5 (Existence of COVID-19-Dengue Co-infection Equilibrium). The COVID-19-dengue co-infection
equilibrium E∗∗∗

3 exists if
0 < I∗∗∗v < z4 and R0c > 1,

where
z4 =

Nh

2Cvh

[√
4µh(µh + γc)R0c + γ2

c − (2µh + γc)
]
. (12)

Proof: To show that the co-infection equilibrium point exists, we need to determine the threshold values
of the parameters together with equation (11) such that all state variables must be

S∗∗∗
h , I∗∗∗d , R∗∗∗

d , I∗∗∗dc , I∗∗∗c , R∗∗∗
c , I∗∗∗cd , I∗∗∗x , R∗∗∗

h , S∗∗∗
v , I∗∗∗v > 0

since both diseases exist and persist in this equilibrium.
Now, consider the state variable S∗∗∗

h , given as

S∗∗∗
h =

(µh + γc)Nh + CvhI
∗∗∗
v

βc
.

Then, S∗∗∗
h is positive if I∗∗∗v >

−(µh + γc)Nh

Cvh
for positive-valued Cvh. Accordingly, it must be I∗∗∗v > 0

to satisfy the nonnegativity of the solutions in Theorem 2.3. This condition also applies to I∗∗∗d , R∗∗∗
d > 0.
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Similarly, for I∗∗∗dc , we need to show that this is positive, that is,

I∗∗∗dc =
γcCvh

[
µh(µh + γc)(R0c − 1)Nh

2 − (2µh + γc)CvhI
∗∗∗
v Nh − (I∗∗∗v )2Cvh

2
]
I∗∗∗v

βc(γd + µh)(CvhI∗∗∗v +Nhµh) [(µh + γc)Nh + I∗∗∗v Cvh]
> 0. (13)

The inequality (13) is true if we have the following values for I∗∗∗v

I∗∗∗v > 0, I∗∗∗v >
−Nh

2Cvh

[√
4µh(µh + γc)R0c + γc2 + 2µh + γc

]
, and

I∗∗∗v <
Nh

2Cvh

[√
4µh(µh + γc)R0c + γc2 −

(
2µh + γc

)]
.

(14)

The intersection of the inequalities in (14) is shown by

0 < I∗∗∗v <
Nh

2Cvh

[√
4µh(µh + γc)R0c + γc2 −

(
2µh + γc

)]
= z4,

and this will be true only if R0c > 1. Denoting the right-hand side of the inequality as z4. Thus, in this case,
I∗∗∗dc > 0 if

R0c > 1, and 0 < I∗∗∗v < z4. (15)

These conditions also apply to state variables I∗∗∗c , R∗∗∗
c , I∗∗∗cd , I∗∗∗x > 0. Moreover, we have R∗∗∗

h > 0,
since this co-infection state variable point is expressed in variables I∗∗∗dc , I∗∗∗cd , I∗∗∗x > 0. Furthermore, S∗∗∗

v >
0 if I∗∗∗v > 0, that is, for R0c > 0.

4. NUMERICAL SIMULATION

This section presents numerical simulations of COVID-19 and dengue co-infections using Eulers approx-
imation method, based on the parameter values outlined in Table 2. These simulations serve to validate
the analytical results obtained earlier and offer insight into how different parameter values influence dis-
ease dynamics. By analyzing the impact of these parameters, the simulations provide practical inputs for
policymakers seeking to develop strategies for disease containment and management of co-infections.

4.1. Model elasticity analysis
An elasticity analysis was conducted to assess how sensitive the basic reproduction number R0 is to

changes in various model parameters. This technique, adopted from [8] and [23], calculates the elasticity of
R0 with respect to a parameter p as

χR0
p =

∂R0

∂p

p

R0
. (16)

In practical terms, elasticity measures the percentage change in R0 resulting from a 1% change in the
parameter p. This analysis helps identify the parameters that most strongly influence disease transmission
and control. A positive elasticity value depicts a direct proportional relationship between these parameters.
Otherwise, when the index is negative, it describes an inverse relationship. Since R0 = max {R0c,R0d}, the
analysis is performed separately as shown in Figure 4.

Parameters with high absolute-valued elasticity indices are critical for disease intervention, as they have the
greatest influence on R0. These parameters can be targeted for public health measures, such as vaccination
programs or vector control strategies which can significantly reduce the spread of COVID-19, dengue, or
their co-infection.

Model parameters Λh, βc for COVID-19’s basic reproduction number R0c, as well as Λh,Λv, Chv, Chv

for dengue’s basic reproduction number R0d, have positive elasticity indices. This indicates that increasing
these parameters will lead to an increase in disease spread. Conversely, parameters µh, γc, Nh for R0c,
and µh, µvγd, Nh for R0d have negative elasticity indices, meaning that increasing these values can help
in reducing disease transmission. These findings highlight key targets for intervention, such as increasing
recovery rates or reducing transmission coefficients through public health interventions.
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Figure 4: Elasticity analysis of the basic reproduction number R0.

4.2. Stability and existence plots of equilibrium
This subsection presents the stability and existence regions for the identified equilibrium points using a

phase diagram. The analysis uses varied values for the parameters βc (COVID-19 transmission coefficient)
and Cvh (dengue transmission coefficient from vector-to-human). These parameters are chosen due to their
significant influence on disease transmission dynamics, as indicated by the elasticity analysis. The Monte
Carlo numerical simulation method is employed to generate the phase diagram and verify the analytical
results.

Figure 5 shows the six (6) distinct regions of the phase diagram and its equilibrium properties.

Figure 5: Phase diagram of the stability of equilibrium points at βc and Cvh.

I = E0 exists and is stable;
II = E0 exists and unstable, E∗

1 exists and is stable;
III = E0 exists and unstable, E∗∗

2 exists and is stable;
IV = E0, E∗

1 exist and unstable, E∗∗
2 exists and is stable;

V = E0, E∗∗
2 exist and unstable, E∗

1 exists and is stable; and
V I = E0, E∗

1 , E∗∗
2 exist and unstable, E∗∗∗

3 exists.

4.3. Verification of analytical stability and existence of equilibrium points
Random βc and Cvh values were selected from different regions in the phase diagram (Figure 5) to verify

the stability and existence of equilibrium points. The numerical simulations confirm:
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(Simulation 1) (0.0322284, 0.0407441) shows a stable Disease-Free Equilibrium E0;
(Simulation 2) (0.591375, 0.0772269) shows a stable COVID-19-only Equilibrium E∗

1 ;
(Simulation 3) (0.324883, 0.589024) shows a stable Dengue-only Equilibrium E∗∗

2 ; and
(Simulation 4) (0.546078, 0.277202) shows the existence of a stable Co-infection Equilibrium E∗∗∗

3 .
These simulations highlight the conditions under which each equilibrium can be achieved and maintained,

providing insights into potential strategies for containing one or both diseases depending on the dominant
transmission dynamics. Thus, the existence of a stable equilibrium suggests that the disease dynamics between
COVID-19 and dengue will eventually settle into a predictable pattern which can inform long-term strategies
for disease management among decision and policy makers.

Consider the population initial values of Nh(0) = 500000, Sh(0) = 492450, Id(0) = 2000, Idc(0) = 300,
Rd(0) = 0, Ic(0) = 5000, Icd(0) = 200, Rc(0) = 0, Ix(0) = 50, Rh(0) = 0, Nv(0) = 100000, Sv(0) =
90000, and Iv(0) = 10000 and selected βc, Cvh values. The graphical results (see Figures 6 to 9), supported
by the tabular values (see Tables 3 to 6), show the convergence of the simulation at t = 5000 days to their
respective equilibrium points which are computed analytically.

Figure 6: (Simulation 1) Disease-free equilibrium is asymptotically stable. (a) all disease-infected human compartments
(zoomed). (b) vector compartments.

Table 3: (Simulation 1) Simulation value converges to E0.

Variable E0 E∗
1 E∗∗

2 E∗∗∗
3 Simulation

Sh 500000 1154704.72 802134.86 1154704.72 499999.99
Id 0 0 -12178.18 4.89 ×10−45 2.95 ×10−45

Rd 0 0 -289956.68 2.69 ×10−43 0.004
Idc 0 0 0 -2.60 ×10−45 1.67 ×10−53

Ic 0 -26389.25 0 -26389.25 7.02 ×10−89

Rc 0 -628315.47 0 -628315.47 0.002
Icd 0 0 0 -6.15 ×10−45 6.70 ×10−97

Ix 0 0 0 -2.21 ×10−46 3.46 ×10−138

Rh 0 0 0 -2.13 ×10−43 0.0002
Sv 100000 100000 113866.92 100000 100000
Iv 0 0 -113866.92 -1.45 ×10−11 3.78 ×10−45

4.4. (Simulation 5) Effect of transmission rate (βc) and recovery rate (γc) on COVID-19 infection,
dengue infection, and COVID-19-dengue co-infection

The simulation shown in Figure 10, with Cvh = 0.5 and γd = 1/14, illustrates the impact of the COVID-
19 transmission rate (βc) and recovery rate (γc) on the duration and the spread of infection. This can be
observed during the onset of the disease in the first wave. Interventions such as improving the recovery rate
by reducing the recovery period from 21 to 10 days lead to a noticeable flattening of the epidemic curve
in subsequent waves, even as βc remains high. This demonstrates the effectiveness of timely interventions,
such as accelerated recovery through early diagnosis and treatment, in mitigating the severity of outbreaks.
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Figure 7: (Simulation 2) COVID-19-only equilibrium is asymptotically stable. (a) all disease-infected human
compartments (zoomed). (b) vector compartments.

Table 4: (Simulation 2) Numerical simulation value converges to E∗
1 .

Variable E0 E∗
1 E∗∗

2 E∗∗∗
3 Simulation

Sh 500000 62928.41 484829.12 62928.48 62928.49
Id 0 0 611.49 0.06 0.06
Rd 0 0 14559.40 0.19 0.20
Idc 0 0 0 0.53 0.54
Ic 0 17617.09 0 17616.98 17616.98
Rc 0 419454.51 0 419438.88 419428.35
Icd 0 0 0 0.05 0.06
Ix 0 0 0 0.04 0.04
Rh 0 0 0 14.78 25.28
Sv 100000 100000 99392.22 99999.41 99999.39
Iv 0 0 607.78 0.59 0.61

Figure 8: (Simulation 3) Dengue-only equilibrium is asymptotically stable. (a) all disease-infected human compartments
(zoomed). (b) vector compartments.

Table 5: (Simulation 3) Numerical simulation value converges to E∗∗
2 .

Variable E0 E∗
1 E∗∗

2 E∗∗∗
3 Simulation

Sh 500000 114546.73 74027.33 141114.43 74027.33
Id 0 0 17169.72 37595.66 17169.72
Rd 0 0 408802.94 -404848.20 408802.82
Idc 0 0 0 -12121.43 2.39 ×10−40

Ic 0 15536.50 0 -14825.51 1.33 ×10−91

Rc 0 369916.76 0 -52261.58 7.51 ×10−40

Icd 0 0 0 52398.55 1.14 ×10−90

Ix 0 0 0 -8304.51 1.22 ×10−91

Rh 0 0 0 761252.60 0.13
Sv 100000 100000 85346.28 79697.64 85346.28
Iv 0 0 14653.72 20302.36 14653.72
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Figure 9: (Simulation 4) COVID-19-dengue co-infection equilibrium is asymptotically stable. (a) all disease-infected
human compartments (zoomed). (b) vector compartments.

Table 6: (Simulation 4) Numerical simulation value converges to E∗∗∗
3 .

Variable E0 E∗
1 E∗∗

2 E∗∗∗
3 Simulation

Sh 500000 68148.30 153025.26 73457.12 73457.12
Id 0 0 13985.55 4949.52 4949.52
Rd 0 0 332989.20 24178.40 24178.40
Idc 0 0 0 6730.15 6730.15
Ic 0 17406.69 0 10641.35 10641.35
Rc 0 414445.01 0 86393.64 86393.64
Icd 0 0 0 3775.46 3775.46
Ix 0 0 0 1601.84 1601.84
Rh 0 0 0 288272.53 288272.53
Sv 100000 100000 87730.42 89541.81 89541.81
Iv 0 0 12269.58 10458.19 10458.19

Moreover, as shown in [19], travel restrictions can lead to a significant decline in transmission rates, though
the risk of new outbreaks may persist in areas with similar transmission potential.

On the other hand, we can observe an inverse relationship between the number of COVID-19 and dengue
infections throughout the simulation. Whenever, βc increases, the magnitude of dengue cases significantly
declines during the first wave. This can be viewed as an inter-specific competition between the diseases. In
addition, the occurrence of the COVID-19-dengue co-infection depends on the prevalence of both diseases.
Whenever one of either disease dies out, the co-infection flattens its epidemiological curve.

4.5. (Simulation 6) Effect of transmission rate (Cvh) and recovery rate (γd) on COVID-19 infection,
dengue infection, and COVID-19-dengue co-infection

Figure 11 shows a simulation with βc = 0.3 and γc = 1/14, illustrating that dengue prevalence increases
significantly as the transmission rate Cvh (vector-to-human) rises. Reducing the transmission rate through
minimizing mosquito-human effective contact rates (i.e. protection against mosquito bites [10]) and vector
control measures (i.e. mosquito eradication programs), or by enhancing recovery rates (γd) through improved
clinical management, can effectively shorten the duration of dengue outbreaks. Moreover, dengue vaccination
indirectly reduces Cvh by lowering the number of infected individuals who can pass the virus to mosquitoes.
This highlights the importance of targeting vector control alongside medical interventions to reduce dengue
transmission. A similar inverse relation between COVID-19 and dengue was observed. Moreover, these case
simulations resulted to approach different equilibrium solutions depending on the varied parameter values. If
the prevalence of dengue is much greater than that of COVID-19, dengue will persist in the system, and vice
versa. Hence, decision-makers may implement policies for stakeholders a combination of interventions, such
as reducing disease transmission and improving recovery rates for both COVID-19 and dengue to mitigate
its co-infection.
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Figure 10: (Simulation 5) Effects of varying βc and γc values. (a) COVID-19 infection Ic first wave. (b) COVID-19
infection Ic succeeding outbreaks. (c) Dengue infection Id first wave. (d) Dengue infection Id succeeding outbreaks.

(e) COVID-19-dengue infection Ix first wave. (f) COVID-19-dengue infection Ix succeeding outbreaks.

Figure 11: (Simulation 6) Effects of varying Cvh and γd values. (a) COVID-19 infection Ic first wave. (b) COVID-19
infection Ic succeeding outbreaks. (c) Dengue infection Id first wave. (d) Dengue infection Id succeeding outbreaks.

(e) COVID-19-dengue infection Ix first wave. (f) COVID-19-dengue infection Ix succeeding outbreaks.
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5. CONCLUSION

This study developed an 11-compartmentalized model to explore the transmission dynamics of COVID-19
and dengue co-infection. The well-posedness of the model was verified, ensuring the existence and uniqueness
of its solutions based on continuity, local Lipschitz conditions, and invariance over a compact feasible region.
These findings provide a robust mathematical framework for understanding how the two diseases interact in
a population, offering valuable insights for shaping public health strategies aimed at managing co-infection
which would potentially lead to policy formulation.

The basic reproduction number (R0) of the model was calculated using the NGM method. Four key
equilibrium points were identified: the disease-free, COVID-19-only, dengue-only, and COVID-19-dengue co-
infection equilibrium points. These equilibrium points provide critical insight into the conditions necessary
for eradicating or controlling each disease, serving as a guide for developing phase-specific interventions
during different stages of an epidemic or pandemic. Threshold values of the basic reproduction number
were calculated to establish the conditions for the existence and stability of the equilibrium points. While an
analytical solution for the co-infection equilibrium could not be derived, numerical simulations were employed
to verify stability and explore the dynamics under different parameter conditions, providing valuable insights
where analytical methods fall short.

An elasticity analysis was conducted to assess the sensitivity of the basic reproduction number (R0) to
various model parameters, helping identify key factors influencing the spread of COVID-19 and dengue.
Parameters with high elasticity, such as βc (COVID-19 transmission) and Cvh (dengue vector-to-human
transmission), were used to construct a phase diagram via Monte Carlo simulations. These high-elasticity
parameters are prime candidates for targeted interventions, such as public health campaigns aimed at reducing
transmission rates or enhancing recovery through vaccination. The phase diagram depicts six distinct regions
that describe the stability and existence of equilibrium points. These regions described different stable
epidemiological scenarios whenever the parameter values were varied.

The numerical simulations provided valuable insights into the transmission dynamics of COVID-19 and
dengue, with practical implications for policy formulation. These findings will be communicated to health
authorities to inform the development of evidence-based policies aimed at controlling co-infections. Such
policies may include enhanced disease surveillance, targeted vaccination campaigns, and vector control
measures to mitigate the spread of both diseases, particularly in regions where co-infection poses a significant
public health threat.
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APPENDIX

A.1. Coefficient of the characteristics polynomial Pd(λ)
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I∗∗∗dc =
γcCvh

[
µh(µh + γc)(R0c − 1)Nh

2 − (2µh + γc)CvhI
∗∗∗
v Nh − (I∗∗∗v )2Cvh

2
]
I∗∗∗v

βc(γd + µh)(CvhI∗∗∗v +Nhµh)
[
(µh + γc)Nh + I∗∗∗v Cvh

] ,

I∗∗∗c =
µh(µh + γc)(R0c − 1)Nh

2 − (2µh + γc)CvhI
∗∗∗
v Nh − (I∗∗∗v )2Cvh

2

βc

[
(µh + γc)Nh + I∗∗∗v Cvh

] ,

R∗∗∗
c =

−Nhγc
[
− µh(µh + γc)(R0c − 1)Nh

2 + I∗∗∗v Cvh(2µh + γc)Nh + (I∗∗∗v )2Cvh
2
]

βc(CvhI∗∗∗v +Nhµh)
[
(µh + γc)Nh + I∗∗∗v Cvh

] ,

I∗∗∗cd =

−γdI
∗∗∗
v

[
(µh + γc)Nh + I∗∗∗v Cvh

]2[− µh(µh + γc)(R0c − 1)Nh
2

+I∗∗∗v Cvh(2µh + γc)Nh + (I∗∗∗v )2Cvh
2
]
Cvh

βc(µh + γc)
[
−R0cµh(µh + γc)Nh

2 + I∗∗∗v Cvh(µh + γc)Nh + (I∗∗∗v )2Cvh
2
]
·[

− (µh + γc)(R0cµh + γd)Nh
2 + I∗∗∗v Cvh(µh + γc − γd)Nh + (I∗∗∗v )2Cvh

2
] ,

I∗∗∗x =

I∗∗∗v

{
(µh + γc)

[
(R0c + 1)µh + γc + γd

]
Nh + I∗∗∗v (γc + γd + µh)Cvh

}
·

Cvh

[
− µh(µh + γc)(R0c − 1)Nh

2 + I∗∗∗v Cvh(2µh + γc)Nh + (I∗∗∗v )2Cvh
2
][

− (µh + γc)(R0cµh + γd)Nh
2 + I∗∗∗v Cvh(µh + γc − γd)Nh + (I∗∗∗v )2Cvh

2
]
·

βc(γ + µh)
[
(µh + γc)Nh + I∗∗∗v Cvh

] ,

R∗∗∗
h =

γcI
∗∗∗
cd + γdI

∗∗∗
dc + γI∗∗∗x

µh
,

S∗∗∗
v =

k0(I
∗∗∗
v )4 + k1(I

∗∗∗
v )3 + k2(I

∗∗∗
v )2 + k3I

∗∗∗
v + k4

l0(I∗∗∗v )5 + l1(I∗∗∗v )4 + l2(I∗∗∗v )3 + l3(I∗∗∗v )2 + l4I∗∗∗v + l5
,

where

k0 = −ΛvβcCvh
4Nh(γd + µh),

k1 = −βcΛvCvh
3Nh

2(γd + µh)(3µh + 2γc − γd),

k2 = ΛvβcCvh
2Nh

3(γd + µh)
{
(R0c − 3)µh

2 +
[
(R0c − 4)γc + 3γd

]
µh − γc(γc − 2γd)

}
,

k3 = ΛvβcCvhNh
4(γd + µh)(µh + γc)

{
(2R0c − 1)µh

2 +
[
(R0c − 1)γc + 3γd

]
µh + γcγd

}
,

k4 = ΛvβcµhNh
5(γd + µh)(µh + γc)

2(R0cµh + γd),

l0 = ChvCvh
5(γc + γd + µh),

l1 = 2Cvh
4Nh

[
(γc + γd + µh)(2µh + γc)Chv − 1

2µvβc(γd + µh)
]
,

l2 = Cvh
3Nh

2
{
6Chvµh

3 +
[
2Chv(−R0c + 6)γc + 6γdChv − 3µvβc

]
µh

2 +
[
Chv(7− 2R0c)γc

2

+ (6Chvγd − 2βcµv)γc − 2γdµvβc

]
µh + γc

3Chv + γc
2γdChv − 2γcγdµvβc + γd

2µvβc

}
,

l3 = Chvµh
4Nh

3
(
4Chvµh

4 +
[
(−3R0c + 10)Chvγc + 4γdChv + µvβc(R0c − 3)

]
µh

3 +
{
(−5R0c + 8)Chvγc

2

+
[
Chv(R0c + 6)γd + µvβc(R0c − 4)

]
γc + γdR0cµvβc

}
µh

2 +
{
2Chv(1−R0c)γc

3

+
[
Chv(R0c + 2)γd − µvβc

]
γc

2 + γdµvβc(R0c − 2)γc + 3γd
2µvβc

}
µh − γcγdµvβc(γc − 2γd)

)
,

l4 = CvhNh
4(µh + γc)

(
Chvµh

4 +
[
Chv(R0c

2 −R0c + 2)γc + γdChv + (2R0c − 1)µvβc

]
µh

3

+
{
Chv(R0c

2 −R0c + 1)γc
2 +

[
Chv(R0c + 1)γd + µvβc(R0c − 1)

]
γc + 2γdµvβc(R0c + 1)

}
µh

2

+ γd(ChvR0cγc
2 +R0cβcγcµv + 3βcγdµv)µh + γcγd

2µvβc

)
,

l5 = µhµvβcNh
5(µh + γc)

2(γd + µh)(R0cµh + γd).



MODELING THE CO-INFECTION DYNAMICS OF COVID-19 AND DENGUE 201

A.3. Coefficients of COVID-19-dengue Co-infection Iv Rational Solution

The rational expression of I∗∗∗v is expressed as
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2 +
[
−Nhβc(2R0d

2 +R0c − 4)µv
2 − γdNhChv

(R0c + 6)µv + 12CvhΛvChv

]
γc + γd(−NhR0cβcµv

2 + 6ΛvChvCvh)
}
µh

2 +
{
2NhChvµv(R0c − 1)

γc
3 +

[
µv

2Nhβc − γdNhChv(R0c + 2)µv + 7CvhΛvChv

]
γc

2 +
[
−Nhβc(2R0d

2 +R0c − 2)µv
2

+ 6CvhΛvChv

]
γdγc − 3µv

2Nhγd
2βc

}
µh +

[
γdµv

2βc(γc − 2γd)Nh + ΛvγcChvCvh(γc + γd)
]
γc

)
,

n4 = Nh
3Cvh

[
−NhChvµh

5µv +
{
−Nhβc(2R0c − 1)µv

2 −Nh

[
(R0c

2 −R0c + 3)γc + γd
]
Chvµv

+ 4CvhΛvChv

}
µh

4 +
{
−Nhβc

[
(3R0d

2 + 3R0c − 2)γc + γd(R0c + 1)
]
µv

2 −Nh

[
(2R0c

2

− 2R0c + 3)γc + γd(R0c + 2)
]
Chvγcµv + (4γd + 10γc)CvhΛvChv

}
µh

3 +
{
−NhChvµv(R0c

2

−R0c + 1)γc
3 +

[
−Nhβc(2R0d

2 +R0c − 1)µv
2 − (2R0c + 1)NhChvγdµv + 8CvhΛvChv

]
γc

2

+
[
− (2R0d

2 + 3R0c + 2)Nhβcµv
2 + 6CvhΛvChv

]
γcγd − 3Nhβcγd

2µv
2
}
µh

2 +
(
− γdµv

{
γc(Chvγc

+ βcµv)R0c + µvβc

[
(1−R0d

2)γd +R0d
2γc

]}
Nh + 2ΛvγcChvCvh(γc + γd)

)
γcµh + (γc

2γd
2Nhµv

2βc)
]
,

n5 = βcµhµv
2(µh + γc)(µh + γd)

{
−R0cµh

2 +
[
γc(R0c − 1)R0d

2 − γcR0c − γd
]
µh

+ γdγc(R0d
2 − 1)2

}
Nh

5 + CvhChvΛvµh
2(µh + γc)

2(γc + γd + µh),

m0 = ChvCvh
5(γc + γd + µh),

m1 = Cvh
4Nh

[
(µh + γc + γd)(4µh + 2γc)Chv − µvβc(µh + γd)

]
,

m2 = Cvh
3Nh

2
{
6Chvµh

3 +
[
− 2Chv(R0c − 6)γc + 6γdChv − 3µvβc

]
µh

2 +
[
(−2R0c + 7)Chvγc

2

+ (6Chvγd − 2βcµv)γc − 2γdµvβc

]
µh + γc

3Chv + γc
2γdChv − 2γcγdµvβc + γd

2µvβc

}
,

m3 = Cvh
2Nh

3
(
4Chvµh

4 +
[
(−3R0c + 10)Chvγc + 4γdChv + µvβc(R0c − 3)

]
µh

3 +
{
(−5R0c + 8)

Chvγc
2 +

[
Chv(R0c + 6)γd + µvβc(R0c − 4)

]
γc + γdR0cµvβc

}
µh

2 +
{
2Chv(1−R0c)γc

3

+
[
Chv(R0c + 2)γd − µvβc

]
γc

2 + γdµvβc(R0c − 2)γc + 3γd
2µvβc

}
µh − γcγdµvβc(γc − 2γd)

)
,

m4 = CvhNh
4(µh + γc)

(
Chvµh

4 +
[
Chv(R0c

2 −R0c + 2)γc + γdChv + (2R0c − 1)βcµv

]
µh

3

+
{
Chv(R0c

2 −R0c + 1)γc
2 +

[
Chv(R0c + 1)γd + µvβc(R0c − 1)

]
γc + 2γdµvβc(R0c + 1)

}
µh

2

+ γd(ChvR0cγc
2 +R0cβcγcµv + 3βcγdµv)µh + γcγd

2µvβc

)
.
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