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Abstract

The Omicron variant, identified as B.1.1.529, has been recognized as a variant of concern (VOC) by the
World Health Organization (WHO), necessitating continuous monitoring and a proactive response. This study
develops a mathematical model to analyze the spread of COVID-19 mutations, considering a population that,
despite vaccination, remains susceptible to infection. The model also accounts for key epidemiological factors,
including the incubation period, quarantine measures, and various intervention strategies. This study focuses on
the epidemiological conditions in Jakarta Province, where the highest number of Omicron cases in Indonesia
has been recorded. Real-world epidemiological data related to Omicron in Jakarta were collected between
February 6, 2022, and May 6, 2022. Model parameters were estimated using genetic algorithm optimization.
A significant challenge in epidemic modeling is the uncertainty of parameters, which can substantially affect
the effectiveness of control measures. To address this challenge, an adaptive sliding mode control approach
is introduced, allowing dynamic adjustments to parameter variations without requiring precise parameter
estimation. This approach maintains system stability by enforcing a predefined sliding surface, making it
inherently robust against uncertainties. The main goal of this approach is to gradually minimize infections
attributed to the initial COVID-19 strain and the Omicron variant, while simultaneously decreasing the count
of susceptible individuals by ensuring the system follows a specified reference trajectory. Additionally, an
adaptive mechanism is implemented to account for unknown variations in the system using the Lyapunov
stability theorem. Numerical simulations illustrate that adaptive sliding mode control significantly improves
epidemic management, reducing infections by 92.8% for the original strain and by 96.87% for the Omicron
variant when compared to an uncontrolled scenario. Furthermore, the basic reproduction number (R0) is
lowered by 85.92%, confirming the efficiency of adaptive sliding mode control in mitigating the outbreak.
Moreover, this study incorporates a cost-effectiveness analysis to assess the viability of various vaccination
and isolation strategies. The findings contribute to epidemiological research by offering valuable insights for
policymakers in designing effective and resilient intervention strategies for epidemic management.
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1. INTRODUCTION

Omicron (B.1.1.529) represents a newly emerged strain of the COVID-19 virus, characterized by its higher
transmissibility and its impact on immune response acquired from previous infection or vaccination. Initially
identified in South Africa on 24 November 2021 [1], the variant has since spread globally, including to
Indonesia [2]. The world Organization (WHO) has labeled Omicron as a Variant of Concern (VOC), which
refers to a strain of the coronavirus that may lead to increased transmission and mortality, and potentially
influence vaccine efficacy. This categorization stemmed from the identification of numerous genetic alterations
within the strain, several of which raised notable concerns. Preliminary analyses revealed that Omicron could
pose a heightened likelihood of reinfection compared to prior VOCs, including Alpha (B.1.1.7), Beta (B.1351),
Gamma (P.1), and Delta (B.1.617.2). Moreover, Omicron has demonstrated a rapid rate of spread [3]. Based
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on this, the Omicron variant is predicted to adversely impact the epidemiology of the virus. Although most
countries have promoted vaccination, the epidemic has not been effectively reduced or controlled [4].

Mathematical models can be used as tools to study the dynamics of disease epidemics. Several studies
related to the COVID-19 epidemic have been developed by researchers. In the initial stages of the COVID-
19 pandemic, epidemiologists employed a range of mathematical models to gain insight into the virus’s
transmission patterns, the infection rate, and its consequences for populations. Khan et al. [5] established
an SEIR framework to examine early cases in Wuhan, with a focus on interactions at seafood markets as
the primary source of infection. They presented both a simple model and a fractional model, with numerical
solutions providing insights for infection control. Li et al. [6] developed an SEIR model to assess Wuhan’s
handling of the COVID-19 outbreak and to investigate the effects of essential non-pharmaceutical interventions
(NPIs) enforced throughout the outbreak. Along with the development of the vaccine, Liu et al. [7] developed
an SEIR model by adding individual compartments to be vaccinated. In addition, an SEIR mathematical model
focusing on the Omicron variant has been developed by [1]. The framework provides graphical results for
models with susceptible parameters, underscoring that adherence to the World Health Organization’s (WHO)
guidance, including practices such as social distancing, mask-wearing, and hand hygiene can substantially
reduce population infection rates.

Within the framework of mathematical modeling, determining parameter values is a critical factor requiring
precise estimation for predictive accuracy. Genetic Algorithms, an innovative method, provide a solution
enabling exploration of a broader parameter space through a population-based approach, utilizing genetic
variation and processing techniques such as crossing over and mutation [8]. The advantage of genetic
algorithms lies in their ability to operate independently of gradient evaluations of the objective function, in
contrast to more conventional approaches [9]. Lambora et al. [8] recommend genetic algorithms as a preferred
approach, particularly when dealing with problems featuring dual goals or constraints, as the algorithms have
proven to be highly effective in extensive search spaces with numerous parameters. Yarsky [10] and Qiu et
al. [11] discuss the application of genetic algorithms in identifying unknown parameters in the SEIR model
and the impact on COVID-19 models. Therefore, in this study, we propose the implementation of a genetic
algorithm to address challenges in estimating unknown parameters in the development of an SEIR model,
thereby facilitating a deeper understanding of the Omicron variant’s role in the spread of COVID-19 and
formulating more effective control strategies.

Robust control strategies have become increasingly prominent in epidemic modeling because of their
effectiveness in parameters and external disruptions [12]. Among these, sliding mode control is commonly
applied to maintain system stability by guiding trajectories along a predefined surface, even in the presence of
uncertain condition [13]. Several studies have demonstrated its effectiveness in epidemiological models. Jiao
et al. [14] proposed a control strategy incorporating vaccination into a sliding mode control framework
to regulate disease transmission within a generalized SEIR-type epidemic setting. Their results showed
that this method effectively reduced infection rates by dynamically adjusting control inputs in response to
changing epidemiological conditions. Similarly, Assegaf et al. [15] applied a sliding mode control strategy with
adaptive features to mathematical model of cholera transmission. The method included dynamic adjustment
of control gain in real time to effectively address parameter uncertainty. Another study by Santos et al.
[16] highlighted the role of sliding mode control in managing quarantined populations, showing that it
provides a robust framework for epidemic control under uncertain transmission dynamics. Furthermore, Ibeas
et al. [17] proposed a robust vaccination controller for an SEIR model, demonstrating how modifications to
traditional sliding mode control, such as improved control laws, can enhance robustness and reduce chattering
effects. Their findings further support the viability of robust sliding mode-based control strategies in epidemic
management.

Despite the advantages of sliding mode control, many existing implementations rely on fixed control
gains, which limit adaptability in dynamic epidemic environments. Epidemic models inherently suffer from
parameter uncertainty, arising from variations in disease transmission rates, intervention effectiveness, and
population behavior. Control strategies that assume fixed parameters may require frequent re-calibration to
remain effective, which can be impractical for real-time epidemic management. To address this challenge,
this study introduces an adaptive sliding mode control approach that dynamically adjusts control parameters
in real time, ensuring greater robustness in epidemic control.

The novelty of this study lies in integrating adaptive sliding mode control with epidemiological modeling
to effectively manage parameter uncertainty while fulfilling specific control objectives. Sliding mode control
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ensures global stability, while adaptive methods enable continuous monitoring and adaptation of system
parameters over time. The combination of these two approaches enhances system performance and ensures
robustness against uncertainties and disturbances. Unlike traditional sliding mode control methods with fixed
parameters, adaptive sliding mode control dynamically adjusts the switching gain to compensate for unknown
variations in transmission rates and intervention effectiveness. This method ensures that the epidemic system
remains stable and follows a predefined reference trajectory, reducing infections without requiring precise
parameter estimation.

In addition to the control design, this research evaluates both the epidemiological and economic impact
of the proposed adaptive sliding mode control strategy. Specifically, the basic reproduction number (R0) is
compared before and after the implementation of control measures to assess the effectiveness of adaptive
sliding mode control in limiting disease transmission. Furthermore, a cost-effectiveness analysis is conducted
to determine the feasibility of different vaccination and isolation strategies. This analysis considers both the
cost-effectiveness ratio (CER) and the incremental cost-effectiveness ratio (ICER) to evaluate the economic
viability of interventions using adaptive sliding mode control in comparison to other strategies.

By incorporating epidemiological modeling, robust adaptive control strategies, and economic assessment,
this study provides critical insights into the practical implementation of adaptive sliding mode control in
epidemic management and public health decision-making. The results emphasize the importance of real-time
gain adaptation in managing epidemic outbreaks, offering a flexible and resilient approach for policymakers
and health authorities to design cost-effective and robust intervention strategies.

The organization of this study is presented as follows. Section 2 outlines a detailed explanation of the
COVID-19 model used for the Omicron variant and describes the estimation process for several unknown
parameters using epidemiological data from DKI Jakarta Province. Section 3 elaborates on how a sliding
mode control approach is tailored adaptively to manage the dynamics of the Omicron variant. Section 4
provides the results and numerical simulations to evaluate the control strategy’s performance. Finally, Section
5 summarizes the key findings and final insights from the study.

2. MATHEMATICAL MODELING

This part introduces the construction of mathematical framework to simulate the spread of the Omicron
variant within vaccinated populations. Several model parameters are determined through genetic algorithm
optimization based on real-world data. Estimating these parameters is essential for gaining insights into the
spread and behavior of this variant, as well as for designing effective intervention strategies.

2.1. Mathematical model of the original virus and Omicron variant
This section by outlining several key assumptions, followed by the formulation of a new mathematical

model that captures the transmission behavior of the Omicron variant of COVID-19. The development of
this model is inspired by the structure in [1] and is further extended by introducing additional compartments,
including vaccinated individuals, quarantine units, individuals infected with the original strain, those infected
with the Omicron variant, as well as vaccine efficacy and disease management strategies. The total population
is segmented into eight categories, as illustrated in Figure 1: susceptible individuals (S), individuals in contact
with the original virus (E), those who have encountered the Omicron variant (Em), vaccinated individuals
(V ), those infected with the original virus (I), infected with Omicron (Im), quarantined individuals (Q), and
recovered individuals (R). A detailed explanation of each parameter is provided in Table 1.

In the model, assumptions are incorporated as constraints to aid in structuring the model. The assumptions
are as follows:

(i) It is assumed that the number of births matches the natural mortality rate, leading to a stable total
population size. This assumption is commonly used in epidemic modeling to preserve analytical
tractability while minimizing the influence of demographic variations on disease transmission patterns
[18]. Over short periods, assuming a constant population does not significantly impact epidemiological
outcomes, as birth and death rates tend to balance each other.
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(ii) The population is assumed to be a closed system, meaning that no individuals enter or leave the
observed area [20].

(iii) All newborns are classified as susceptible upon birth. Unless they receive protection from maternal
antibodies, they are generally at risk of contracting infections as passive immunity gradually decreases
over time [19].

(iv) Individuals who have been vaccinated but have not yet achieved full immunity may remain susceptible to
infection. If the vaccine does not provide complete protection, there is still a possibility that vaccinated
individuals could contract the disease [21].

(v) Transmission of the Omicron variant occurs primarily via close contact with persons already infected
by strain. In contrast, the original strain tends to spread when uninfected individuals are exposed to
carriers of the initial virus. Importantly, encountering someone infected with the original strain could
result in transmission; however, this does not automatically imply contraction of the Omicron. [22].

(vi) The spread of the virus occurs due to interactions between individuals who are susceptible and those
who have already been infected [23].

(vii) Individuals who were previously diagnosed as COVID-19 positive and have subsequently recovered
are assumed to have developed immunity against reinfection [24].

Figure 1: Schematic representation of COVID-19 transmission pathways.

Susceptible Compartment, S: The growth of the susceptible compartment is modeled under the assump-
tion that the total population remains constant, with a birth rate of Λ individuals per day. The Susceptible
sub population decreases due to moving to E and Em compartments as a result of interacting with infected
individuals I and Im with infection rates β and βm, respectively, so that the transmission rates are βSI

N and
βmIm

N . The death rate µ of susceptible individuals S per day is denoted as µS per day. The movement of
individuals from compartment S to V is due to the increased rate of vaccinated individuals and is given by
α S. Thus, the change in the population in the S compartment with respect to time is:

dS(t)

dt
= Λ− βS(t)I(t)

N
− βmIm(t)S(t)

N
− αS(t)− µS(t).

Compartment containing individuals in contact with the original virus, E: The addition to compartment
E is caused by the movement of individuals from compartment S to E as a result of interacting with infected
individuals I with an infection rate β. Thus, the transmission rate is βSI

N per day. The movement of individuals
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from compartment V to E results from interacting with infected individuals I with an infection rate of β;
the transmission rate is βSI

N per day. The parameter δ1 indicates the likelihood that vaccinated individuals
fail to produce antibodies against the initial strain after 28 days. The population in compartment E declines
due to two factors: transition to compartment I , represented by the rate δ1E, and natural mortality in E,
quantified as µE per day. Thus,

dE(t)

dt
=

βS(t)I(t)

N
+

βδ1V (t)I(t)

N
− δ1E(t)− µE(t).

Compartment of individuals who have been exposed to the Omicron variant, Em: The number of
individuals in the Em compartment rises as susceptible individuals S interact with infected individuals Im. The
corresponding transmission is quantified by the rate βmSImN per day. Additionally, vaccinated individuals
in V can transition to Em when exposed to Im, with a transmission rate of βmδ2V ImN , where δ2 represents
the probability that vaccine does not confer immunity against the original strain within a 28-days period. The
Em compartment decreases at a transition rate of δ2Em, the population movement from compartment Em

to Im, and the death rate in the Em compartment per day denoted µ is µEm per day. Thus, we have

dEm(t)

dt
=

βmS(t)Im(t)

N
+

βmδ2V (t)Im(t)

N
− δ2Em(t)− µEm(t).

Compartment of vaccinated individuals, V : The V compartment increases due to an increase in the
vaccination rate α S. Meanwhile, individuals from the susceptible compartment S may move into this class.
However, several mechanisms contribute to the reduction of individuals in V :
(a) Individuals may shift from the vaccinated compartment V to the exposed class E upon interacting with

infected persons in class I , where the transmission rate is β. Hence, the corresponding transmission
rate become βδ1V I

N per day, where δ1 denotes the likelihood that vaccinated individuals fail to develop
immunity against the original strain within 28 days.

(b) Similarly, exposure to infected individuals carrying the Omicron variant (Im) can cause a transition
from V to Em, with an infection rate of βm. The resulting rate is βmδ2V Im

N per day, where δ2 reflects
the chance that vaccine-induced immunity does not protect against the original virus after 28 days.

(c) The daily mortality within the vaccinated compartment V is modeled as µV , where µ is the death rate.
Accordingly, the dynamic behavior of the vaccinated compartment V over time can be modeled by the
following expression:

dV (t)

dt
= αS(t)− βδ1V (t)I(t)

N
+

βmδ2V (t)Im(t)

N
− µV (t).

Compartments of individuals who have contacted the original virus, I: Infected individuals due to the
original virus, represented by compartment I , experience an increase in population as individuals transition
from the exposed class E to I , at rate governed by σ1 E. The number in compartment I declines through
tree main mechanisms: natural mortality, occurring at a rate of µI per day, recovery of individuals from I
to R, represented by the term γ1 I , and movement into quarantine Q through isolation strategies, occurring
at the rate u2 I . Accordingly, the variation in the number of individuals in compartment I over time can be
expressed as:

dI(t)

dt
= σ1E(t)− u2I(t)− γ1I(t)− µI(t).

Compartment Im, representing individuals infected by the Omicron variant: The Im compartment
increases due to the transition with the rate σ2Em, the individual displacement from compartment Em to
Im. Compartment Im is reduced due to death at the rate Im per day and is thus denoted µ of µIm per day,
transfer to the isolation compartment Q at a rate u2Im, and recovery into the recovered class R governed
by γ2Im. Accordingly, the dynamic change of Im over time can be expressed as follows:

dIm(t)

dt
= σ2Em(t)− u2Im(t)− γ2Im(t)− µIm(t).
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Compartment of quarantined individuals, Q: The Q compartment increases due to isolation at the rates
u2I and u2Im. The Q compartment is reduced by deaths in compartment I and is denoted µ by µI per day,
and the recovery rate is γ3 Q. Thus, the change in compartment Q over time is:

dQ(t)

dt
= u2I(t) + u2Im(t)− γ3Q(t)− µQ(t).

Compartment of recovered individuals, R: The number of individuals in compartment R increases as
people transition from the infected compartments to the recovered state. Specifically, individuals move from
compartment I to R at the recovery rate of γ1I , from Im to R at γ2 Im, and from Q to R at a recovery
rate of γ3Q. Additionally, the R compartment decreases due to natural mortality, represented by µR per day.
Consequently, the rate of change in the recovered compartment over time is given by:

dR(t)

dt
= γ1I(t) + γ2Im(t) + γ3Q(t)− µR(t).

There are two control functions incorporated in this model. The first, u1(t), represents vaccination efforts
aimed at curbing the spread of COVID-19 by increasing the proportion of immunized individuals. The second
control function, u2(t), represents isolation measures applied to I and Im to limit the spread of infection
within the population.

Building upon these definitions, a transmission diagram illustrating the mathematical model for COVID-
19 dynamics is provided in Figure 1. The subsequent section presents the complete mathematical model
incorporating control measures.

dS(t)
dt = Λ− βI(t)S(t)

N − βmIm(t)S(t)
N − (α+ u1(t))S(t)− µS(t),

dE(t)
dt = βS(t)I(t)

N + βδ1V (t)I(t)
N − σ1E(t)− µE(t),

dEm(t)
dt = βmS(t)Im(t)

N + βmδ2V (t)Im(t)
N − σ2Em(t)− µEm(t),

dV (t)
dt = (α+ u1(t))S(t)− βδ1V (t)I(t)

N − βδ2V (t)Im(t)
N − µV (t),

dI(t)
dt = σ1E(t)− u2(t)I(t)− γ1I(t)− µI(t),

dIm(t)
dt = σ2Em(t)− u2(t)Im(t)− γ2Im(t)− µIm(t),

dQ(t)
dt = u2(t)I(t) + u2(t)Im(t)− γ3Q(t)− µQ(t),

dR(t)
dt = γ1I(t) + γ2Im(t) + γ3Q(t)− µR(t).

(1)

The total population at any time N(t) is determined as the sum of all compartments, N(t) = S(t) +
E(t) + Em(t) + V (t) + I(t) + Im(t) + Q(t) + R(t). By summing the differential equations governing the
model, the total population follows the equation

dN

dt
= Λ− µN.

where Λ = bN . Solving this differential equation, we obtain

N(t) = N0e
(b−µ)t.

Given the assumption that the rate of birth b matches the natural mortality rate µ, we obtain

N(t) = N0e
(0)t = N0.

This confirms that the total population remains unchanged over time when the birth and death rates are
balanced.

Control function u1(t) and u2(t) represents vaccination and isolation. The set of allowable control functions
is as follows
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ϖ = {(u1(t), u2(t) | 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1)} .

The control input u1(t) is designed to reduce the susceptible population to COVID-19 by promoting a
higher vaccination coverage. This approach helps curb disease transmission and enhances overall population
immunity. The value of this control variable can range from 0 to 1, with 0 representing no vaccinations
performed and 1 representing full vaccination or 100% of the population being vaccinated.

The isolation control u2(t) represents virus isolation measures applied to infected individuals, thereby
curbing the transmission of both the original strain and the Omicron variant. The value of this control variable
also ranges from 0 to 1, with 0 indicating no isolation measures and 1 indicating total isolation or strict social
distancing. Increased isolation intensity help minimize interpersonal contact, thus mitigating disease spread
though reduced social interactions. It is important to pay attention to the limits of control variable values
(from 0 to 1) to maintain consistency and accurate interpretation in managing disease transmission.

2.2. Positivity and boundedness of solutions

Ensuring the system’s validity from both mathematical and biological perspectives requires confirming
that its solutions stay non-negative and within bounds. This part illustrates that every solution of system (1)
retains non-negative throughout the time domain t ≥ 0. The system can be generally expressed as follows:

dX

dt
= G(X),

in which X = (S,E,Em, V, I, Im, Q,R) defines the state variables, and G(X) represents the vector-
valued function that determines the right-hand side of the differential system given in Equation (1). For
any compartment Xi let ϕi(X) represent the net flux of individuals entering or leaving that compartment.
Given an initial condition Xi(0) ≥ 0, its time evolution satisfies

Xi(t) = Xi(0) exp

(
−
∫ t

0

ϕi(u)du

)
+

∫ t

0

Fi(u) exp

(
−
∫ t

u

ϕi(z)dz

)
du,

Here Fi(u) represents the inflow into the compartment. Since all transition rates in the model are assumed
to be non-negative, it follows that Xi(t) ≥ 0 for all t ≥ 0, ensuring the positivity of the solutions.

To establish the boundedness of the solutions, consider the total population N(t), which evolves according
to

dN

dt
= Λ− µN − dIm.

Under the assumption that the disease-induced death rate d is small, an upper bound can be derived

lim sup
t→∞

N(t) ≤ Λ

µ
,

As a results, the overall population size stays within a limited range for every t ≥ 0. Therefore, every possible
trajectory of the system lies within the biologically meaningful set of values.

Ω =

{
(S,E,Em, V, I, Im, Q,R) ∈ R8

+ | N ≤ Λ

µ

}
.

Consequently, the model remains mathematically well-defined in a biological context, confirming that the
solutions uphold both positivity and boundedness over time.
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2.3. Reproduction number of the mathematical model
In the absence of infections within system (1), where E(t) = Em(t) = I(t) = Im(t) = Q(t) = 0, the

equilibrium condition aligns with the Disease-Free Equilibrium (DFE), represented as

E0 =

(
Λ

α+ µ
, 0, 0,

αΛ

µ(α+ µ)
, 0, 0, 0, 0

)
.

This equilibrium signifies the steady-state scenario where the disease does not spread within the population.
To determine the basic reproduction number R0, the next-generation matrix approach is utilized. The infection
dynamics of the model can be formulated using matrices F and V , where F represents the new infections,
and V represents transitions out of the infected compartments. The expression for the matrix F is formulated
as follows

F =


βSI
N + βδ1V I

N
βmSIm

N + βmδ2V Im
N

0
0

 .

The matrix V is represented as

V =

 σ1E + µE
σ2Em + µEm

−σ1E + u2I + γ1I + µI
−σ2Em + u2Im + γ2Im + µIm

 .

The Jacobian matrices JF and JV evaluated at the DFE, E0 are

JF (E0) =


0 0 Λβ

(Λ/(α+µ)+(Λα)/(µ(α+µ)))(α+µ) 0

0 0 0 Λβm

(Λ/(α+µ)+(Λα)/(µ(α+µ)))(α+µ)

0 0 0 0
0 0 0 0

 ,

JV(E0) =

µ+ σ1 0 0 0
0 µ+ σ2 0 0

−σ1 0 γ1 + µ+ u2 0
0 −σ2 0 γ2 + µ+ u2

 .

The Next-Generation Matrix (G) is determined by the relationship:

G = JF (E0) · J−1
V (E0).

Substituting the values, we obtain

G =


βσ1

(µ+σ1)(γ1+µ+u2)
0 β

γ1+µ+u2
0

0 βmσ2

(µ+σ2)(γ2+µ+u2)
0 βmδ2

γ2+µ+u2

0 0 0 0
0 0 0 0

 .

The fundamental reproduction number, denoted as R0, is mathematically expressed as

R0 = ρ(G) = max (R01, R02) ,

where R01 = βσ1

(µ+σ1)(γ1+µ+u2)
and R02 = βmσ2

(µ+σ2)(γ2+µ+u2)
. When R0 > 1, the disease tends to fade out

over time. On the other hand, If R0 < 1, suggests that the disease will persist and spread further throughout
the population.
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2.4. Parameter estimation
Following the approach in [25], the genetic algorithm (GA) method is applied in multiple stages, including

generating an initial population, evaluating fitness, selecting individuals, performing crossover, and introducing
mutation. The next subsection presents the results of estimating unknown parameters in the COVID-19 model
using GA. For the purpose of this estimation, data were gathered from the official website [26] within the
time-frame of February 06, 2022, to May 06, 2022. This time-frame was chosen due to the significant rise
in Omicron cases during that period.

To determine the natural death rate parameter, the reciprocal of the 2020 life expectancy, which is 70.69
years, is utilized. Based on this, the natural mortality rate is derived as µ = 1

70.69×365 [27]. For this study,
the genetic algorithm was run for 40 iterations, using a population size of 100 and a selection rate of 0.5, and
a mutation rate of 0.2. These configurations were set to enhance the accuracy of the parameter estimation
process. To estimate these parameters, the fitness value (objective function) is evaluated through the Mean
Absolute Percentage Error (MAPE), as described in the equation below.

error =
1

ndata

ndata∑
i=1

xi − x∗
i

xi
,

where xi represents the actual cumulative positive case data on day i, and x∗
i represents the estimated

cumulative case data from ode45 on day i. In this study, the data used are cumulative positive COVID-19
case data from February 6, 2022, to May 06, 2022, resulting in a total of 91 data points, or ndata = 91. Table
1 presents the estimated parameter values obtained through the use of the genetic algorithm.

Table 1: The description of variable and parameter.

Notations Description Value References

β Rate at which the original virus is transmitted between individuals 0.10489 estimated
βm Rate characterizing Omicron transmission among individuals 0.17881 estimated
α Vaccination rates 0.19566 estimated
δ1 The probability that the recipient of the vaccine injection has not developed antibodies

against the original virus after 28 days
0.05 [29]

δ2 The probability that the recipient of the vaccine injection has not developed antibodies
against the original virus after 28 days

0.33 [30]

σ1 Rate at which an exposed person transitions from E to I 0.068593 estimated
σ2 Transition rate of individuals from Omicron exposed state Em to Im 0.40599 estimated
γ1 Rate of recovery for those in the infected compartment I 0.088527 estimated
γ2 Rate of recovery for individuals infected with the Omicron variant Im 0.081869 estimated
γ3 Recovery rate for individuals in Q 0.071954 estimated
Λ Recruitment rate N × b [27]
b Birth rate 1

70.36×365 [27]
µ Natural death rate 1

70.36×365 [27]

In order to assess the model’s precision, a validation process was performed by analyzing numerical
simulation results against real recorded data. The following comparison demonstrates the extent to which the
predicted infected population from simulations corresponds to the observed data, as shown in Figure 2.

The genetic algorithm produced a fairly good estimated value with a relatively small numerical error of
0.003354, and thus it can be concluded that the COVID-19 distribution model is suitable for describing
conditions in the field with the given parameter values. The results of this parameter estimation will then be
used in the next stage, namely the completion of the sliding mode control and numerical simulation of the
application of the control.

3. IMPLEMENTATION OF ADAPTIVE SLIDING MODE STRATEGY
IN A COVID-19 TRANSMISSION MODEL

This section considers the COVID-19 model presented in Equation (1), incorporating parameter uncertain-
ties in β, βm, σ1, and γ1. The adaptive sliding mode control strategy works by guiding the system toward
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Figure 2: Graph of comparison of estimation results with real data.

a reference function, leading to a reduction in the infected populations I(t) and S(t). The stability of the
proposed control method is ensured through the Lyapunov stability theorem.

3.1. Design of the sliding mode control
The development of the sliding mode control follows these steps.
Step 1. Establish the tracking errors e1(t) and e2(t), which represent deviations in the susceptible and

infected compartments.

e1(t) = S(t)− Sd(t),

e2(t) = I(t)− Id(t).

where Sd(t) and Id(t) serve as the reference functions for S(t) and I(t), respectively, ensuring compliance
with the subsequent equation.

Sd(0) = S(0), Sd(t) → 0, (2)
Id(0) = I(0), Id(t) → 0. (3)

In Equation (2), the initial tracking error is considered to be zero, with e1(0) = 0 and e2(0) = 0. Meanwhile,
Equation (3) indicates that the reference function gradually decreases toward zero as time progresses. The
goal of the simulation is determined by the reference function given below.

Sd(t) = (S(0)− S(tf )) exp (−εt) + S (tf ) , (4)

Id(t) = (I(0)− I(tf )) exp (−εt) + I (tf ) . (5)

In this context, S(tf ) and I(tf ) represent the accumulated values of individuals who remain susceptible and
those who are infected at the conclusion of the simulation period, considering the parameter ε > 0. The
reference function related to COVID-19 transmission follows a mathematical model, which characterizes the
optimal disease spread scenario or the intended objective for minimizing infection cases.

Step 2. Define the sliding variables ϕ1(t) and ϕ2(t) that fulfill the following control objectives:

ϕ1(t) = e1(t),

ϕ2(t) = e2(t).
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In this paper, we used a sliding surface with the equations

ϕ1(t) = e1(t) = 0,

ϕ2(t) = e2(t) = 0,

to ensure the achievement of control objectives. To maintain the state in sliding mode, we ensure that
ϕ1(t) = ϕ̇1(t) = 0 and ϕ2(t) = ϕ̇2(t) = 0 are applied. Proper sliding surfaces are designed to ensure that
the system remains within the desired operational area and follows the desired control response.

Step 3. Define equivalent controls. Substituting ϕ1(t) = 0 and ϕ2(t) = 0 into Equation (4) and (5), we
obtain the control values u1(t) and u2(t) that are then referred to as equivalent controls.

u1eq = 1
S(t)

(
Λ−

(
βI(t)
N + βmIm(t)

N + α+ µ
)
S(t)

)
+ 1

S(t) (ε (S(0)− S(tf )) exp (−εt)) , (6)
u2eq = 1

I(t) (σ1E(t)− (γ1 + µ) I(t)) + 1
I(t) (ε (I(0)− I(tf )) exp (−εt)) . (7)

The presence of uncertainty leads to the utilization of nominal and predefined parameters, since the exact
system parameters are not known; therefore, we define

q =
βI(t)

N
+

βmIm(t)

N
+ α+ µ, q̂ =

β̂I(t)

N
+

β̂mIm(t)

N
+ α+ µ,

s = γ1 + µ, ŝ = γ̂1 + µ,

r = σ1E(t), r̂ = σ̂1E(t),

with β̂, β̂, γ̂1 and σ̂1 are nominal parameters of β, βm, γ1, and σ1, so that the equivalent control in Equations
(6) and (7) becomes

û1eq = 1
S(t) (Λ− (q̂S(t) + ε (S(0)− S(tf )) exp (−εt))) , (8)

û2eq = 1
I(t) (r̂ − (ŝI(t) + ε (I(0)− I(tf )) exp (−εt))) . (9)

Step 4. Define switching controls. Equivalent controls (8) and (9) are expanded nonlinearly to satisfy
robust behavior with the selection of switching controls as follows

u1d(t) = 1
S(t)g1(x, t)sgn (ϕ1(t)) , (10)

u2d(t) = 1
S(t)g2(x, t)sgn (ϕ2(t)) , (11)

so the controller becomes

u1(t) = 1
S(t) (Λ− (q̂S(t) + ε (S(0)− S(tf )) exp (−εt))) + 1

S(t)g1(x, t)sgn (ϕ1(t)) , (12)

u2(t) = 1
I(t) (r̂ − (ŝI(t) + ε (I(0)− I(tf )) exp (−εt))) + 1

S(t)g2(x, t)sgn (ϕ2(t)) . (13)

The switching gain is established to address parameter uncertainty, ensuring that the control rules described
in Equations (12) and (13) can produce the convergence of each tracking error. The definition of the switching
gain is grounded in the following assumptions [28].

(i) There are state dependent functions k(x, t) and l(x, t) so that the following upper bounds are satisfied,

| (q − q̂)S(t) |≤ k(x, t), and (14)

| r − r̂ + (s− ŝ)I(t) |≤ l(x, t). (15)

(ii) The upper bound functions k(x, t) and l(x, t) are known.
(iii) Switching gains g1(x, t) and g2(x, t) are selected as

g1(x, t) = k(x, t) + c1,

g2(x, t) = l(x, t) + c2,

where c1 > 0 and c2 > 0.
(iv) There exists finite, possibly unknown, positive constants k̄ and l̄ such that

k̄ ≥ k(x, t), (16)
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l̄ ≥ l(x, t). (17)

Assumption (ii) implies that the upper bounds k(x, t) and l(x, t) are well-defined, following the typical
convention in a sliding mode control system. Assumption (iii) guides the selection of the switching gains
g1(x, t) and g2(x, t). Assumption (i) asserts that the upper bounds are dependent on the state function, while
assumption (iv) specifies that k(x, t) and l(x, t) remain bounded by a constant.

Assumption (i) deals with the upper bounds of parameter uncertainty. The inclusion of k(x, t) and l(x, t)
can be explained through how the model is structured using a particular parameter, even if its precise value
is uncertain. The inequality (15) can be rewritten as

|(r − r̂) + (s− ŝ)I(t)| = I(t)
∣∣u2actual(t)− u2eq(t)

∣∣ ≤ l(x, t). (18)

Based on assumption (i), equation (18) shows that the application of the fluctuation isolation control considers
the actual and nominal parameters limited by a certain upper bound function, thereby effectively handling
errors arising from parameter uncertainties during the vaccination and isolation processes.

Proposition 3.1. Given the system model in Equation (1) and applying the control laws in (12) and (13). If
assumptions (i)-(iii) are met, then the tracking error will be asymptotically zero.

Proof. Considering a candidate Lyapunov function based on the Lyapunov stability theorem

V (t) = 1
2

(
ϕ2
1(t) + ϕ2

2(t)
)
. (19)

Taking the time derivative of Equation (19) and incorporating assumptions 1, 2, and 3, the following expression
is derived:

V̇ (t) = ϕ1(t)ϕ̇1(t) + ϕ2(t)ϕ̇2(t)

= ϕ1(t)

(
Λ− βS(t)I(t)

N
− βmS(t)Im(t)N − (α+ u1)S(t)− µS(t) + ε (S(0)− S(tf )) exp(−εt)

)
+ϕ2(t) (σ1E − u2I − γ1I − ϕI + ε (I(0)− I(tf )) exp(−εt))

≤ ϕ1(t) (k(x, t)− k(x, t)sgn(ϕ1(t))− c1sgn(ϕ1(t)))

+ϕ2(t) (l(x, t)− l(x, t)sgn(ϕ2(t))− c2sgn(ϕ2(t)))

= (k(x, t) |ϕ1(t)| − g1(x, t) |ϕ1(t)|)− (l(x, t) |ϕ2(t)| − g2(x, t) |ϕ2(t)|)
= −c1 |ϕ1(t)| − c2 |ϕ2(t)| ≤ 0.

By applying assumptions (i)-(iii), it is shown that V (t) ̸= 0 remains strictly negative. Therefore, based
on Lyapunov’s stability theorem [31], the conditions ϕ1(t) = ϕ2(t) = 0 exhibit asymptotic stability, which
implies that both ϕ1(t) and ϕ2(t) gradually approach zero as t tends to infinity. Thus, the sliding mode
control approach asymptotically leads to reducing the tracking error to zero.

Based on these results, S(t) → Sd(t) and I(t) → Id(t) for t → ∞, resulting in the eventual reduction
of both susceptible and infected individuals to zero. As stated in Proposition 3.1, the objective of applying
sliding mode control to minimize the overall number of COVID-19 cases is achieved even under parameter
uncertainty. However, one limitation of this methods is that the upper bounds k(x, t) and l(x, t) on assumptions
(i) and (ii) must be known beforehand for defining the switching gain (on the assumption (iii)) that depends
on these values.

3.2. Adaptive gain adjustment in sliding mode control
This part describes an adaptive method to address the upper bounds on assumptions (i) and (ii). The

switching control equation is changed to

û1sw(t) = 1
S(t) ĝ1(t)sgn (ϕ1(t)) , (20)

û2sw(t) = 1
I(t) ĝ2(t)sgn (ϕ2(t)) , (21)
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so that the control laws equation (20) and (21) becomes

u1(t) = 1
S(t) (Λ− (q̂S(t) + ε (S(0)− S(tf )) exp (−εt))) + ĝ1(t)

S(t) sgn (ϕ1(t)) , (22)

u2(t) = 1
I(t) (r̂ − (ŝI(t) + ε (I(0)− I(tf )) exp (−εt))) + ĝ2(t)

I(t) sgn (ϕ2(t)) . (23)

Accordingly, the adaptive rules governing the update of the switching gain (ĝ1(t) and ĝ2(t)) are formulated
as follows:

˙̂g1(t) = Γϕ1(t)sgn (ϕ1(t)) Γ |ϕ1(t)| , ĝ1(0) = 0, (24)

˙̂g2(t) = Γϕ2(t)sgn (ϕ2(t)) Γ |ϕ2(t)| , ĝ2(0) = 0, (25)

where Γ > 0.
The switching gain ĝ1(t) and ĝ2(t) may be divergent considering that the derivatives of Equations (24) and

(25) are non-negative definite. To ensure that the tracking error approaches zero, positive constants k̄ and l̄
from assumption (iv) are employed despite their unknown values. Thus, the two switching gain values increase
until the upper bounds in Equations (16) and (17) are reached or ĝ1(t) ≤ k̄ and ĝ2(t) ≤ l̄. Subsequently,
the system approaches a sliding surface, leading to the condition where ϕ1(t) = ϕ2(t) = 0, thus halting the
further increase in the switching gain value. This approach ensures the attainment of the control objective,
as outlined in Proposition 2.

Proposition 3.2. If we consider the system (1) by applying the control (22) and (23), and assumptions (i)
and (iv) apply to finite upper bounds k̄ and l̄ that are not yet known with certainty, and Γ > 0, then the
tracking error will converge asymptotically to zero.

To validate Proposition 3.2, assume that condition (iv) is satisfied. Consequently, there exist constants a
such that a ≥ k̄ + c1 and b such that b ≥ l̄ + c2 for any given constants c1, c2 > 0. Based on this, the
Lyapunov candidate function L(t) is formulated as follows:

L(t) = 1
2

(
ϕ2
1(t) + ϕ2

2(t) +
1
Γ (ĝ1(t)− a)2 + 1

Γ (ĝ2(t)− b)2
)
. (26)

Accordingly, the time derivative of Equation (26) is obtained as follows

L̇(t) = ϕ1(t)ϕ̇1(t) + ϕ2(t)ϕ̇2(t) +
1

Γ
(ĝ1(t)− a)2 ˙̂g1(t) +

1

Γ
(ĝ2(t)− b)2 ˙̂g2(t)

≤ −c1|ϕ2
1(t)| − c2|ϕ2

2(t)| ≤ 0.

Furthermore, convergence towards the sliding surface is achieved by applying Barbalat’s Theorem [31].
Consequently, Proposition 2 guarantees that implementing a sliding mode control strategy can efficiently

decrease the populations S(t) and I(t) at a specific moment, even under parameter uncertainty. This ef-
fectiveness arises from the method’s reliance on a reference function that gradually converges to zero over
time.

4. SIMULATION

4.1. Numerical methods
This subsection introduces the algorithm used to conduct computational simulations for addressing the

control challenge described in model (1). We compare the numerical results between scenarios without
control and scenarios with control in model (1). Numerical solutions can be applied to address the adaptive
sliding mode control problem in section 3, where S and I tend to zero by following their respective reference
functions despite the presence of parameter uncertainty.

This control problem is solved by the following algorithm:
(i) Initialization of parameters and initial values: Utilize the values listed in Table 1 for the parameters

along with the provided initial values.
(ii) Intervals for nominal parameters β̂, β̂m, α̂1, and γ̂1, where βL ≤ β̂ ≤ βU , βmL ≤ β̂m ≤ βmU ,

α1L ≤ α̂1 ≤ α1U , and γ1L ≤ γ̂1 ≤ γ1U .
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(iii) Divide the time interval [0, tf ] into N subintervals of the same size to obtain intervals [t0 = 0, t1], [t1, t2],
. . . , [tN−1, tN = tf ].

(iv) Set i = 1.
(v) Integrate the differential equation (1) by applying the fourth-order Runge-Kutta technique over the time

steps [ti−1, ti].
(vi) Define the reference functions Sd(ti) and Id(ti) based on Equations (4) and (5). This function defines

the targets of S and I to be achieved at each time point t.
(vii) Calculate tracking errors e1(ti) dan e2(ti).

(viii) Calculate the sliding mode control values u1(t) and u2(t) in Equations (22) and (23).
(ix) Determine the closed loop solution with the values u1 and u2 in step (v).
(x) Increase i by 1 and return to step (iv) repeatedly until reaching i = N.

(xi) Sequence plots of S and I solutions without control and with control.

In step (ii), it is assumed that the parameters β̂, β̂m, α̂1, and γ̂1 are constrained by lower bounds:
βL = βmL = α1L = γ1L = 0, and upper bounds: βU = βmU = α1U = γ1U = 1. If the lower limits
are set a βL = βmL = 0, COVID-19 transmission does not occur. Conversely, when βU = βmU = 1, any
susceptible person exposed will inevitably contract the infection. Setting α1L = 0, implies the absence of
COVID-19 transmission, whereas an upper bound of α1U = 1, ensures that every interaction between a
susceptible and an infected individual leads to infection. Additionally, if the parameter γ1L = 0, infected
individuals remain unrecovered, but when γ1U = 1, they experience immediate recovery post-infection

The initial state values are set as follows: S(0) = 8879574, E(0) = 1435275, Em(0) = 67219, V (0) =
814656, I(0) = 15825, Im(0) =, 4246, Q(0) = 1427, R(0) = 8386. The total simulation duration spans 150
days, with parameter values estimated from Table 1, assigning Γ = 0.1. The following in Figure 3 is an
application of Equations (4) and (5), with ε = 0.5.

4.2. Simulation of the adaptive sliding mode control
To demonstrate the impact of different optimal control approaches in managing the COVID-19 outbreak,

three distinct strategies were applied, incorporating the control variables u1(t) and u2(t).
(a) Strategy 1: The provided input control is only vaccination (u1(t) ̸= 0 and u2(t) = 0).
(b) Strategy 2: The provided input control is only isolation (u1(t) = 0 and u2(t) ̸= 0).
(c) Strategy 3: The provided input control includes both vaccination and isolation (u1(t) ̸= 0 and u2(t) ̸=

0).

1) Strategy 1: The provided input control is only vaccination (u1(t) ̸= 0 and u2(t) = 0): In strategy 1,
Figure 3 (a) shows that after a vaccination control is applied, susceptible individuals begin to decline and
follow the reference function after the 10th day. In Figure 3 (b) individuals who received vaccinations begin
to increase after the control compared to before receiving the vaccination. Under Strategy 1, following the
application of vaccine-based intervention, only a modest decline was observed in the number of individuals
infected with both the original and Omicron variants when compared to the uncontrolled scenario. As depicted
in Figure 3 (c), following the use of Strategy 1, the number of cases involving the original strain peaked at
611288 on day 11 prior to applying the intervention. However, following the implementation of vaccination
control, this number declined to 581332. Meanwhile, the population infected with the Omicron variant reached
a peak of infection on the 15th day of observation. Before the implementation of strategy 1 (Figure 3 (d)),
the number reached 40402, while after the implementation of the control, this declined to 32487. Based on
the control profile of strategy 1 shown in Figure 4 (a), we conclude that the vaccination control u1 should be
fully implemented (100%) from day 17 to day 68 and gradually reduced thereafter until reaching zero until
the end of the simulation time.

2) Strategy 2: The provided input control is only isolation (u1(t) = 0 and u2(t) ̸= 0): Under Strategy 2,
the population infected with COVID-19 steadily declines to zero, in alignment with the reference function
approaching zero. The implementation of isolation interventions successfully reduces COVID-19 cases by
88% As shown in Figure 3 (c), before the isolation policy was applied, the number of infections peaked
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at 611293 on day 12 for those infected with the original strain. However, following the introduction of
isolation, this figure dropped significantly to 19878. Similarly, cases involving the Omicron variant surged to
40403 on day 15 before declining sharply to 1599 as a result of isolation measures. According to the control
profile illustrated in Figure 4 (b), isolation control u2 should be maximally applied (100%) from the start until
day 5, after which it should be progressively decreased to zero by the conclusion of the simulation on day 150.
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Figure 3: Population dynamics of S, V, I , and Im.

3) Strategy 3: The provided input control includes both vaccination and isolation (u1(t) ̸= 0 and u2(t) ̸=
0): In strategy 3, as indicated by the simulation outcomes shown in Figure 3 (a), the combination of
vaccination and isolation led to a reduction of 55.11% in the susceptible population. The population of
susceptible individuals decreased asymptotically towards zero and reached the reference function (Sd) after
the 15th day. As shown in Figure 3 (b) this led to a growth in the vaccinated grup (V ). The individuals
affected by the original strain of COVID-19 dropped to zero, aligning with the reference trajectory (Id),
which also tends toward zero (Figure 3 (c)). Based on the simulation, the original virus infections declined
on average by 92.8%.According to Figure 3 (c), prior to implementing the control, infections peaked at
611891 on the 11th day; following the intervention, this number reduced substantially to 24828 (refer to
Table 2). The decline in infections caused by the original virus was followed by a similar downward trend in
Omicron case, as shown in Figure 3 (d). Before control strategies were applied, Omicron infections peaked
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at 40296 on day 16. However, after implementing control measures, this figure dropped to 1296. The results
from adaptive sliding mode control simulations showed an average decrease of 96.87% in the population
infected with the Omicron strain. Referring to the control scheme illustrated in (Figure 4 (c)), vaccination
efforts should begin on the first day and maintain maximum implementation (100%) from day 16 to day 68.
In contrast, isolation measures are advised to be fully active (100%) from day 1 to day 4, then progressively
reduced until fully withdrawn.

Table 2: A comparative analysis of people affected by the initial strain of the virus (I) and those classified as
susceptible (S).

Days Individuals infected
with the original virus
(without control)

Individuals infected with the
original virus (with control)

Susceptible individuals
(without control)

Susceptible individuals
(with control)

1 147283 198457 7295099 5334707
2 255685 232793 5986094 3559580
3 344560 211991 4907175 2556045
4 416740 177335 4019351 1873549
...

...
...

...
...

10 607457 32707 1203121 10922
11 611891 24828 983404 3556
12 611289 19718 803673 1329
13 606436 15779 657136 656
14 598032 12232 537602 453
15 586696 9561 439683 391
...

...
...

...
...

90 5354 0 2226 365
91 4981 0 2226 365
92 4635 0 2226 365
93 4312 0 2226 365
...

...
...

...
...

149 74 0 2228 365
150 68 0 2228 364
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Figure 4: Visualization of the simulated control inputs for (a) strategy 1, (b) strategy 2, and (c) strategy 3.

4) Comparison of the three control strategies: Based on the strategy comparison analysis (see Table
3), strategy 3 yielded better results compared to strategies 1 and 2. Isolation control nearly reached the
effectiveness of strategy 3 that combined vaccination and isolation. This suggests that a focus on controlling
already infected individuals through isolation has a positive impact on disease prevention, while vaccination
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Table 3: Evaluation of various control strategies.

Strategy Average Count of (S) (Sus-
ceptible) individuals

Average Count of (I) (Infected-
Original)

Average Count of (Im) (Infected-
Omicron)

Without control 299244 126169 16285
Strategy 1 163955 114731 8566
Strategy 2 302822 9503 546
Strategy 3 134342 9005 508

is more oriented towards preventing initial infection in susceptible populations. Without the controls, the
number of susceptible individuals reached 299244, comprising 126169 individuals infected with the original
virus and 16285 individuals infected with the Omicron variant. Strategy 1 (vaccination) resulted with both
the original strain and the Omicron. In contrast, Strategy 2 (isolation) proved effective in lowering the cases
of infection from both variants but did not significantly impact the number of S individuals. Overall, Strategy
3, which integrates both vaccination and isolation efforts, emerged as the most efficient approach to cubing
the transmission of the original and Omicron variant.
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Figure 5: Tracking errors of susceptible (e1 = S − Sd) and infected individuals (e2 = I − Id), (b) The process of the
gain g1(t) and g2(t) uses the adaptive law.

5) Effect of uncertainty on system performance: As shown in Figure 5 (a), the tracking errors e1(t) and
e2(t) converge to zero, thereby achieving the control objective of diminishing the populations of S(t) and I(t)
according to the given reference function. Figure 5 (b) shows the updated performance of the robustness of
the gain ĝ1(t) and ĝ2(t) with adaptive control rules in Equations (24) and (25). The adaptive rule parameters
(24) and (25) were chosen in such a way that the performance of the control is robust to model uncertainty.
As shown in Figure 5 (b), gains ĝ1(t) and ĝ2(t) gradually increase until reaching an upper bound defined
by (16) and (17) or ĝ1(t) ≤ k̄ and ĝ2(t) ≤ l̄. Subsequently, the system approaches a sliding surface, and
ϕ1(t) = ϕ2(t) = 0 are reached so that the increase in the switching gain value stops (see subsection 3.2).
This adjustment of the gain enhances the control’s robustness against model uncertainty and guarantees the
stability of the system.

In strategy 3, we then allow variation in the reference function convergence rate values for susceptible
individuals (S), ε = 0.3 and ε = 0.5 as well as the convergence rate values for infected individuals (I),
ε = 0.03 and ε = 0.5. The influence of selecting different values of the exponential convergence rate on
the tracking error and the dynamics of susceptible and infected individuals can then be examined. Figure 6
(a)-(b) illustrates a faster decline in the populations S and I ,driven by the swift convergence of the reference
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Figure 6: (a) Susceptible population trajectories S(t) under various control inputs and reference function parameters,
and (b) Original virus-infected population I(t) dynamics with respect to ε variations in different strategies.
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Figure 7: (a) Plot of the tracking error (e1) corresponding to changes in ε for Sd, and (b) Plot of error (e2) in response
variations in ε for Id.

trajectory. Nevertheless, it should be emphasized that a swift reduction in the number of infected individuals
does not always imply a quicker minimization of the tracking error, as shown in Figure 7 (a)-(b). Simulation
findings suggest that this control method is capable of addressing uncertainties in the Omicron-mutated
COVID-19 model.

Within this study, the parameter uncertainty is confined within bounds, specifically set between a lower
bound of 0 and an upper bound of 1, as detailed in Subsection 4.1. As a result, in Figure 8 (a)-(b)) the tracking
error graphs e1(t) and e2(t) decrease to zero, although there is variation in parameter uncertainty. Support
for this is also evident from the control profile (Figure 4), which indicates that chattering can be completely
reduced, thus enhancing control effectiveness. This highlights the robustness and effectiveness of the adaptive
sliding mode control method in meeting regulation goals, particularly in minimizing the numbers of susceptible
and infected individuals by following a reference signal, even under uncertain parameter conditions.
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Figure 8: (a) Tracking error graph (e1) with parameter uncertainty and (b) Tracking error graph (e2) with parameter
uncertainty.
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Figure 9 illustrates the evolution of the basic reproduction number R0 over time with and without the
implementation of adaptive control. The red dashed line represents R0 in the absence of control, maintaining
a constant value above 2.0, indicating a high potential for disease transmission. In contrast, the blue line
shows the evolution of R0 when the adaptive control strategy is applied. It is observed that R0 decreases
significantly over time, crossing the epidemic threshold of R0 = 1 at approximately t = 5 days, and continues
to decline towards a value close to zero. This demonstrates the effectiveness of the control strategy in reducing
disease transmission.

The numerical results further support this observation. Initially, R0 for the primary infection group starts at
R01 = 1.1839, and for the secondary infection group, R02 = 2.1824. After applying control, R01 is reduced
to 0.1783, while R02 is reduced to 0.3073, representing a significant 85.92% reduction in R0. This highlights
the impact of adaptive control in mitigating disease spread by effectively lowering the reproduction number
below the epidemic threshold. These results suggest that implementing an adaptive control strategy can
effectively suppress the spread of infection within a short period. By adjusting control measures dynamically,
the disease transmission can be contained efficiently, preventing large-scale outbreaks and supporting public
health interventions.
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6) Cost-Effectiveness Analysis: The Cost-Effectiveness Ratio (CER) quantifies the efficiency of an inter-
vention by evaluating the resources required to prevent infections. It is mathematically expressed as

CER =
Ctotal

Etotal
, (27)

where Ctotal represents the total intervention cost, and Etotal is the number of infections averted. A lower CER
indicates a more cost-efficient strategy, as fewer resources are needed per prevented infection.

The total intervention cost Ctotal accounts for the expenses associated with vaccination and isolation
measures

Ctotal = wv

∫ T

0

u1(t) dt+ wi

∫ T

0

u2(t) dt, (28)

where wv and wi denote the unit costs of vaccination and isolation respectively, and T represents the total
simulation duration. The effectiveness of the intervention is computed as the difference between infections
in the uncontrolled and controlled systems

Etotal = min

(∫ T

0

(Iuncontrolled(t)− Icontrolled(t))dt,N

)
, (29)

where Iuncontrolled and Icontrolled represent the number of infections in the absence and presence of interventions
respectively, and N is the total population cap. Table 4 presents an overview of the overall expenses and the
number of avoided infections for both the initial strain of COVID-19 (I) and the Omicron variant (Im). The
analysis considers three intervention scenarios: vaccination only, isolation only, and an integrated strategy
combining both vaccination and isolation.

Table 4: Cost-Effectiveness Analysis of different intervention strategies.

Strategy Cost I Cost Im Infections Averted (I) Infections Averted (Im) CER (I) CER (Im)
Strategy 1 2,753,634.44 1,457,978.11 3,661,119.88 9,525,380.75 0.7513 0.2749
Strategy 2 1,457,978.11 504,596.83 1,934,349.10 9,812,277.28 0.2377 0.4049
Strategy 3 4,211,612.55 3,602,684.60 5,595,468.98 10,523,278.35 0.2856 0.3419

Table 4 provides an overview of the cost-effectiveness ratio (CER) outcomes for various intervention
approaches, such as vaccination, isolation, and their integration. The table summarizes both the overall
expenses and the estimated reduction in infection cases involving the original (I) and the Omicron type
(Im). The results indicate that isolation is the most cost-effective strategy for controlling the original virus,
with a CER of 0.2377, compared to vaccination, which has a higher CER of 0.7513. This suggests that
during the early stages of the pandemic, isolation was more effective in reducing infections. However, for the
Omicron variant, vaccination becomes more cost-effective (CER = 0.2949) due to widespread immunity,
whereas isolation remains the lowest-cost strategy with a CER of 0.1134. The combination of vaccination and
isolation provides the highest effectiveness in preventing infections, achieving 11.25 million averted cases for
both virus types. While its CER values (0.3749 for I and 0.3419 for Im) are higher than isolation alone, the
combination strategy balances cost and effectiveness, making it an optimal approach when resources allow.
These findings suggest that isolation was initially the most efficient intervention, but vaccination became
more cost-effective over time, particularly for Omicron.

To evaluate how cost-effectiveness one intervention is compared to another, the Incremental Cost-Effectiveness
Ratio (ICER) is determined using formula [32]:

ICER =
Ci − Cj

Ei − Ej
, (30)

where Ci and Cj represent the total costs of two different strategies, and Ei and Ej denote their respective
effectiveness. The ICER determines whether an additional investment in a more expensive intervention yields
a proportionate increase in effectiveness.

Table 5 presents a comparison of various intervention strategies based on their cost-effectiveness. In strategy
A (u1, u2) evaluates the cost-effectiveness of vaccination (u1) versus isolation (u2). The ICER for the original
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Table 5: Incremental Cost-Effectiveness Ratio (ICER) analysis.

Strategy Comparison ICER (I) ICER (Im)
Strategy A (u1, u2) 1.0434 -
Strategy B (u3, u1) -0.0521 0.1429

virus (I) is 1.0434, indicating that vaccination incurs higher costs per infection prevented compared to
isolation. However, ICER for Omicron variant (Im) is undefined (-) due to the comparable effectiveness of both
strategies in preventing Omicron infections. This suggests that both vaccination and isolation provide similar
effectiveness in controlling Omicron, which is reasonable given that by the time Omicron spread, much of the
population had already acquired immunity through natural infection or vaccination. Since Omicron is highly
transmissible but generally milder than previous variants, the impact of isolation and vaccination on reducing
its spread remains similar, leading to an ICER of zero. Meanwhile, Strategy B (u3, u1) examines the cost-
effectiveness of a combined vaccination and isolation strategy (u3) compared to vaccination alone (u1). The
ICER for I is -0.0521, suggesting that adding isolation slightly reduces the cost per infection averted, making
the combination more cost-effective than vaccination alone. For Omicron, the ICER is 0.1429, indicating that
while the combination strategy is more effective than vaccination alone, it comes with a slightly higher cost
per infection prevented. These results highlight that isolation was initially the most cost-effective strategy,
but the combination of vaccination and isolation became more beneficial for Omicron, despite the added cost.

5. CONCLUSION

This study introduced an adaptive sliding mode control framework for epidemic modeling, specifically
targeting the spread of the Omicron variant of COVID-19. Using real data from the DKI Jakarta Health
Office, model parameters were estimated via a genetic algorithm, and the effectiveness of the proposed
control strategy was validated through numerical simulations. The main aim was to minimize the number
of infections caused by both the initial strain of COVID-19 and its Omicron variant, all while considering
parameter uncertainty. Unlike fixed-parameter control strategies, adaptive sliding mode control dynamically
adjusts control gains to compensate for parameter variations, ensuring convergence to a desired reference
function. Theoretical guarantees in Propositions 1 and 2 confirm that despite parameter uncertainty, the
system remains stable and follows the reference trajectory.

Simulation results demonstrated the effectiveness of adaptive sliding mode control in minimizing infections
while optimizing vaccination and isolation measures. The implementation of Strategy 3, which combines
vaccination and isolation, led to a 55.11% decrease in the number of susceptible individuals. Furthermore,
infections caused by the original COVID-19 strain were reduced by 92.8%, while those from the Omicron
variant declined by 96.87%. The basic reproduction number (R0) was reduced by 85.92%, further validating
the effectiveness of the proposed approach in controlling epidemic outbreaks.

Beyond its epidemiological impact, adaptive sliding mode control was also evaluated in terms of economic
feasibility through cost-effectiveness ratio (CER) and incremental cost-effectiveness ratio (ICER). The CER
value determined by dividing the combined expenses of vaccination and isolation by the number of cases
averted, thus reflecting the efficiency of the intervention. The ICER, on the other hand, compared strategy
3 with other alternatives by evaluating the extra cost per additional infection prevented when implementing
control actions based on the adaptive sliding mode approach. The results indicate that, despite requiring poten-
tially higher initial costs due to dynamic parameter adjustments, adaptive sliding mode control demonstrates
long-term cost saving by significantly reducing infections, lowering hospitalization rates, and minimizing
healthcare burdens. These findings suggest that adaptive sliding mode control is not only epidemiological
effective but also economically viable, offering policymakers a robust strategy for optimizing pandemic
intervention measures.

These findings underscore the advantages of an adaptive, uncertainty-resilient control strategy in epidemic
management. The ability to dynamically adjust control gains in response to parameter variations enhances
robustness, ensuring system stability while maintaining effective disease suppression. Unlike traditional
control methods that rely on fixed parameters, adaptive sliding mode control provides real-time adaptability,
making it a more suitable approach for epidemic control scenarios where transmission dynamics are inherently
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uncertain.
While this study provides valuable insights, it is subject to certain modeling assumptions, including a

closed population and uncertainty within predefined parameter ranges. Future research should explore direct
comparisons between adaptive and non-adaptive control strategies to further quantify the benefits of real-time
gain adaptation. Additionally, incorporating stochastic effects and external disturbances into the model could
further enhance its robustness in epidemic management. Expanding the analysis with more comprehensive
datasets across different regions would strengthen policy recommendations for pandemic control strategies.
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