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Abstract

Dengue fever, a viral disease spread by Aedes mosquitoes, is a significant public health issue in tropical
and subtropical regions. Behavioral adaptations in response to perceived infection risks can significantly reduce
disease incidence and prevalence through the adoption of control measures. However, most existing models
developed to assess the mitigation of dengue only implicitly account for this adaptive behavior within the
dynamics of disease transmission. In this paper, we propose a mathematical model that explicitly incorporates
adaptive human behavior in response to community infection levels into the transmission dynamics of dengue
and investigates how this behavior affects transmission. Analytical results of the model reveal that the disease-
free equlibrium is locally asymptotically stable when the basic reproduction number (Ro) is less than 1. The
model parameters are calibrated using daily dengue case data from the 2015 outbreak in Kaohsiung City,
Taiwan, resulting in a calculated basic reproduction number (Ro) of 1.42. Sensitivity analysis indicates that
to reduce the reproduction number, efforts should focus on reducing mosquito-human contact, controlling
the mosquito population, and improving hospital treatment. Numerical simulations demonstrate that positive
behavioral changes in response to increasing infection levels significantly reduce dengue cases when self-
protective and vector control measures are effectively implemented. Our results emphasize the importance of
enhancing these behavioral changes to achieve a substantial reduction in dengue incidence. This highlights the
critical role of reporting disease prevalence, educating individuals on effective dengue mitigation strategies,
and ensuring access to resources necessary for high-efficacy self-protection and vector control measures.
By promoting awareness and providing support for control measures such as mosquito repellents, bed nets,
insecticide-treated curtains, and community clean-up drives to eliminate mosquito breeding sites, governments
can significantly enhance the effectiveness of dengue control programs.
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1. INTRODUCTION

Dengue fever is a viral infection spread mainly by the bites of Aedes mosquitoes infected with the dengue
virus (DENV) [1]. The emergence and widespread prevalence of dengue fever (DF) impose a significant
strain on healthcare systems and economies, particularly in tropical areas where the disease is endemic [2].
Dengue cases have surged globally in recent decades, reaching its highest reported number of cases in 2019
[3]. The resurgence of dengue can be attributed to various factors, including population growth in urban areas,
insufficient education about dengue vectors, increased air travel, and ineffective mosquito control measures[4].

Vector control continues to be the leading method employed for alleviating the spread of dengue as
efficient dengue vaccines are currently lacking [5]. The World Health Organization (WHO) advocates for
integrated dengue control strategies such as targeted residual spraying, controlling mosquito larvae, and
personal protective measures [3]. However, with reported resistance to all four classes of insecticides in
Aedes arbovirus vectors, non-insecticide-dependent methods are gaining significance [6], [7]. Consequently,
vector control management needs to adopt an integrated approach that combines environmental management
with personal protective measures to achieve sustainable results with minimal environmental impact. Active
community engagement in waste management, particularly in eliminating potential vector breeding sites like

*Corresponding author
Received January 15t 2025, Revised May 31°¢, 2025, Accepted for publication June 26", 2025. Copyright ©2025 Published by
Indonesian Biomathematical Society, e-ISSN: 2549-2896, DOI:10.5614/cbms.2025.8.1.7



94 Dayap, J.A. and Rabajante, J.F.

outdoor solid waste, remains a crucial factor in achieving effective and sustainable dengue prevention and
control [8]. Empowering community residents through activities focused on reducing larval and pupal sources
can significantly contribute to alleviating the burden of dengue fever [9].

Human behavior is a critical factor in the spread of infectious diseases [10], and understanding its influence
is vital for enhancing control efforts [1 1], [12]. Recent studies highlight the significance of integrating human
behavioral changes into mathematical models of infectious disease transmission [13], [14]. Adaptive behaviors
in response to perceived or actual risks of infection can lead to significant reductions in disease incidence
and prevalence [15]. In dengue outbreaks, positive human behavioral changes often focus on adopting self-
protective and vector control measures [16]. Self-protective measures involve preventing mosquito bites by
using mosquito repellents, window screens, bed nets, and wearing long-sleeved clothing [3]. Conversely,
vector control includes eliminating mosquito breeding sites, chemical spray, and treated bed net.

The dynamics of dengue transmission are complex, involving interactions between human and Aedes
mosquito populations [17], [18], [19]. Mathematical models are essential tools for understanding and quan-
tifying the effects of control interventions and various factors influencing disease transmission [20]. Several
models have been developed to provide insights into the spread and control of dengue and some authors
emphasized the role of human behavior for the control of dengue [17], [18], [21], [22], [23], [24]. The
authors in [21] proposed a mathematical model that captures the impact of community ignorance on the
spread of dengue [21]. To effectively control dengue, the researchers suggested that media campaigns aimed
at raising public awareness should be combined with other control measures. A dengue model was introduced
in [25] to evaluate how media awareness can influence the spread of dengue in the community. They found
that consistent media efforts and rapid spread of awareness could potentially eliminate the disease from the
community entirely. A two-strain dengue model by [26] explores the dynamics of primary and secondary
infections with two DENV serotypes, indicating that controlling mosquito populations and raising human
awareness are crucial for effective dengue control. Additionally, an optimal control problem incorporating
human awareness and vector control has been introduced in [16], with simulations suggesting that enhancing
awareness on self-protection and mosquito control measures are necessary to prevent DENV transmission.
Cost-effectiveness analysis of different strategies, such as combining media campaigns with fumigation, has
also been explored in [18], identifying this combination as the most effective in preventing a significant rise
in infected individuals. However, these models often do not account for human behavioral changes, which
can play a crucial role in influencing disease dynamics and the effectiveness of control interventions [ 1],
[13], [14].

In this paper, we develop a mathematical model of dengue transmission that explicitly incorporates adaptive
human behavior in response to the community infection levels. These behavioral changes include the adoption
of existing control measures aimed at reducing mosquito contact and population. The parameters in the model
were estimated by fitting the model to the daily dengue cases in Kaohsiung City, Taiwan during the 2015
dengue outbreak. We also perform a sensitivity analysis to determine which parameters should be prioritized
for effectively controlling future dengue outbreaks.

2. MODEL FORMULATION

The dengue transmission model to be developed in this study is based on subdividing the total human
population at time ¢, represented by NN}, (¢), into compartments based on the Susceptible-Infected-Recovered
framework and the level of adherence to dengue control measures. Specifically, the population is divided into
the compartments of non-adherent and adherent susceptible (Sy1(¢) and Sp2(¢)), non-adherent and adherent
infected (Ij,1(t) and Ix2(t)), and non-adherent and adherent recovered (Ry; and Rjy2(t)) individuals, so that

Ni(t) = Nn1(t) + Naa(t), ()
where
Np1(t) = Spi(t) + Ini(t) + Ry (t) 2)
and

Npa(t) = Sha(t) + In2(t) + Rpa(t) 3
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are the total populations of non-adherent and adherent individuals, respectively. Adherent individuals are those
who strictly implement self-protective and vector control measures for dengue, while non-adherent individuals
do not. Similarly, the total mosquito population at time ¢, denoted by NN, (), is split into susceptible (.S, (t))
and infected (I, (t)) mosquitoes, so that

Ny(t) = Su(t) + Ly(t). 4
The equations for the model are given below (see Table | and Table 2 for descriptions of state variables and
parameters, respectively.)

dSh1

dt
dSh2

dt
dip

dt

dl
—h2 (1 —e)AnShe + alnt — valpna — pnlpa,
dt )

= (1 — pu)lp — @Sp1 — AnSh1 — rShis
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This system is constrained by these initial conditions
Sp1(0) = Sp1g = 0, Sp2(0) = Shao > 0, In1(0) = Inio > 0,
Ip2(0) = In2o = 0, Rp1(0) = Rp1o > 0, Rp2(0) = Rpao = 0, (6)
SU(O) = SvO > 07]1;(0) = IvO > 0.

In the model (5), we define II; as the rate at which individuals are recruited into the population through
birth or immigration, assuming that all newly recruited individuals are initially susceptible. Furthermore,
we assume that a proportion, p;, of these newly recruited individuals naturally adhere to the adoption of
self-protective and vector control measures for dengue. All individuals in the epidemiological compartments
experience natural mortality at a rate of .

Non-adherent individuals are assumed to undergo a positive behavioral shift towards adhering to mitigation
measures for dengue at a rate «(t), influenced by the community infection levels. This behavior component
of the model (5) is inspired by the approach and formulation in [13]. The rate «(¢) is determined by three
factors: the maximum behavioral change among non-adherent individuals due to community infection levels
(@), the probability of influencing non-adherent individuals based on community infection levels (1) and the
relative infection levels in the community. The relative infection level is modeled using a Holling Type-II

Iy (8)+1n2(t) i
KT+ @ t)), where K > 0 represents the half saturation constant of

infected cases. This behavioral change is expressed as:

- Ipa (t) + Ipa(2)
a(t) = am, (K + Ini(t) + IhZ(t)> . "

On contrary, it is assumed that adherent individuals will maintain their behavior regardless of the number of
susceptible and recovered population.

When a dengue-infected mosquito bites susceptible non-adherent individuals, it is likely to transmit dengue
at a rate \j, expressed as

saturation incidence function (

. ﬂbthv

A
h Nh )

®
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where 3 and b, are the average daily biting rate of female mosquitoes and the transmission probability of
humans acquiring dengue from the bites of infectious adult female mosquitoes, respectively. On the other
hand, adherent individuals acquire infection at a reduced rate (1 — €)\,, where ¢ is the efficacy of self-
protective measures in reducing contact with mosquitoes. Infected adherent and non-adherent individuals are
assumed to recover at rates y; and ~y9, respectively.

For the mosquito population, we let II, as the recruitment rate of mosquitoes and assume that all recruited
mosquitoes are susceptible. When a susceptible mosquito bites infected non-adherent and adherent individuals,
it is likely to acquire dengue at rates, A,; and Ao respectively. These rates are given by:

ﬁbhvjhl
A = ————
vl Nh )
N (1 —€)BbnyIn2 )
v2 — T a7
Np,
)\v = )\vl + )\1)2'

Here, by, represents the probability of mosquitoes acquiring dengue through the bites of infected individuals.
Both susceptible and infected mosquitoes experience a natural death rate of u, and an induced death rate
of 6, (t) due to public health interventions implemented by adherent individuals. This induced death rate is

given by:
< Npa(t)
(0= (). (10)

where d,, represents the maximum induced death rate of mosquitoes due to the actions of adherent individuals,
while 7, is the probability that mosquitoes will die as a result of the vector control measures implemented
by adherent individuals.

The flow diagram of dengue model (5) is depicted in Figure 1, and is constructed based on the following
assumptions:

1) Non-adherent individuals positively change behavior due to community infection levels.

2) Adherent individuals maintain their behavior regardless of the current disease prevalence and adopt
both self-protective and vector control measures.

3) There is only one circulating dengue virus serotype, and individuals develop permanent immunity after
recovery.

4) The recovery rate is identical for both infected non-adherent and adherent individuals.

5) All infected individuals progress the same stages of infection.

6) Human and vector populations are homogeneous, respectively.

Table 1: Description of the variables in the model.

Variables  Description

Sh1 Susceptible non-adherent human population
Sha Susceptible adherent human population
Iy Infectious non-adherent human population
Iho Infectious adherent human population
Rn1 Recovered non-adherent human population
Rpo Recovered adherent human population

Sv Susceptible mosquito population

I, Infectious mosquito population

Np, Total human population

N, Total mosquito population

The model (5) is an extension of numerous dengue transmission models by:

1) Incorporating a human behavioral change function into the disease dynamics based on infection levels.
2) Adding an induced mosquito death rate function to the disease dynamics based on the proportion of
adherent individuals in the community.
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Table 2: Description of the parameters in the model.

Parameters

Description

11
Hh

Ph
a(t)

Recruitment rate of susceptible human population

Natural death rate of humans

Proportion of newly recruited adherent humans

Transition rate from non-adherent humans to adherent at time ¢

Probability of influence of non-adherent humans due to the level of infected cases
Maximum rate of behavioral change of non-adherent humans due to the level of infected cases
Rate of force infection to humans

Transmission probability of humans contracting dengue from infectious mosquitoes
Biting rate of mosquitoes

Recruitment rate of susceptible mosquito population

Efficacy of self-protective measures

Recovery rate of non-adherent humans

Recovery rate of adherent humans

Rate of force infection to mosquitoes

Probability of a mosquito contracting dengue from infectious humans

Natural death rate of mosquitoes

Induced death rate of mosquitoes due to actions of adherent humans at time ¢
Maximum induced death rate of mosquitoes due to actions of adherent humans
Probability that mosquitoes will die due to actions implemented by adherent humans
Half saturation constant

3. MODEL ANALYSIS

97

In this section, we explore some important properties of the dengue model (5), including invariant regions,
positivity of the solution, stability analysis of equilibrium points, and the calculation of the basic reproduction

number.

3.1. Invariant region and positivity of solution
Consider the feasible region Q =, x Q, C R} x R?, with

Qn = {(Sh1, Sh2, In1, In2, Ru1, Ri2) € RS 1 N < —1,

Qy = {(Sv. I,) ERE : N, < —

Y

12)
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We have the following results for this feasible region.

Theorem 3.1. The region 2 = Qp xQ,, C ]R_6|r X ]Rf_ is positively invariant for the system (5) with non-negative
initial conditions as given in (6).

Proof: The summation of the mosquitoes and human populations of system (5) leads to

dNy,
—— =11, — upNp, 13
7 h— lnNp (13)
dN,
dt = H’U - ((S’U + MU)NU < H'U - Mlew (14)
Solving equations (13) and (14) for N, and N, yields the system bounded by N, < % and N, < Ev
Consequently, all feasible solutions of the system (5) enter the region
8 Hh IL,
Q = {(Sh1,Sh2, In1, In2; Rp1, Ru2, Sv, Iv) € RS : Nj < ;JW < 7} (15)
|

The next result shows that all solutions of the system (5) remain non-negative for all time ¢ > 0.
Theorem 3.2. Let the system (5) be subject to non-negative initial conditions. Then, the solution set
(Sna(t), Sha(t), In1 (), Ina(t), Rua(t), Rua(t), Su(t), In(t))
remains non-negative for all t > 0.

Proof: To show that the system (5) has non-negative solutions for all ¢ > 0, we will establish only the
positivity of Sp1(t). The positivity of the other state variables can be derived in a similar approach.
Suppose the initial conditions of the system are non-negative. Now, from (5), the following inequality
holds:

ds,
d;ﬂ > —(An + f1n)Sh1- (16)
Using the method of integrating factor, (16) becomes
d t
pn (Sh1(t)exp {/ AMu)du + uht}) > 0. a7
0
Hence,
t
Sp1(t) > Sp1(0) exp {— (/ Au)du + uht>} >0 (18)
0
for each t > 0. ]

Theorems 3.1 and 3.2 show that the system (5) is well posed and biologically meaningful.

3.2. Disease free equilibrium and basic reproduction number

Disease Free Equilibrium (DFE): This is the state solution where the population is free from dengue
infections, which is denoted as Ej. To determine the Ej, we let

E§ = (Sh10s Sh20s In10s Th2os Bhios Bh2os Soos Loo)- (19)
At equilibrium state, the derivatives in the system (5) are equal to zero, that is

dShl o dshg o d[h1 o d[hg o dRhl o dRhg o dSU - d]v

dt dt dt dt dt dt dt dt

=0. (20)
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This condition transforms the system (5) into
(1 = pn)lp — @Sh19 = AnSh1o — HnSp10 = 0,
prlly + aShi0 — (1 = €)AnShao — 1hShao = 0,
AwShio — 1o — Yilpio — prdpio = 0,
(1 = &)AnShao + alpig — Y2lpoo — tnlpag =0,
Yilp1o — R0 — pnRpi0 = 0, 21
Yolpao + aRp1g — pn o0 = 0,
Iy — AySgo — 0uSho — HuSpo = 0,
ASho — 0Ly — pwlng = 0.

Now, in the absence of dengue infections, we set I}, = I;4, = I, = 0. Solving for the state variables

in (21), we obtained
* * * * * * * * *
Ey = (Shloa Sh207[h10’Ih20>Rh10th207 vkoo)

1— pp), ppll I,
:(( ph) h7ph h705070703~70)7
Uh Uh OuTuPh + o

(22)

where Ny, = S5, + Sio- The following result follows directly from (22).
Theorem 3.3. The system (5) has a disease-free equilibrium, Ej which always exists.

To evaluate the stability of the disease-free equilibrium Eg, we first compute the dengue basic reproduction
number, denoted as Rg.

Basic Reproduction Number (Rp): This is a threshold measure that quantifies the expected number of
secondary infections generated by a single infectious individual in a fully susceptible population. In the context
of this study, R signifies the number of secondary dengue infections resulting from either the infected host
(I1 and I») or the infected vector (I,). We use the next generation matrix (NGM), G = FV 1 as described
in [27], to compute R by evaluating the dominant eigenvalue of the matrix G. Here, F and V represent
the Jacobian matrices related to the emergence of new infections (F) and the movement of individuals (V)
between the infected compartments, respectively.

In the system (5), the infected classes are Ij1, Ins, I,. Hence the following equations can be rewritten as

d [{m AnSh1 (@ +71 + pn)In
7 Ino| = |(1 = €)AnSha| — | (v + pn)ln2 — adp | = F =V, (23)
Iv )\vSv (61) +/J/U)[v
where
AnSh1
F=|1=e)ASh2|, (24)
AvSy
(a+v1 + pn)n
V= |(v2 + pn)ln2 — alp (25)
(00 + 110) 1y
Applying the linearization technique to these matrices F and ) evaluated at Ej, we obtain the following
Jacobian matrices of F and V:
0 0 whl
F=|0 0 4, (26)
1pvl ¢v2 0
Yrs 00
V=0 9 0/, 27
0 0 ¢v3
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where
Yp1 = Bbur(1 — pn),

¢h2 = (1 - E)ﬁbvhpih

o lflhﬂbhvnv
'l/}vl - < )
Hh(évTvph + ,va)
un = (1 — &) pnBbry1l, (28)
Hh(équ;Ph + ﬂv) ’
VYh3 =71+ L,
Yha =72 + fn,

¢v3 - gvTvph + Mo -

Evaluating the V~1, we have

f 0 0
h3 1
Vi=|0 5= 0]. (29)
1
O O va
Now, evaluating the next generation matrix G, we obtained
0 0 Yh1
Pu3
G=FV'=|0 0 =2/ (30)
Yu1 Py2
VYr3  Yha

Next, we need to determine the largest eigenvalue, A, of the matrix G. Evaluating the A of matrix G, we
obtained three eigenvalues:

A1 =0,
Ny = — Vo1¥r1¥na + Yo2¥natng
Yr3nathus ’ 31)
o | L1¥n10n4 + Yo2Pn2tng
’ Vh3nathus '

Choosing the dominant A\, we have

Ro=+vVRn +Ra, (32)

where
1bﬂulwhl
Ry = , (33)
N 1%3%3
Py2tPn2
Ra= . 34
A7 Pnathes (4
In summary, we have
Ry — Iy bnobon B2 pn (1 — pr) (V2 + pn) + obpobon B2 pnpn (1 — €)% (71 + pn) 35)
O (y1 + pn) (2 + ) (0o Topn + po)?

The basic reproduction number, Ry as defined in equation (32), can be decomposed into two distinct
components. The first component, Ry, represents the infection dynamics within the subpopulation Np;.
Conversely, the second component, R 4 characterizes the infection dynamics within the subpopulation Nps.
It is noteworthy that the basic reproduction number R is directly influenced by key epidemiological and
entomological parameters, specifically the mosquito biting rate (), the transmission probabilities from vector
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to host (b,y) and host to vector (by,), and the recruitment rate of the susceptible mosquito population
(II,). These parameters appear in the numerator of the expression for Ry, signifying their pivotal role in
amplifying transmission potential. An increase in any of these parameters leads to a proportional escalation
in the reproduction number, thereby increasing the likelihood of outbreak persistence. To further quantify the
impact of each parameter on R, a detailed sensitivity analysis is presented in Subsection 3.6. This analysis
elucidates the relative influence of each parameter, providing critical insights into effective targets for vector
control and disease mitigation strategies.
The next result shows the stability analysis of DFE, Ej.

Theorem 3.4. The disease-free equilibrium Ef of the system (5) is locally asymptotically stable if Ry < 1,
otherwise it is unstable.

Proof: To investigate the local stability of the DFE at Ej, we derive the following Jacobian Matrix of
the system (5),

—un O 0 0 0 0 0 —tnm
0 —Hh 0 0 0 0 0 —no
0 0 —vn3 0 0 0 0 Yh1
~_ | 0 0 0 —Vh4 0 0 0 PVh
JE)=10 0o 4 0 —pp O 0 0 | (36)
0 0 0 72 0 —pp, O 0
0 0 _wvl _va 0 0 _'¢'v3 0
0 0 wvl 1%2 0 0 0 *wUS
Clearly, the first two eigenvalues of the Jacobian matrix J(Eg), namely A; = —puy, (multiplicity of 4), and
Ao = —1),3 are all negative. To achieve a disease-free state, all the remaining eigenvalues must be negative.
The remaining three eigenvalues can be obtained by considering this submatrix
—tn3 0 Yn1
JE) =] 0  —tns tno (37)
wvl 1%2 _wv?)
From (37), the characteristic equations is given by
T = c3A® + e\ + e\ + ¢, (38)
where
C3 — 1,
Cy = + + YPyo,
2 = n3 + Yha + Vo2 (39)

€1 = Yp3V¥na + Vr3Wo3 + Vhathz — RNYR3Y3 — RAVhatbus,
co = Vn3¥naes — Rena¥natbys.

Applying the Routh-Hurwitz criteria (RHC) as discussed by [28], the following conditions must be satisfied
in (38): ¢g > 0, c1 > 0, co > 0, and c1ca > cg. The coefficient ¢y is always positive, while the coefficient c;
and ¢y can be positive or negative. We found that if Ry < 1, then both ¢; and ¢y are positive. From RHC,
this implies that J(E}) has negative real parts when Ry < 1. Consequently, Ej is locally asymptotically
stable if Ry < 1. [ |

3.3. Parameter estimation

In this subsection, we estimate the parameters of model (5) for dengue fever cases in Kaohsiung City,
Taiwan, using Berkeley Madonna’s Curve Fit function. This function employs the Nelder-Mead simplex
algorithm to minimize the root mean square difference between data and model predictions, efficiently
optimizing parameters without requiring derivatives, making it well-suited for nonlinear systems.

Taiwan experienced consecutive large dengue outbreaks during 2014-2015, primarily in Kaohsiung City
[29]. A total of 19,784 cases were reported in Kaohsiung in 2015, marking a 31.5% increase from the previous
year. The outbreak in Kaohsiung began in late July 2015, driven by the spread of DENV-2 [30]. Therefore,
daily reports of dengue fever cases from the third week of July to December 2015, obtained from [31] as
cited by [32], were used to estimate the following unknown parameters: pp, @127h, byh, B, €, bpy, 0y, Ty, and
K. The parameter p;, is calculated as the inverse of the life expectancy for 2015, which is obtained from
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Figure 2: Model fitting with the data. Red solid line represents the Model solution and bullet points
are the available data.

[33]. Meanwhile, IIj is estimated as the product of pu; and the total human population (Nj) of Kaohsiung
City, Taiwan, for the same year, as reported by [34]. The parameter 11, is estimated by multiplying s, with
the total mosquito population (IV,), where N, is assumed to be four times the total human population (/Vy,).

The model fit to the observed dengue fever data is presented in Figure 2, with the corresponding estimated
parameter values listed in Table 3. Model performance was quantitatively evaluated using the Root Mean
Squared Error (RMSE), which measures the average magnitude of the deviation between the observed data
and model predictions. The calculated RMSE of 33.4 indicates a reasonable level of accuracy in capturing the
outbreak dynamics. Given the scale and variability of the data, this error magnitude is acceptable and does
not significantly affect the reliability of insights derived for decision-making purposes. Using the parameter
values in Table 3, the basic reproduction number in Kaohsiung is Ry ~ 1.42. This value suggests a relatively
high potential for transmission, highlighting the importance of effective control measures to curb the spread
of dengue in this region.

Table 3: Values of the parameters in the model.

Parameters ~ Value Reference

11, 95 Estimated from [34]
Kh 0.000034 Estimated from [33]
Ph 0.1 Fitted

aTp, 0.11841 Fitted

buh 0.39986 Fitted
B 0.501 Fitted

11, 652596 Assumed in view of [35]
€ 0.45583 Fitted

" 1/6 [36]

72 1/6 1361

bho 0.10002 Fitted

oy 1/17 [36]

Oy Ty 0.22116 Fitted

K 25000 Fitted

3.4. Sensitivity analysis

In this section, we conduct a sensitivity analysis to evaluate how changes in the parameter values affect
on the value of Ry. Specifically, we compute the local sensitivity index of R concerning the parameter p.
This index is defined as:

ORo _ p

IR0 = —= x = 4
» o R (40)
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When the sensitivity index exceeds zero, it implies that the output rises with an increase in the input, and
conversely, it declines when the input decreases.

The results in (40) are visually depicted in Figure 3. The sensitivity analysis, based on the estimated values
found in Table 3, reveals that the most sensitive parameters are § and u,, while the least sensitive is ~s.
There are five parameters with positive indices, indicating that an increase in their values would raise the
value of Rg. These parameters include 3, upn, bpy, byn, and II,,. Conversely, the parameters i, I, ds,
Tvs Y1, V2, Ph. and e exhibit negative indices, suggesting that an increase in their values would lead to a
reduction in Rg.

Understanding the sensitivity of R to various parameters is crucial for developing effective dengue control
strategies [20]. The analysis indicates that R is particularly sensitive to the biting rate () and the death
rate of mosquitoes (u,). This high sensitivity underscores the importance of strategies aimed at reducing
the mosquito-human contact rate and increasing efforts to lower the mosquito population. Measures such as
the use of mosquito repellents, bed nets, and targeted insecticide spraying to reduce mosquito lifespan can
significantly impact R and, consequently, the overall transmission dynamics of dengue. This enhanced focus
on the most sensitive parameters, 5 and u,,, provides a clear direction for public health interventions aimed at
controlling and mitigating dengue outbreaks. Reducing the biting rate can be achieved through encouraging
everyone to practice self-protective measures, while increasing the mosquito death rate can be accomplished
through environmental management, chemical control, and biological control strategies. By prioritizing these
areas, it is possible to achieve a substantial reduction in dengue transmission and improve public health
outcomes.

4. NUMERICAL SIMULATION AND DISCUSSION

In this section, we perform numerical simulations of our model using the odeint function from the SciPy
library, which utilized the LSODA algorithm. LSODA is an adaptive solver that dynamically switches between
the non-stiff Adams method and the stiff backward differentiation formulas (BDF), enabling efficient and
robust integration across both stiff and non-stiff regimes within the system. The numerical results obtained
from odeint show excellent agreement with those generated by Berkeley Madonna, which uses a fixed-step
fourth-order Runge-Kutta (RK4) method.

In the simulations, we explore the effects of varying parameter combinations, particularly those related
to behavioral changes in response to community infection levels, on the transmission dynamics of dengue
fever. We utilize the parameter values provided in Table 3 and consider different values for parameters
associated with human behavioral changes. The initial conditions for the simulations are set as follows:
Sp1 = 2,634,855, Spo = 138,677, Ip1 =1, Ino =0, Rpy =0, Rpo =0, S, = 11,094,129, and I, = 3.
These conditions assume that 5% of the total human population N}, consists of adherent individuals, and the
total mosquito population is set to be four times larger than the total human population.

As a baseline, we first evaluate the model’s numerical solution under the assumption of no positive
behavioral change (when o = 0) in response to community infection levels. This baseline scenario is illustrated
in Figure 4.
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Figure 4: Numerical Solution of Model (5) in the Absence of Positive Behavioral Change (o« = 0): (a) Susceptible
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Mosquito population

The present study is developed under the assumption that only a single dengue virus serotype is circulating
in the population. Consequently, individuals who recover from infection are assumed to acquire lifelong
immunity, and reinfection is not considered. Under this framework, the absence of reinfection prevents the
establishment of an endemic equilibrium, as the susceptible population is progressively depleted over time.
As a result, despite the basic reproduction number exceeding one (1), the infection eventually dies out due
to the lack of replenishment of susceptibles. However, the model dynamics would fundamentally change if
additional factors were introduced, such as continuous migration of infected individuals, external introduction
of the virus, or the co-circulation of multiple dengue serotypes. In such scenarios, reinfection and partial
immunity could sustain transmission, thereby enabling the existence of an endemic equilibrium. Exploring
these complex dynamics represents a promising direction for future research.

4.1. Numerical solution of the model with positive behavioral changes

The numerical solution of the system (5) based on the parameter values in Table 3, as depicted in Figure 5,
provides valuable insights into how positive behavioral changes influence the dynamics of dengue transmission
during the 2015 dengue outbreak in Kaohsiung City, Taiwan. It is observed from Figure 5(a) and Figure 5(b)
that as the infected population increases, the adherent population also increases and stabilizes when there
are no infected cases. This observation aligns with the response to increasing dengue infection levels, where
non-adherent individuals tend to adopt self-protective and vector control measures, as depicted in Figure 6.
These measures include the utilization of mosquito repellents, bed nets, insecticides, wearing long sleeves,
and active participation in community clean-up drives aimed at reducing mosquito breeding sites.

Furthermore, a decreasing trend in the susceptible mosquito population, as depicted in Figure 5(d), is
associated with the concurrent increase in the adherent human population. These behavioral shifts effectively
reduce contact rates and the mosquito population, consequently decreasing the overall number of infected
cases over time. In contrast, the dynamics change significantly when positive behavioral changes are absent.
As depicted in Figure 4, the lack of these behavioral adaptations leads to higher transmission rates and
prolonged levels of infection, highlighting the essential role of proactive community measures in mitigating
dengue outbreaks.
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4.2. Dengue reduction

Here, we examine the reduction of dengue cases under three distinct scenarios, each associated with positive
changes in human behavior in response to infection levels: (1) adoption of self-protective measures only, (2)
adoption of vector control measures only, and (3) a combination of both self-protective and vector control
measures. We evaluate these scenarios against the cumulative number of infected individuals (C), represented
by the solution of the following differential equation:

% = A\Sp1 + (1 — 5)>\h5h2. “41)
Additionally, we present numerical solutions of the model with varying degrees of human behavioral changes,
efficacy of self-protective measures, and effectiveness of vector control measures.

Figure 7 presents the numerical solutions of the model where the efficacy of self-protective measures (¢)
and the effectiveness of vector control (9, 7,) are 0.45583 and 0.22116, respectively, and the degree of positive
behavioral changes (ay,) is set to 0.11841. The results showed that the adoption of vector control measures
provides better outcomes in reducing dengue cases compared to self-protective measures. Figure 7(d) shows
the numerical solution of Model (5) based on parameter values estimated from the reported daily dengue cases
in Kaohsiung, Taiwan. Despite the majority of the human population being non-adherent to the adoption of
self-protective and vector control measures, as depicted in Figure 5, the adoption on vector control measures
by a sufficient number of adherent individuals can prevent a large number of dengue cases. Notably, Figure
7(b) reveals that adopting self-protective measures alone leads to an initial higher number of dengue cases
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compared to the scenario with no positive behavioral changes depicted in Figure 7(a). This initial increase in
dengue cases is primarily due to the absence of vector control measures, which play a crucial role in controlling
infection rates. Despite the absence of positive behavioral changes, the vector control measures implemented
by the limited number of existing adherent individuals help to slow the progression of the infection as shown
in Figure 7(a). However, as shown in Figure 7(e), the small number of adherent individuals is insufficient to
effectively mitigate the dengue outbreak as time progresses and eventually exceeds the number of infected
cases observed with the adoption of self-protective measures alone.

Adoption of self-protective measures only, vector control measures only, and both strategies can reduce
the number of dengue cases by approximately 34.3%, 94.8%, and 96.3%, respectively. These reductions are
measured against the baseline cumulative number of infected cases observed in the absence of positive behav-
ioral changes. The findings indicate that positive behavioral changes toward adopting vector control measures
can substantially reduce dengue cases, provided these measures are highly effective. Intensive elimination of
mosquito breeding sites, for example, has proven to be a crucial strategy in reducing dengue incidence and is
the primary method for controlling dengue in Taiwan. However, achieving this level of effectiveness requires
active community involvement. Educating the community about identifying and eliminating vector breeding
sources is essential to enhance the efficacy of these control measures.

On the other hand, Figure 8(c) illustrates the influence of varying degrees of human behavioral changes
on dengue reduction. Numerical simulations suggest that increased awareness and adherence to established
self-protective and vector control measures result in a notable decrease in dengue cases. However, positive
behavioral changes alone do not guarantee a significant reduction in dengue infections if the adopted self-
protective and vector control measures are insufficient. To achieve a significant reduction in dengue cases, the
level of human behavioral changes must ensure that the actions taken to mitigate the disease are effective, as
indicated in Figures 8(a) and 8(b). This underscores the importance of educating individuals on the effective
methods of disease transmission mitigation. Additionally, addressing socio-economic challenges is crucial, as
these factors impact individuals’ ability to access necessary resources such as mosquito repellents, bed nets,
and insecticides, which are essential for self-protective and vector control measures. It is recommended that
governments provide/supplement these materials to ensure the high efficacy of the mitigation measures.
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5. CONCLUSIONS

In this paper, we propose and analyze a new mathematical model of dengue transmission dynamics that
incorporates human behavioral changes in response to community infection levels. We estimate the model
parameters using daily dengue case data from Kaohsiung City, Taiwan, for the year 2015 and perform a
sensitivity analysis to identify the most influential parameters that affects the basic reproduction number, Ry.
The sensitivity analysis reveals that the mosquito biting rate, mosquito mortality rate, and recovery rate of
infected non-adherent humans are the most influential parameters in reducing the reproduction number. This
highlights the need for public health interventions that focus on reducing mosquito-human contact through
increased awareness and adoption of personal protective measures, reducing mosquito populations through
community-based vector control efforts, and improving access to effective treatment and consultation for
infected individuals. Numerical simulations demonstrate that positive behavioral changes toward adopting
self-protective and vector control measures can substantially reduce dengue cases, provided these measures
are highly effective. Moreover, the simulations indicate that enhancing the degree of these behavioral changes
results in a significant reduction in dengue incidence. These findings emphasize the importance of public
health education campaigns that promote effective disease mitigation strategies and the necessity of providing
the necessary resources to enhance the efficacy of self-protective and vector control measures.

The proposed model can be extended by incorporating multiple DENV serotypes and including the aquatic
stages of mosquitoes. This extension will further improve in understanding the dynamics of dengue when
adaptive human behavior as a response of community infection levels is explicitly incorporated. Another
research direction will be to formulate an optimal control problem to determine the most effective combination
of strategies that significantly reduces the dengue burden while minimizing government expenses. The results
will provide policymakers with recommendations on cost-effective strategies for reducing dengue cases.
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