COMMUN. BIOMATH. SCI., VOL. 9, NO. 1, 2026, PP. 1-14 1

Analyzing Mask-Wearing Decisions Using Game Theory and the SIR
Model with a Replicator Equation in Post-Pandemic Situations

Yuki Novia Nasution':>*, Muhammad Abyan Rizqo', Nuning Nuraini'**-®>, Mochamad Apri',
Hadi Susanto?

' Department of Mathematics, Institut Teknologi Bandung, Bandung 40132, Indonesia
2Department of Mathematics, Khalifa University, Abu Dhabi 127788, United Arab Emirates
SDepartment of Mathematics, Universitas Mulawarman, Samarinda 75119, Indonesia
“4Center for Mathematical Modeling and Simulation, Institut Teknologi Bandung, Bandung, 40132, Indonesia
SPredictive Risk Simulation and Modelling, Institut Teknologi Bandung, Bandung 40132, Indonesia

*Email: yuki.novia.n@fmipa.unmul.ac.id

Abstract

During the COVID-19 pandemic, many countries implemented policies on using masks to control the
outbreak. This policy has been relaxed in almost all countries, after which. Respiratory disease outbreaks
re-emerged in several countries, including Indonesia. This article presents a game-theoretic model of mask
use by the community during the spread of the disease. Both the effectiveness of masks in preventing the
spread of the disease and the proportion of the infected population are included in the payoff calculation.
The model is combined a with the Susceptible-Infectious-Recovered (SIR) epidemic model with the replicator
equation. The model is also evaluated under Nash equilibrium conditions. Simulations are carried out to effect
of mask-wearing behavior on the incidence of acute respiratory infection in Jakarta. The results show that an
individual’s decision to use a mask is directly proportional to mask users. To reduce the number of infections,
more than 10% of the population need to wear masks when the disease first appears. In the Nash equilibrium,
we obtain a threshold value of the infected population at which the players decide not to use the mask. The
results suggest that when respiratory infectious diseases emerge, governments must implement a stringent mask
policy to control their spread and reduce infections.
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1. INTRODUCTION

Although the World Health Organization (WHO) revoked the global emergency status of the COVID-19
pandemic in May 2023, this does not imply that the disease no longer poses a threat. In the post-pandemic
era, the coexistence of COVID-19 with other respiratory illnesses, such as influenza and Acute Respiratory
Infections (ARIs), remains a significant concern. Several countries have documented cases of co-infections
involving influenza and COVID-19 [46], as well as a resurgence in influenza and ARI cases [22], [17], [32].
Consequently, efforts to mitigate the spread of these diseases remain critically important.

During the COVID-19 pandemic, numerous countries implemented non-pharmaceutical interventions (NPIs)
to mitigate the outbreak. Among these measures, mask-wearing was a prominent strategy [11]. Masks help
reduce viral transmission by limiting the release of viruses from infected individuals and reducing the
inhalation of viral particles by others [45]. The efficacy of mask-wearing in curbing the spread of various
respiratory infectious diseases has been extensively studied. For instance, research has demonstrated its role
in suppressing the transmission of COVID-19 [47], [13], influenza [9], [19], and pneumonia [26].

Other NPIs include social distancing, mobility restrictions, and lockdowns. These measures had a positive
impact in controlling the pandemic and the environmental conditions, including air quality [51], [15]. The
effects of social distancing and mobility restrictions on air pollution and emissions reduction have been
documented worldwide [6]. For example, an overall improvement in air quality was indicated in Northwest
China [51]. However, during the easing of NPIs, air pollution is reported to have rebounded, especially
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in industrial regions [15]. The rebound of air pollution requires attention because it increases the risk of
respiratory infections [23], [25].

According to data from the World Health Organization (WHO), in 2019, 99% of the global population
resided in areas with polluted air, with low- and middle-income countries experiencing the highest levels
of exposure [49]. By 2022, air pollution had reached alarming levels, with only 13 countries and territories
worldwide maintaining healthy air quality [39]. In 2023, Indonesia faced severe air pollution, which peaked
in August when Jakarta, the nation’s capital, was ranked as the world’s most polluted city [10]. This situation
demands urgent attention, as air quality has significant impacts on public health. Immediate measures must
be implemented to prevent further deterioration of the public health crisis.

Many critical decisions must be made, particularly during an outbreak, to mitigate the spread of infectious
diseases. These decisions can occur at various levels, ranging from individual choices—such as whether to
comply with a policy or recommendation—to collective actions within communities or nations. A powerful
mathematical framework for modeling such decision-making processes is game theory. Game-theoretic models
are regarded as essential tools for understanding and predicting human behavior in epidemics. [7] introduced
the concept of imitation dynamics to model vaccination behavior, employing replicator equations to describe
shifts in individual strategies. Subsequent research, such as [18], expanded this framework by incorporating
strategy changes governed by the Fermi function and simulating population dynamics on network structures.
[38] investigated the dynamics of behavioral changes in response to HIN1 awareness campaigns, and [35]
integrated social norms into imitation dynamics to better capture the influence of societal factors on strategy
adoption.

Several studies have employed game theory to simulate human behavior during epidemics, including
decisions related to vaccination [1], mask usage, and self-quarantine [36]. These approaches often combine
game-theoretic models with compartmental models to better capture the interplay between individual decision-
making and disease dynamics. For instance, [44] investigated community behavior regarding mask usage and
self-quarantine by integrating the Susceptible-Exposed-Infectious-Recovered (SEIR) model with evolutionary
game theory. Similarly, [3] applied game theory to study mask usage during the COVID-19 pandemic,
incorporating the risk of severe COVID-19 outcomes into the cost calculations within a Susceptible-Infectious-
Recovered (SIR) framework.

Further advancements in modeling decision dynamics have used replicator equations, which describe how
strategies evolve over time. These studies often merge compartmental models with replicator equations to
study the co-evolution of behavior and disease spread. For example, [5] developed a model combining
the Susceptible-Infectious-Recovered-Susceptible (SIRS) framework with replicator equations to represent
three distinct behavioral strategies. In another study, [27] modified the Susceptible-Undetected-Infectious-
Recovered-Death (SUIRD) epidemic model by incorporating replicator equations to evaluate the effectiveness
of public health measures during the COVID-19 pandemic. This research aimed to explore the relationship
between infection spread and individuals’ willingness to cooperate in response to an epidemic.

In this work, we investigate human behavior regarding mask usage in response to the resurgence of ARI
cases post-pandemic by combining the SIR compartmental model with game theory. Using incidence data
from Jakarta, Indonesia, we propose a novel approach to calculating payoffs that incorporates three key
factors: the proportion of infected individuals, the proportion of mask users, and the efficiency of masks. We
find that both the cost of using masks and the initial proportion of mask users significantly influence the
dynamics of the infected population.

2. MODEL FORMULATION

In this work, we construct a model that combines the classical SIR epidemic model with the replicator
equation to describe the interplay between the behavior of individuals and the epidemiological dynamics. We
assume that the infection rate will decrease when the proportion of mask users increases. The calculation of
the payoff in the mask game and the construction of the proportion of mask users are described as follows.

Consider a mask game involving n players, each of whom can voluntarily choose to either use or not use
a mask. In this game, every player has access to information about the proportion of infected individuals
among the n players, denoted by p;ins. The parameters and variables associated with this game are summarized
in Table I.

Each player is assumed to play with the same values of a, b, and c. To determine the values of a and b, we
use data from an experimental study conducted in [45]. The study found that when a non-spreader individual
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Table 1: Variables and parameters in the mask game.

Variable/Parameter Description Value
Ci Infected cost (the cost that needs to be paid by the susceptible people when they get infected) >0
Cluse Mask usage cost (the cost that needs to be paid when using a mask) >0
¢ = Cluse/Cj Relative cost C, s towards Cj with C; > 0 [0,1]
a Reduction factor resulting from protection when a non-spreader uses the mask [0,1]
b Reduction factor resulting from protection when a spreader uses the mask [0,1]

used cotton masks, the reduction in virus uptake ranged from 20% to 40%. In contrast, surgical masks and
NO95 masks reduced virus uptake by 50% and 80%—-90%, respectively. On the other hand, if a spreader used
a mask, cotton and surgical masks blocked more than 50% of the virus, whereas N95 masks demonstrated
even greater efficacy. In our study, we assume that the masks used in the community are made of cotton.
Consequently, we select a =1—0.3 =0.7 and b =1 —0.5 = 0.5 to reflect the effectiveness of cotton masks
in reducing virus uptake for non-spreaders and spreaders, respectively.

Here, the j—th player (j = 1,2,...,n), can find the proportion of mask users among the remaining players,
denoted by P. The cost incurred by the j—th player when deciding to wear a mask or not depends on the
type of individual they encounter. For simplicity, we assume that any individual the j—th player meets is a
spreader. Consequently, the relative cost c is applied only when the j—th player chooses to wear a mask.
Table 2 summarizes the costs associated with meeting a non-mask user or a mask user.

Using Table 2, we can compute the total cost paid by the j—th player for each decision. The total cost
is calculated by summing the costs incurred when the player interacts with both mask users and non-mask
users, as detailed in Table 3.

Table 2: The cost incurred by j-th player if they meet a user or non-mask user.

Cost
Mask user Non-mask user
use P pnr-a-b+c (1—P) pnr-a+c
no P - ping - b (1 = P) - Dinf

Table 3: Cost matrix of the mask game with n players.

Cost

use (1 =P+ P-b)-pinf-a+2c
no (1—P+P'b)'me

From Table 3, the j-th player will decide to wear a mask if
(1—P+4+P-b) pnr-a+2c<(1—P+P-b)- pins,
or equivalently,
2¢+ping- (a—1)-(1+(b—-1)-P) <O.
Let G, (P, pinf) be defined as
G (P, pint) = 2¢ + pins - (a— 1) - (14 (b—1) - P).

Thus, the j-th player will choose to wear a mask if G (P, pinr) < 0 and will not wear a mask if G (P, pinr) > 0.
Notably, G (P, pint) is linear with respect to P.

Next, we will investigate the strategy of each player in the Nash equilibrium. In this condition, we obtain
a stable state in which each player can identify the optimal strategy in a multiple-player interaction.
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Proposition 1. (Nash Equilibrium). In a mask game with n players, where every player adopts the same
values of a, b, and c, the Nash equilibrium occurs when each player decides to wear a mask with probability

P = mo {min { PS5} o)

Proof: The j-th player (j = 1,2,...,n) does not have a dominant strategy if
G]‘(P,pinf) = 26+pinf~ (a— 1) . (1+ (b— 1) P) = 0,

which yields
_ paf- (1 —a)—2c
P (1—a)-(1—10)

However, since P € [0, 1], the feasible value of P is

P’ = max {min {piih?f(i(l_;)a.) (I icb) , 1} 70} .

Without loss of generality, the same reasoning applies to the other n — 1 players.

Next, we show that if P < 0, the j-th player will tend not to wear a mask. If P < 0, then P’ = 0 or
P < P'. Given the condition G;(P, pint) = 0 and the linearity of G, (P, pint) With respect to P, it follows
that G (P, pint) > 0. Thus, the j-th player will prefer not to wear a mask.

Similarly, if P > 1, the j** player will tend to wear a mask. If P > 1, then P’ = 1 or P > P’. With
the condition G (P, pint) = 0 and the linearity of G;(P, pint), it follows that G, (P, pig) < 0. Thus, the j"
player will prefer to wear a mask.

Therefore, the Nash equilibrium is achieved when every player decides to wear a mask with probability

P = mo {min { PRS0 s o}
|

Next, we discuss the SIR model combined with the replicator equation. The general SIR dynamic model
is as follows [40]:

ds . BST

@ ST TN

dl . BSI (8BS

N L
dR

Z— R=~I1

7 R =71,

where the total population is N = S + I 4+ R. In this model, individuals are classified into one of three
compartments: susceptible (.5), infected (1), or recovered (R). We assume that after an individual is infected,
they proceed directly to the infection phase without an incubation period. The parameter 3 represents the
maximum transmission rate, and -y is the recovery rate.

The transmission rate [ is influenced by the proportion of mask users P. Specifically,

e If P =0, the transmission rate is 8 (i.e., no reduction due to mask usage).

e If P =1, the transmission rate is adjusted by the mask efficiency parameters a and b.
The transmission rate as a function of P is formulated as:

B(P)=F((a-b—-1)P+1).

Thus, the SIR dynamic model incorporating mask usage becomes

dS _ 4 _ Blla-b=1)P+1)SI

a7 N ’

dl . B(a-b—1)P+1)8I

== —~I 2
di N T @
d .

R_poa,

dt
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with positive initial conditions S(0) = Sy, I(0) = Iy, and R(0) = Ry.

Next, we discuss the replicator equation. The replicator equation describes the dynamics of strategy adoption
in a deterministic framework, assuming an infinitely large and well-mixed population [34]. In this context,
stochastic factors are ignored, and all individuals are considered homogeneous and interact uniformly.

We integrate the replicator equation with the mask game. Consider a game with n strategies, labeled
S =1,2,...,n. The n x n payoff matrix A has entries ay, representing the payoff for strategy s against
strategy ¢, where s,t € S. The proportion of players adopting strategy s is denoted by z,, with >°"_, x5 = 1.
The average payoff for strategy s is given by

n
fs = § Ttlst,
t=1

and the average payoff of the entire population is

¢=> wufe
s=1

The replicator equation is then expressed as [34]
dx
dt

For a game with two strategies, A and B, the dynamics of x4, the proportion of individuals choosing
strategy A, are given by

=iy =x,(fs— @), s=1,2,...,n. 3

ta =241 —=24)(fa— fB), 4)

where f4 and fp are the average payoffs for strategies A and B, respectively. By applying the replicator
equation in (4), the payoff matrix in Table 3, and py,y = %, the dynamics of the proportion of mask users P

can be written as
apP

dt_P:P(P—l)<2c+]{]-(a—1)-(1+(b—1)~P)). ©)

Thus, the full model combining the SIR dynamics with the replicator equation is

B((a-b—1)P+1)SI

§=- ~ : (©)
j:B((wal)PJrl)SI_vL D
. N

R=nI, ®)
P:P(P—l)(2c+fv-(a—1)-(1+(b—1)-P)). )

3. MODEL ANALYSIS

In Theorems 3.1-3.3 below, we will analyze the properties and behavior of this system. Theorem 3.1 is
established to ensure the mathematical and biological well-posedness of the model.

Theorem 3.1. Assume S(0),1(0), R(0) > 0. The solutions of the system (6)—(9) are contained in the set
K={(S,I,R,P)eR*:5>0,I>0,R>0,Pc[0,1]},
for all t > 0.
Proof: The solution of (7) is given by

1(t) = 1(0) exp </0t (5((‘“’ — DR = DS 'y) dT) .
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Thus, if I(0) > 0, then I(¢) > 0 for all ¢ > 0. Next, the solution of (6) is
t
B B B((ab—1)P(7) + 1)I(7)
S(t)—S(O)exp( /0 I dr|.

Since S(0) > 0, it follows that S(t) > 0. The solution of (8) is

R(t):/o ~I(T)dr.

Since I(t) > 0 and v > 0, we have R(t) > 0. The proof for P being contained in [0, 1] can be found in
[48]. [
_ Observe that the recovered compartment R is decoupled from the other variables. Moreover, since S +
I + R = 0, the total population /N is constant. Therefore, the number of recovered individuals R can be
calculated as R = N — .S — I. Consequently, the system (6)—(9) can be simplified to

B((a-b—1)P+1)SI

§=— = ,
i 5((a-b—]1\])P+1)SI o (10

P=P/P-1) <2c+;\;-(a—l)-(1+(b—1)-P)>.

Theorem 3.2. The disease-free equilibrium points for the system (10) are Eq = (k,0,0) and E; = (k,0,1),
where k € [0, N].

Proof: The equilibrium is obtained when the system satisfies S = 0, I= 0, and P = 0. In the disease-
free condition, I = 0, which implies / = 0 and S = 0 for any value of S(t). Let S(t) = k represent the
number of susceptible individuals in the disease-free condition, where k& € [0, N]. For P = 0 when I = 0,
we have P = 0 or P = 1. Thus, the disease-free equilibria are Ey = (k,0,0) and E; = (k,0, 1), where
k € [0, N]. [

Theorem 3.3. For the system (10),

1) Ey is locally asymptotically stable if % <.
2) Ej is an unstable equilibrium.

Proof: The Jacobian matrix for the system (10) evaluated at Ej has three eigenvalues:

k
)\1 = 0, )\2 = % -, and )\3 = —2c.

If ﬂ—l\’; < 7, then Ay < 0, and A3 < 0 for ¢ > 0. Since one eigenvalue is zero, we apply the center manifold
theorem. Using the change of variables S =z, [ = = + (% — ) y, and P = z, the system reduces to
de  f (ab—1)538% . (ab—1) (ab—1)5 58 4

- = | = 4 - 7 -
i N e x° + N Bx* + N +nyx .

This confirms that F, is a stable node. On the other hand, the Jacobian matrix evaluated at F; has three
eigenvalues:

_ Pabk
- N fY)

)\1 = 0, )\2 and )\3 = 2c.

For ¢ > 0, A3 > 0, which implies that F; is an unstable equilibrium. [ |
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4. SIMULATION

Simulation were conducted for two distinct models. In the first model, the probability of mask usage is
determined by the replicator equation, whereas in the second model, the probability of mask usage is fixed
at P,.. For the first model, the simulation was performed under two scenarios:

1) The parameter values are based on the ARIs incidence data for Jakarta, as presented in [2].
2) A higher value of /3 is used to represent a faster spread of ARIs, while all other parameter values
remain the same as in the first scenario.

Table 4: Cost values for simulation.

Variable/Parameter Value Source
Cost of surgical mask (Cls) IDR 1,200 [20]
Minimum cost of being infected (C'1) IDR 23,394,180 [37]
Average cost of being infected (C2) IDR 54,450,366 [37]
Maximum cost of being infected (C'3) IDR 142,717,333 [37]

C1 0.015 c1 = Cuse/Cl
C2 0.006 Co = CUEC/CQ
c3 0.0025 c3 = Cuse/C3

The effects of the initial proportion of mask users (Fp) and the cost ratio of wearing a mask and being
infected (c) on the mask game were investigated through simulations. For each of the scenarios mentioned
earlier, simulations were conducted for Py = 0.1 and Py = 0.5 with several values of ¢. We assume that
the cost of wearing a mask (Cys) is constant and equivalent to the cost of two surgical masks per day for
the entire duration of the simulations. The cost of being infected is derived from [37], which provides the
minimum, mean, and maximum costs of hospitalization, as shown in Table 4. Consequently, we define three
values of ¢: ¢q, ¢, and c3, calculated as the ratio of Cye to the minimum, mean, and maximum costs of
being infected, respectively.

Figure | illustrates the simulation results for the first scenario, where 5 = 0.079. As shown in Figure 1a,
for Py = 0.1, the mask game reduces the infected population by less than 1%. In this setting, we observe that
if 10% of the population initially wears masks, the mask game fails to significantly decrease the proportion
of the infected population. The proportion of mask users decreases before the outbreak, and only for c3 does
the proportion of mask users increase after the outbreak, reaching a maximum of 20% of the population, as
shown in Figure 1b.

The changes in the proportions of the infected population and mask users are more pronounced for Py = 0.5,
as depicted in Figures Ic and 1d. The mask game with ¢; and cs fails to reduce the peak infection but delays
the peak time. In contrast, the mask game with c3 successfully reduces the peak infection by 2% and also
delays the peak time. The proportion of mask users declines over time for c¢; and co, whereas for cs, the
proportion of mask users begins to increase once the peak infection time is reached. The maximum proportion
of mask users for c3 is approximately 40%.

Next, we examine the dynamics of the infected proportion in the first scenario for several values of P
with fixed values of c. For this simulation, we chose Py = 0.1,0.3,0.5, and 0.7 with ¢; and c3. As shown in
Figure 2, the mask game with a smaller value of ¢ (i.e., c3) reduces the proportion of the infected population
and produces a longer delay in the peak time. For c;, the mask game fails to reduce the proportion of the
infected population at any value of Py. In contrast, a distinct reduction in the proportion and delayed peak
time is observed for c3. For this value, the results indicate that a higher P, leads to a greater reduction in
the infected population. This suggests that when the cost ratio c is relatively low, more people tend to wear
masks if the initial proportion of mask users is larger.

The second simulation was conducted under the scenario of a more rapid infection. In this case, we set
the parameter 5 = 0.3, while the values of the other parameters remained the same as in the first scenario,
as shown in Tables | and 4. The simulation results for this scenario are presented in Figure 3. As shown in
Figure 3a, for Py = 0.1, the mask game can slightly reduce the proportion of the infected population. As
the outbreak progresses, the proportion of mask users in the game increases for all values of c. This result
reflects a different dynamic from the first scenario, as shown in Figure 1b, where the proportion of mask
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Figure 1: Simulation results for the first scenario.

users increases over time for both c¢; and co. Specifically, for c;, the proportion of mask users reaches its
peak when approximately 60% of the population wears a mask, after which it declines once the outbreak
is over. For cy, the proportion of mask users peaks at around 85% of the population and then decreases
gradually. For c3, the proportion of mask users peaks at approximately 90% of the population.

For Py = 0.5, as shown in Figure 3c, a smaller value of c can result in a greater reduction of the infected
population. The proportion of mask users for Py = 0.5 reaches over 70% of the population at its peak for
all values of c. From Figure 3b and 3d, we can infer that a higher Fy value leads to a higher maximum
proportion of mask users, suggesting that the initial proportion of mask users affects the overall proportion
of mask users in the population. These findings suggest that in situations where the disease spreads rapidly,
individuals are more likely to wear masks, regardless of the value of c.

Figure 4 illustrates the proportion of infections for different values of F, in the second scenario. We
observe that in this case, the mask game is effective in reducing the proportion of infections for all variations
of Fy. For both values of ¢, the minimum reduction in infections for ¢; is approximately 1%, whereas for
cs it is 3%. The maximum reduction for c; is approximately 9%, and for c3 it reaches 20%.
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Figure 2: Simulation results of the number of infections for several values of P, in the first scenario.

The dynamics of S(¢), I(t), R(t), and P(t) for both scenarios with Py = 0.50 and ¢ are shown in Figure
5. In the first scenario, as depicted in Figure 5a, not all members of the susceptible population are infected.
The maximum proportion of mask users is approximately 20%, which occurs after the outbreak’s peak. In
contrast, for the second scenario, the proportion of mask users increases as the proportion of the infected
population peaks, with the maximum proportion reaching approximately 90%. The decline in the proportion
of mask users in the second scenario is slower than in the first scenario. This suggests that individuals are
more likely to continue wearing masks during a more severe outbreak, even when the number of infections
begins to decrease.

The simulation results indicate that the mask game can reduce the proportion of the infected population
in the first scenario if the value of c is relatively small and P, exceeds 10%. In this case, two conditions
must be met for the mask game to affect the proportion of the infected population. First, regarding the value
of ¢, if the cost of being infected (Cj) is constant, then the cost of using a mask (Cs) must be minimized.
Second, regarding the P, value, at time ¢ = 0, more than 10% of the population must be using masks.

On the other hand, in situations where the disease spreads more rapidly, we observe that for Py = 0.10,
the reduction in the proportion of infections (Figure 3a) varies only slightly with c¢. This indicates that if
10% of the population initially wear masks and Cj is assumed to be constant, the cost may not significantly
influence an individual’s decision to wear a mask. In Figure 4, we observe that a higher P, can significantly
reduce the proportion of infections. Therefore, in such situations, a high initial proportion of mask users is
necessary to reduce infections effectively.

In the second model, each player adopts strategy P,e, as described in model 9, where P = P,.. For
the simulation, we selected 8 = 0.079, v = 0.035, and the values of ¢ as c¢o and c3. Figure 6 presents
the simulation results for this scenario. From the results, we observe that the mask game can reduce the
proportion of the infected population relative to the situation without it. The mask game with co can reduce
the proportion of the infected population by up to 5%, whereas c3 can reduce it by up to 13%. However, the
proportion of the infected population in the mask game decreases more slowly than without the mask game
after both reach their peak values for both ¢ values.

The proportion of mask users in the mask game with co peaks at 35% and then continues to decline.
This proportion reaches zero when the proportion of the infected population, depicted in Figure 6a, reaches
13%. For c3, the proportion of mask users peaks at 65% and then continues to decline, reaching zero when
the infected proportion drops to 4%. For both values of c, the proportion of mask users increases as the
proportion of infected individuals rises.

In the mask game with strategy P, it is observed that with ¢y, individuals tend to avoid mask usage when
the proportion of infections is below 13%, whereas for c3, they decide not to use a mask when the proportion
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Figure 3: Simulation results for the second scenario.

of infections is below 4%. These results show that despite the still high proportion of infections under the
Nash equilibrium, individuals are less likely to wear masks when the ¢ value is higher.

Several studies have explored incorporating behavioral factors such as social distancing and mask wearing
into the SIR model to describe the disease transmission. Using the SIR model, the impact of social distancing
on disease spread was investigated in [33], [14], [12]. Similarly, the role of mask-wearing in mitigating the
spread of COVID-19 was examined using a compartmental model in [28], [50].

The application of game theory to NPIs during the COVID-19 pandemic has been extensively studied. For
example, [52] and [ 6] employed imitation dynamics to analyze behavioral changes during the pandemic. The
framework of evolutionary game theory has also been used to examine compliance behaviors under lockdown
measures, accounting for both symptomatic and asymptomatic cases, as well as counter-compliance effects
[21]. Evolutionary game theory has also been applied to a range of NPIs, including quarantine policies [1],
[44], social distancing [3 1], mask-wearing [31], [44], vaccination efforts [42], and other general NPIs [41].

Social and psychological factors will likely influence individuals’ decisions to wear masks. Social impli-
cations, such as stigmatization may deter individuals from wearing masks, even in the context of an outbreak
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Figure 4: Simulation results of the number of infections for several values of Py in the second scenario.
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Figure 5: The dynamics of S(t), I(t), R(t), and P(t) for Py = 0.1 and c3 for the first scenario with 8 = 0.079 in (a)
and the second scenario with 8 = 0.3 in (b).

[8]. Additionally, observing the behavior of others may influence mask-wearing decisions, as individuals
may be more likely to wear a mask if others are doing the same [30]. Moreover, discomfort associated with
mask-wearing, such as difficulty breathing or speaking, may contribute to an individual’s reluctance to wear
a mask [24].

Our model displays a social dilemma structure, characterized by the Nash Equilibrium (NE) and Social
Optimum (SO), which are essential for understanding individuals’ strategic decisions. This concept is further
quantified by the Social Efficiency Deficit (SED), as introduced by [4]. The SED measures the extent to which
the payoff can be improved from NE to SO, determined by the difference between the payoffs at SO and NE
[43]. [44] highlighted that a higher SED value in mask-wearing behavior indicates a more pronounced social
dilemma. In particular, when the cost of wearing a mask is low, individuals may be more likely to forgo
mask usage and act as “free-riders”, which worsens the dilemma. Additionally, [29] examined the effects of
risk perception and costs associated with three intervention strategies: awareness, vaccination, and treatment.
Their results suggest that as the costs of vaccination and awareness increase, the social dilemma becomes
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Figure 6: The simulation result when players play with strategy Phe.

more pronounced, reaching its peak when both costs are at their highest. According to their SED analysis,
higher awareness, and increased vaccination efforts, when costly, can unintentionally make the social dilemma
more difficult to resolve.

Our findings demonstrate that a large initial proportion of mask users can significantly reduce infection
levels. This aligns with the concept of mask-wearing as a social contract as stated in [8], according to which
high compliance is essential to avoid stigma and ensure collective benefits. This idea is further supported in
[30], which found that mask-wearing behavior is strongly influenced by social conformity that is, individuals
are more likely to adopt mask use when the proportion of mask users in the population is high. Our results
thus reinforce the importance of fostering social norms to promote mask-wearing as a preventive measure.
Additionally, our study finds that minimizing the cost of mask use is vital to ensuring widespread adoption.
This finding is consistent with [31], in which it was argued that when highly effective face masks are made
affordable and their collective benefits are clearly communicated, mask compliance within society increases
significantly. The agreement between our findings and the results of prior studies shows the relevance of our
work in the broader context of behavioral and epidemiological research.

5. CONCLUSION

In this study, we examined the impact of mask-wearing on controlling the spread of respiratory infections.
By integrating a game-theoretic framework with the SIR epidemic model, using a replicator equation, we
demonstrated that mask usage substantially reduces the incidence of respiratory infections, especially during
the early stages when the number of infections remains relatively low. Our findings indicate that both the
initial proportion of mask users within a population and the cost associated with wearing a mask significantly
influence the extent of the outbreak. This suggests that in scenarios where the disease spreads rapidly, it is
essential for governments to implement and enforce mask-wearing policies, taking into account the cost of
wearing masks, to mitigate the transmission of infections.
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