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Abstract

Chlamydia is a widespread sexually transmitted infection in Europe, often leading to complications such
as rectal discomfort, throat inflammation, and reactive arthritis. This study presents a novel nonlinear delay
differential equation model that enhances the classical SEIAISR framework to more accurately represent
Chlamydia transmission dynamics. The model integrates biologically justified exponential time delays to
reflect incubation periods and the delayed impact of interventions like condom use, routine screening, partner
reduction, and microbiome health. We establish the existence and uniqueness of solutions using the Banach
fixed point theorem and analyze the model’s dynamics by computing the basic reproduction number and
studying equilibria and their stability via Lyapunov functions and Routh-Hurwitz criteria. A sensitivity analysis
identifies key epidemiological drivers. For numerical simulation, we employ Euler’s method, the Runge-Kutta
4th order (RK4) method, and a specially developed non-standard finite difference (NSFD) scheme. The NSFD
approach preserves critical properties such as positivity and stability, making it suitable for realistic long-term
predictions. Results highlight the importance of timely interventions and show the superiority of structure-
preserving numerical methods. The findings support the development of more targeted and effective strategies to
reduce chlamydia transmission and complications among high-risk groups, reinforcing evidence-based decision-
making within the healthcare system.
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1. INTRODUCTION

In 1907, radiologist Ludwig Halberstadter and pathologist Stanislaus von Prowazek had discovered Chlamy-
dia [1], [2], a sexually transmitted infection (STI) caused by a bacterium known as Chlamydia trachomatis
(CT) [3]. In 2017, England recorded more than 203,116 new infections, compared to 44,676 for gonorrhea
and 7,137 for syphilis [4]. The national screening program of Chlamydia concluded more than 126,000
Chlamydia cases among those aged 15 to 24. Although 80% of infected women remain asymptomatic, they
can experience episodes of infertility due to blockage of the fallopian tubes [5]. In 1970s, Chlamydia was
first known as a specific sexually transmitted disease (STD), but it remained unreported till 1988 [5]. Since
1990, cases have been reported regularly in sexually transmitted infection statistics, with a total of 34,000
new cases reported. After 1995, this number started to increase significantly, hitting 100,000 in 2003. In
2020, there were 128.5 million cases reported globally [6]. The sharp increase seemed to be genuine due to
a rise in the number of sexual partners pursuing fertility treatment, and that youngsters have a high number
of sexual companions. Demand for fertility services such as vitro fertilization and infertility treatment [7]
has increased. With better sensitivity and particular diagnostic criteria, many cases of Chlamydia have been
detected.

STDs, STIs, or sometimes called venereal diseases normally spread by direct contact with bodily fluids or
genitals [8], [9]. CT is a bacterium that causes Chlamydia infection by spreading through vaginal, anal or oral
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sex. Chlamydia refers to a limited category of immotile coccoid bacteria [10] that are driven in eukaryotic
cells to become intracellular parasites. Once the bacteria has entered a host, the mucous membrane of cells
is affected by the bacteria. These are wet and soft tissues that are not covered by the skin of the human
body such as the vagina, rectum, endometrium, the surfaces of the urethra, cervix, anus, eyelid membranes,
abnormalities in the throat and fallopian tubes [11]. Commonly, the infection occurs in the endocervix of the
woman. This infection is currently happening to almost 5 percent of women. Chlamydia can be transferred
from an infected mother to her child [12] during vaginal birth, and it can result in pneumonia or neonatal
eye infections for the latter [13]. These days, Chlamydia is becoming a common STD in men especially
those who are young and sexually active. Almost 20 percent of men who have herpes are playing a major
role to spread Chlamydia. Due to insufficiency of several metabolic paths, the cells of Chlamydia are not
able to accomplish energy metabolism. As a result, they are completely dependent on a host cell that can
provide them with Adenosine Triphosphate (ATP) or another antibody for energy [14]. Due to its dependency
on the bio-synthetic machinery of the host, Chlamydia was initially misidentified as a virus. However, upon
extensive studies, chlamydia is found to have a cell wall, deoxyribonucleic acid (DNA) that carries genetic
information, ribosomes that are responsible for protein synthesis, and ribonucleic acid (RNA) which involves
in coding, decoding, regulation and expression of DNA. Hence, it is classified as a bacterium. There are two
variations of Chlamydia species that can cause STDs in humans namely CT and Chlamydia pneumoniae (also
called the TWAR organism) while the other variation, Chlamydia psittaci, infects a wide range of mammals
and birds[15], [16], [17].

More than 95 percent of infected people will recover if they take antibiotics properly. However, some of
the STIs remain resistant to antibiotics, making the infections complicated and difficult to cure [18]. The
easiest way to fight against Chlamydia is by preventing the spread from person to person. Infected people
are to refrain from any sexual activity with all sexual partners until the infection is cleared. It is common
for people to have multiple STDs, and it is crucial to receive therapy that is appropriate for each infection.
For such diseases, precautionary measurements and antibiotic prescription are the basic treatment plan. There
are some home-made remedies that are beneficial to reduce the symptoms Echinacea plant can increase
immunity level and help to fight against various bacterial and viral infections [19]. However, since this plant
can only manage the symptoms, it has to be used together with the prescribed antibiotics. Goldenseal plant
can also be used to reduce STIs such as gonorrhea and Chlamydia. Olive leaf extract or olive tree extract is
another candidate known to reduce pain and inflammation. However, more research on the effectiveness of
these plants in treating STDs are needed. Chlamydia infection requires extensive care and effort since it has
complicated, severe health impacts as well as dangerous social implications.

To understand the mechanism of the disease’s like chlamydia spread at the community level, several
scholars have examined the illness using mathematical models [20], [21], [22]. Wilson [23] demonstrated a
disease Chlamydia infection model that represents the scatters of infection inside human cells. Additionally,
the cause of developmental cycle of the Chlamydia and the hypotheses on the pathophysiology of the disease
based on the model were discussed. Adetunde et al. [24] evaluated the effect of CT bacterial infections
in people. Mushayabasa [25] conducted a thorough analysis of a deterministic model and evaluated the
epidemiological effects of co-infection of gonorrhea and Chlamydia. Sharomi and Gumel [26], [27], [28]
described the changing patterns of CT transmission. Recently, Samanta and Sharma [29] performed an analysis
of a model of a delayed Chlamydia outbreak using pulse vaccination. There are many mathematical models
established for this disease [30], [31], [32]. The canonical approach has been adopted to model the force
of infection [33], [34]. More advanced models include vaccination and other infections [35], [36], [37],
[38], [39]. In order to completely understand the behavior of the disease, solutions for the mathematical
models should be generated. Numerical methods become crucial to generate them since exact solutions
are complicated and almost impossible to calculate. Dynamical systems often demonstrate few necessary
features like boundedness, positivity etc. Good numerical methods preserve these physical properties. To
solve dynamical systems, different authors used various techniques [40], [41], [42]. Mathematical modelling
by delay differential equations is essential in the field of epidemiology, particularly for tackling real-world
challenges like viral diseases as well as by neural networking [43].

The primary objective of this research is to develop a novel Chlamydia epidemic model that incorporates
exponential time delay, providing a more realistic representation of disease dynamics. To achieve this, we
extend the Chlamydia epidemic model [44] by incorporating a exponential time delay. Unlike previous
models, our approach explicitly accounts for delay-induced stability shifts, offering deeper insights into
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the long-term behavior of the epidemic. The model’s theoretical properties, including equilibrium analysis,
sensitivity analysis and stability conditions, are rigorously examined to ensure its reliability. The inclusion
of time delay significantly influences the epidemic’s progression, affecting both equilibrium states and long-
term stability. Additionally, an efficient numerical approach is applied to examine the resulting nonlinear
delay differential equation system. Numerical simulations are performed as a secondary step to illustrate
the model’s behavior and validate its theoretical predictions. In recent years, various numerical techniques
have been employed to study infectious disease models, including Euler’s method, RK4 methods, and finite
difference schemes. However, these classical methods often fail to preserve essential qualitative features of the
underlying biological system, such as positivity, boundedness, and dynamical consistency, especially when
applied to models involving delay or nonlinearity. In contrast, the Nonstandard Finite Difference (NSFD)
method, introduced by Mickens [46], has shown significant advantages in accurately capturing the long-
term behavior of epidemic models [47]. The NSFD approach ensures that solutions remain non-negative and
biologically meaningful, regardless of the chosen time step. This is particularly important in disease modeling,
where negative population values are non-physical and can lead to misleading conclusions [48], [49], [50],
[51]. Moreover, NSFD schemes can be adapted to preserve equilibrium points and their stability properties,
which is often not guaranteed in standard methods [52], [53], [54]. In our study, the application of the NSFD
method to a time-delay Chlamydia model not only improves numerical stability but also provides more reliable
and realistic simulations that align with theoretical predictions. Compared to other established approaches,
our method offers a robust and structure-preserving framework, making it especially suitable for modeling
infectious diseases with delay dynamics. This superiority justifies the choice of NSFD for the current work
and lays the groundwork for further extensions into fractional, stochastic, or spatio-temporal domains. Unlike
classical methods such as Euler and RK4, the NSFD scheme satisfies generalized stability and convergence
criteria for nonlinear problems, as discussed by Ciegis et al. [55]. This ensures numerical solutions remain
stable and biologically consistent even with larger step sizes, making NSFD a more robust tool for modeling
Chlamydia dynamics. To our knowledge, this is the first time such a delayed epidemiological model for
Chlamydia has been analyzed in this specific form, particularly with its novel stability characterization and
equilibrium assessment. Furthermore, to the best of our knowledge, this model has not been previously solved
using the NSFD method.

The paper is arranged as follows: A literature review on infection with a concise background about and
similar to Chlamydia is outlined in Section 1. The modification of an existing Chlamydia epidemics model
is presented in Section 2; the equilibrium points, existence and uniqueness of model solution are explored in
Section 3. The reproductive number and its parameter sensitivity are addressed in Section 4. The local and
global stability of the system are discussed in Section 5. Investigation of the NSFD scheme’s convergence
along with the results of numerical simulations at different points are presented in Section 6. Lastly, this
paper is concluded in Section 7.

2. DELAY MATHEMATICAL MODEL

Chlamydia disease impact may be further controlled if delay strategies are implemented on humans. For this
purpose, we have incorporated τ as exponential time delay rate factor that can reduce disease spread, and the
negative sign with µ indicates that our problem is an initial value problem, moving toward initial values when
the delay term is applied. A model from [44] is selected and interventional measures between susceptible
and infected humans are applied. The model formulation uses the following compartmental information
• S(t) represents the susceptible community.
• E(t) indicates the exposed community.
• IA(t) describes the community in Asymptomatic phase.
• IS(t) describes the individuals in Symptomatic phase.
• R(t) represents the number of recovered individuals.

The host population of size N(t) consists of susceptible S(t), exposed E(t), asymptomatic IA(t), symp-
tomatic humans IS(t), as well as individuals who have recovered R(t), defined as

Population (N) = Susceptible + Exposed + Asymptomatic + Symptomatic + Recovered (1)

Let Λ represent the rate at which new individuals join the susceptible category, influenced by factors such
as recruitment or the birth rate of the susceptible population. The transmission of the disease occurs when
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individuals move from the susceptible group to infected asymptomatic group through direct connection with
the infectious community with the rate of β1. Similarly, transmission from the susceptible compartment to the
infected symptomatic compartment happens at a rate of β2 due to direct interaction with infectious persons.
The parameter µ represents the intrinsic mortality rate of the susceptible community. Additionally, α denotes
the proportion of the recovering class that remains susceptible to reinfection. Hence, the total variation in
the number of susceptible hosts is described using the differential equation below

dS

dt
= Λ− β1SIAe

−µτ − β2SISe
−µτ − µS + αR.

In the exposed class, τ represents the time delayed to the direct transfer of the infection in both the
asymptomatic and symptomatic compartments, and the negative sign with µ indicates that our problem is
an initial value problem, approaching toward initial values when the delay term is applied. The terms ρη
is the ratio of the individuals who do not have the symptoms of Chlamydia infection but still can infect
other individuals and transfer to the group IA. µ represents the natural death rates, affecting the exposed
community. The change in the exposed population E(t) over time is described by the differential equation
(DE)

dE

dt
= β1SIAe

−µτ + β2SISe
−µτ − ρηE − µE.

The individuals infected from infection but without symptoms belong to the compartment IA. The terms ρη
is the remaining fraction of the individual who does not show symptoms of Chlamydia infection but still
have ability to infect others and transfer to the community IA. The rate of recovery in this compartment is
denoted by kr1, after these individuals move to the class R. So, the DE for the system at change in infected
community in asymptomatic phase IA is

dIA
dt

= ρηE − (r1 + µ)IA.

The individuals infected from infection showing symptoms of infection, enter to the compartment IS . (1−ρ)η
is the newly infected individual’s fraction who will start to adopt symptoms of Chlamydia disease and transmit
to the group IS . The rate at which the asymptomatically infectious individuals eventually show disease
symptoms transfer to the group IS is represented by (1−κ)r1. The death rate in this compartment is denoted
by µ, r2 is the rate at which the infectious individuals showing symptoms of Chlamydia (in symptomatic
phase) clear infections and migrate to the class R. Thus, for the rate of change of infected individuals in
symptomatic phase IS , the model differential equation is

dIS
dt

= (1− ρ)ηE + (1− κ)r1IA − (r2 + µ)IS .

The individuals recovered from infection transfer to the class R. The ratio at which infected individual
in asymptomatic phase not showing symptoms of Chlamydia infection, recovered is κr1. r2 represents the
proportion of infectious individuals in the symptomatic phase of Chlamydia who recover and transition to
class R, while the intrinsic death rate µ impacts the recovered individuals. The ratio of recovered class that
become susceptible again is α. Therefore, the DE representing this mechanism in recovered community is

dR

dt
= κr1IA + r2IS − µR− αR.

Numerical and graphical analyses for this model were conducted using the parametric dimensions shown in
Table 1.

Figure 1 displays the extended, proposed chlamydia model after adding the exponential delay factor. The
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Table 1: Parametric values used in this study.

Parameters DFP / EEP Reference

Λ 1.12 [44]
β1 0.1 [44]
β2 0.15 [44]
µ 0.15 [44]
α 0.5 [44]
η 0.5 [44]
ρ 0.7 [44]
r1 0.7 [44]
r2 0.8 [44]
κ 0.7 [44]
τ ≥ 0 Assumed

Figure 1: Chlamydia delay model.

accompanying system of delay differential equations is as follows

dS

dt
= Λ− β1SIAe

−µτ − β2SISe
−µτ − µS + αR, (2a)

dE

dt
= β1SIAe

−µτ + β2SISe
−µτ − ρηE − µE, (2b)

dIA
dt

= ρηE − (r1 + µ)IA, (2c)

dIS
dt

= (1− ρ)ηE + (1− κ)r1IA − (r2 + µ)IS , (2d)

dR

dt
= κr1IA + r2IS − µR− αR, (2e)

with starting points

S(0) > 0, E(0) ≥ 0, IA(0) ≥ 0, IS(0) ≥ 0, R(0) ≥ 0. (2f)

Here t ≥ 0, τ ≤ t.
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3. MODEL ANALYSIS

In this segment, a conceptual analysis of the dynamics exhibited by Chlamydia infection are calculated. This
analysis consists of model properties, namely the positivity, boundedness of solution and model equilibrium
states.

Theorem 3.1. The proposed model 2 of disease possesses a non-negative solution for non-negative initial
conditions for all t ≥ 0.

Proof: Consider the differential inequality for the susceptible population S:

dS

S
≥ −

(
β1IAe

−µτ + β2ISe
−µτ + µ

)
.

To show that S(t) ≥ 0 for all t ≥ 0, given that S(0) = S0 ≥ 0, both sides are integrated with respect to t
over the interval [t, t0]: ∫ t0

t

dS

S
dt ≥ −

∫ t0

t

(
β1IAe

−µτ + β2ISe
−µτ + µ

)
dt.

Evaluating the integral on the left side yield

ln
S(t0)

S(t)
≥ −

(
β1e

−µτ

∫ t0

t

IA(t) dt+ β2e
−µτ

∫ t0

t

IS(t) dt+ µ(t0 − t)

)
.

Substituting t = t0 and S(t0) = S0 leads to

ln
S0

S(t)
≥ −

(
β1e

−µτ

∫ t0

t

IA(t) dt+ β2e
−µτ

∫ t0

t

IS(t) dt+ µ(t0 − t)

)
.

Since the integrals over a zero-length interval are zero,∫ t0

t

IA(t) dt = 0,

∫ t0

t

IS(t) dt = 0,

and (t0 − t) = 0, the inequality simplifies to

ln
S0

S(t)
≥ 0.

Exponentiating both sides yields
S0

S(t)
≥ 1.

Thus,
S0 ≥ S(t).

S0 ≥ 0 from the initial condition and S(t) ≤ S0. As a result, S(t) ≥ 0 for all t ≥ 0. Therefore, the model’s
solution S(t) is non-negative for all t ≥ 0, provided that the initial condition S(0) = S0 ≥ 0.
Also, we can analyze positivity as

dS

dt

∣∣∣∣
S=0

= Λ+ αR ≥ 0,
dE

dt

∣∣∣∣
E=0

= β1SIAe
−µτ + β2SISe

−µτ ≥ 0,

dIA
dt

∣∣∣∣
IA=0

= ρηE ≥ 0,
dIS
dt

∣∣∣∣
IS=0

= (1− ρ)ηE + (1− κ)r1IA ≥ 0,

dR

dt

∣∣∣∣
R=0

= κr1IA + r2IS ≥ 0,

which indicates that the system maintains positivity under the given initial conditions (2f).
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Theorem 3.2. Solutions of the proposed system are all bounded in feasible region Ω.

Proof: Let the total population N(t) = S(t) + E(t) + IA(t) + IS(t) + R(t). Summing the differential
equations yields

dN

dt
= Ṡ + Ė + ˙IA + İS + Ṙ.

Substituting the right-hand sides of the equations, we get

dN

dt
= Λ− µ(S + E + IA + IS +R).

Upon simplifying the equation, we obtain the following linear differential equation

dN

dt
= Λ− µN(t).

In order to solve it, the variables are separated and integrated to become∫
dN

Λ− µN
=

∫
dt.

Integrating both sides, we obtain

− 1

µ
ln (Λ− µN) = t+ C.

Exponentiating both sides gives

Λ− µN = Ce−µt.

Solving for N(t), we find

N(t) =
Λ

µ
+

(
N(0)− Λ

µ

)
e−µt.

As t→ ∞, the exponential term e−µt → 0, implying:

N(t) → Λ

µ
.

Thus, N(t) ≤ Λ
µ for all t ≥ 0. Therefore, the whole population N(t) is bounded and satisfies 0 < N(t) ≤ Λ

µ .
This ensures that all solutions remain within efficient region Ω

Ω =

{
(S(t), E(t), IA(t), IS(t), R(t)) ∈ R5

+ | 0 < N(t) ≤ Λ

µ

}
. (3)

3.1. Model Equilibrium Points

The system will be illustrated with two different forms of equilibrium, indicated by ε0 and ε1, which
represent disease-free (DF) and endemic equilibrium (EE) points, respectively.

ε0 = (S0, E0, IA0 , IS0 , R0) = (Λµ , 0, 0, 0, 0),

ε1 = (S1, E1, IA1 , IS1 , R1) = (S∗, E∗, I∗A, I
∗
S , R

∗),
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with coordinates,

E∗ =
(r1 + µ)I∗A

ρη
, I∗S =

[(1− ρ)(r1 + µ) + ρ(1− κ)r1]I
∗
A

(r2 + µ)ρ
,

R∗ =
[κr1(r2 + µ)ρ+ r2((1− ρ)(r1 + µ) + (1− κ)ρr1)]I

∗
A

( µ+ α)(r2 + µ)ρ
,

S∗ =
(r1 + µ)(r2 + µ)(ρη + µ)

ηe−µτ [β1ρ(r2 + µ) + β2((1− ρ)(r1 + µ) + ρ(1− κ)r1)]
,

I∗A =
Λ(1− 1

R0
)ρη(r2 + µ)(µ+ α)

g
.

Here R0 > 0 and,
g= (Λµ

1
R0
β1(1−e−µτ )ρη(r2+µ)(µ+α)+β2

Λ
µ

1
R0
η(µ+α)[r1+µ(1−ρ)−ρκr1](1−e−µτ )+[−αη(ρr1(1−

κ+ µκ)) + r2(r1(1 + ρκ− ρ) + µ(1− ρ))] + (r2 + µ)(µ+ α)(ρη + µ)(r1 + µ)).

3.2. Existence and Uniqueness

This section represents the uniqueness and existence of the model’s solutions using the Banach’s fixed
point theorem. The first step is to demonstrate that the solution

(S,E, IA, IS , R),

along with the initial conditions (2f), are both bounded and non-negative for all t ≥ 0. Given that all model
parameters are positive, we can consider the following equations

dS

dt
≥−

(
β1IAe

−µτ + β2ISe
−µτ + µ

)
S

⇒ dS

S
≥−

(
β1IAe

−µτ + β2ISe
−µτ + µ

)
dt.

dE

dt
≥− (ρη + µ)E ⇒ dE

E
≥ − (ρη + µ) dt.

dIA
dt

≥− (r1 + µ) IA ⇒ dIA
IA

≥ − (r1 + µ) dt.

dIS
dt

≥− (r2 + µ) IS ⇒ dIS
IS

≥ − (r2 + µ) dt.

dR

dt
≥− (µ+ α)R⇒ dR

R
≥ − (µ+ α) dt.

(4)

Equation (4) is then solved, with initial conditions

S(t) =S(0)e−
∫ t
0 (β1IA(t)e−µτ+β2IS(t)e−µτ+µ)dt ≥ 0.

E(t) =E(0)e−
∫ t
0
(ρη+µ)dt ≥ 0.

IA(t) =IA(0)e
−

∫ t
0
(r1+µ)dt ≥ 0.

IS(t) =IS1(0)e
−

∫ t
0
(r2+µ)dt ≥ 0.

R(t) =R(0)e−
∫ t
0
(µ+α)dt ≥ 0.

(5)

As a result, the model’s solutions, including the initial conditions, remain non-negative for all t ≥ 0. Since
N = S + E + IA + IS +R, thus all functions within the system are bounded

0 ≤ S(t) ≤ N, 0 ≤ E(t) ≤ N, 0 ≤ IA(t) ≤ N,

0 ≤ IS1(t) ≤ N, 0 ≤ R(t) ≤ N.
(6)
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At this point, theorems concerning the existence and uniqueness of solutions can be presented. Let’s consider
the starting conditions for the system as follows

(S(0), E(0), IA(0), IS(0), R(0)) = (S0, E0, IΛ0 , IS0 , R0) . (7)

Applying the integral operator
∫ t

0
(·) dt to the model results in

S(t)− S(0) =

∫ t

0

(Λ− β1SIAe
−µτ − β2SISe

−µτ − µS + αR)dt,

E(t)− E(0) =

∫ t

0

(β1SIAe
−µτ + β2SISe

−µτ − ρηE − µE)dt,

IA(t)− IA(0) =

∫ t

0

(ρηE − r1IA − µIA)dt,

IS(t)− IS(0) =

∫ t

0

((1− ρ) ηE + (1− κ) r1IA − (r2 + µ) IS)dt,

R(t)−R(0) =

∫ t

0

(κr1IA + r2IS − µR− αR) dt.

(8)

The final equation’s solution is formulated by assuming that N = S + E + IA + IS + R. For the sake of
clarity, the following kernels are established

K1 (t, S) =Λ− β1SIAe
−µτ − β2SISe

−µτ − µS + αR,

K2 (t, E) =β1SIAe
−µτ + β2SISe

−µτ − ρηE − µE,

K3 (t, IA) =ρηE − (r1 + µ) IA,

K4 (t, IS) = (1− ρ) ηE + (1− κ) r1IA − (r2 + µ) IS ,

K5 (t, R) =κr1IA + r2IS − µR− αR.

(9)

Since S,E, IA, IS , R are non-negative bounded functions, it follows that there exist positive values σi, i =
1, 2, · · · , 5 as a result

∥S(t) ∥ ≤ σ1, ∥E(t) ∥ ≤ σ2, ∥ IA(t) ∥ ≤ σ3,

∥ IS(t) ∥ ≤ σ4, ∥R(t) ∥ ≤ σ5.
(10)

So, Equation (8) can be written as

S(t)− S(0) =

∫ t

0

K1 (τ, S(τ)) dτ, E(t)− E(0) =

∫ t

0

K2 (τ, E(τ)) dτ,

IA(t)− IA(0) =

∫ t

0

K3 (τ, IA(τ)) dτ, IS(t)− IS(0) =

∫ t

0

K4 (τ, IS(τ)) dτ,

R(t)−R(0) =

∫ t

0

K5 (τ,R(τ)) dτ.

(11)

Theorem 3.3. If 0 ≤ Γ = max
1≤i≤5

{γi} < 1, then the kernels Ki for 1 ≤ i ≤ 5 fulfill the Lipschitz condition

and qualify as contraction mappings.

Proof: Let us consider kernel K1. Suppose that S(t) and S1(t) be two respectively arbitrary functions,
then one possesses

∥K1 (t, S)−K1 (t, S1) ∥ ≤∥Λ− β1SIAe
−µτ − β2SISe

−µτ − µS + αR

−Λ + β1S1IAe
−µτ + β2S1ISe

−µτ + µS1 − αR ∥
≤β1IA∥S − S1 ∥+ β2IS∥S − S1 ∥
+ µ∥S − S1 ∥

=g1∥S − S1 ∥.

(12)
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Similar procedure is applied to obtain
1) Kernel K2

∥K2 (t, E)−K2 (t, E1) ∥ ≤∥β1SIAe−µτ + β2SISe
−µτ − ρηE − µE

−β1SIAeΛτ − β2SISe
−µτ + ρηE1 + µE1 ∥

≤ρη∥E − E1 ∥+ µ∥E − E1 ∥
=g2∥E − E1 ∥.

(13)

2) Kernel K3

∥K3 (t, IA)−K3 (t, IΛ1) ∥ ≤∥ ρηE − (r1 + µ) IA − ρηE + (r1 + µ) IΛ1

≤ (r1 + µ) ∥ IA − IΛ1 ∥
=g3∥ IA − IΛ1 ∥.

(14)

3) Kernel K4

∥K4 (t, IS)−K4 (t, IS1) ∥ ≤∥ (1− ρ) ηE + (1− κ) r1IA − (r2 + µ) IS
− (1− ρ) ηE + (1− κ) r1IA − (r2 + µ) IS1

≤ (r2 + µ) ∥ IS − IS1 ∥
=g4∥ IS − IS1 ∥.

(15)

4) Kernel K5

∥K5 (t, R)−K5 (t, R1) ∥ ≤∥κr1IA + r2IS − µR− αR

−κr1IA − r2IS + µR1 + αR1

≤µ∥R−R1 ∥+ α∥R−R1 ∥
=g5∥R−R1 ∥.

(16)

Consequently, the Lipschitz criteria [45] are fulfilled for Ki, i = 1, 2, · · · , 5. As, 0 ≤ Γ < 1, the contradiction
in mappings by kernels. So now, by using Equation (11), the formulas are rewritten as

Sn(t) =

∫ t

0

K1 (τ, Sn−1(τ)) dτ, En(t) =

∫ t

0

K2 (τ, En−1(τ)) dτ,

IAn
(t) =

∫ t

0

K3

(
τ, IAn−1

(τ)
)
dτ, ISn

(t) =

∫ t

0

K4

(
τ, ISn−1

(τ)
)
dτ,

Rn(t) =

∫ t

0

K5 (τ,Rn−1(τ)) dτ.

(17)

In the recursive formulas, differences between two consecutive terms are as follows

χl =Sl − Sm =

∫ t

0

(K1 (τ, Sm(τ))−K1 (τ, Sp(τ))) dτ,

φl =El − Em =

∫ t

0

(K2 (τ, Em(τ))−K2 (τ, Ep(τ))) dτ,

ψl =IAl
− IAm =

∫ t

0

(
K3 (τ, IAm(τ))−K3

(
τ, IAp(τ)

))
dτ,

ηl =ISl
− ISm

=

∫ t

0

(
K4 (τ, ISm

(τ))−K4

(
τ, ISp

(τ)
))
dτ,

ζl =Rl −Rm =

∫ t

0

(K5 (τ,Rm(τ))−K5 (τ,Rp(τ))) dτ.

(18)
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Where, l=n, m= n-1 and p=n-2. So, one can conclude that

Sl(t) =

l∑
i=1

χl(t), El(t) =

l∑
i=1

φl(t), IAl
(t) =

l∑
i=1

ψl(t),

ISl
(t) =

l∑
i=1

ηl(t), Rl(t) =

l∑
i=1

ζl(t).

(19)

Recursive inequalities for the differences in Equation (18) are calculated as follows

∥χl ∥ = ∥Sl − Sm ∥

=

∥∥∥∥ ∫ t

0

(K1 (τ, Sm(τ))−K1 (τ, Sp(τ))) dτ

∥∥∥∥ ,
≤
∫ t

0

∥ (K1 (τ, Sm(τ))−K1 (τ, Sp(τ))) dτ ∥ ,

≤λ1t ∥ (Sm(t)− Sp(t)) ∥ ,
=γ1t ∥χl(t) ∥ ,

∥φl(t) ∥ ≤γ2t ∥φl(t) ∥ , ∥ψl(t) ∥ ≤ λ3t ∥ψl(t) ∥ ,
∥ ηl(t) ∥ ≤γ4t ∥ ηl(t) ∥ , ∥ ζl(t) ∥ ≤ γ5 ∥ ζl(t) ∥ .

(20)

Theorem 3.4. If the following inequalities hold for a time T0 > 0: 0 < γiT0 < 1 for i = 1, 2, . . . , 5, then
there exists a unique solution for the proposed model.

Proof: This section is divided into two parts, which are existence and uniqueness.
1) Existence. Every function within the model is bounded, and the given kernels fulfil the Lipschitz

criteria. Consequently, by Equation (20) the following inequalities can be derived

∥χn(t) ∥ ≤λ1t ∥χn−1 ∥ ≤ (γ1t)
2 ∥χn−2(t) ∥ ≤ · · · ≤ ∥S(0) ∥ (γ1t)n ,

∥φn(t) ∥ ≤∥E(0) ∥ (γ2t)n , ∥ψn(t) ∥ ≤ ∥ IA(0) ∥ (γ3t)n ,
∥ ηn(t) ∥ ≤∥ IS(0) ∥ (γ4t)n , ∥ ζn(t) ∥ ≤ ∥R(0) ∥ (γ5t)n .

(21)

In accordance with Equation (21), the defined functions in Equation (19) exist and are smooth. We
explain that, functions Sn(t), En(t), IΛn

(t), ISn
(t), Rn(t) converge to solutions of system. We define

Ai
n(t), i = 1, 2, · · · , 5, as the remaining terms following n iterations, specifically

S(t)− S(0) = Sn(t) +A1
n(t), E(t)− E(0) = En(t) +A2

n(t),

IA(t)− IA(0) = IΛn(t) +A3
n(t), IS(t)− IS(0) = ISn(t) +A4

n(t),

R(t)−R(0) = Rn(t) +A5
n(t).

(22)

By using the condition of Lipschitz for K1 leads to∥∥A1
n

∥∥ =

∥∥∥∥∫ t

0

(K1 (τ, S)−K1 (τ, Sn−1)) dτ)

∥∥∥∥ ≤ γ1t ∥S − Sn−1 ∥

≤ (γ1t)
2 ∥S − Sn−2 ∥ ≤ · · · ≤ (γ1t)

2 ∥∥A1
0(t)

∥∥
≤ (γ1t)

n ∥S(t) ∥ ≤ (γ1t)
n
ϱ1.

(23)

By setting t = T0, one obtains ∥∥A1
n(t)

∥∥ ≤ (γ1T0)
n
ϱ1. (24)

Calculating the limit of inequality in Equation (24) as n approaches ∞ and then using the factors
0 < γ1T0 < 1, one obtains

∥∥A1
n(t)

∥∥ → 0. So, lim
n→∞

Sn(t) = S(t) − S(0). In the same way, the
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following inequalities are obtained.∥∥A2
n(t)

∥∥ ≤ (γ2T0)
n
ϱ2,

∥∥A3
n(t)

∥∥ ≤ (γ3T0)
n
ϱ3,∥∥A4

n(t)
∥∥ ≤ (γ4T0)

n
ϱ4,

∥∥A5
n(t)

∥∥ ≤ (γ5T0)
n
ϱ5.

(25)

By limiting the inequalities (25) as n→ ∞ leads to
∥∥Ai

n(t)
∥∥ → 0, i = 2, 3, · · · , 5. So, the existence

of solutions to the system has been verified.
2) Uniqueness. Let Y (t) and Y 1(t) denote the solution sets of the system such that

Y (t) = (S,E, IA, IS , R) ,

Y 1(t) =
(
S1, E1, I1A, I

1
S , R

1
)
.

(26)

All compartments are time-dependent. Then, using condition 0 < γ1t < 1, one has∥∥S(t)− S1(t)
∥∥ =

∥∥∥∥∫ t

0

(
K1 (τ, S(τ))−K1

(
τ, S1(τ)

))
dτ

∥∥∥∥
≤γ1t

∥∥S(t)− S1(t)
∥∥ . (27)

So, (1− λ1t)
∥∥S(t)− S1(t)

∥∥ is less than or equal to zero. After all, one gets
∥∥S(t)− S1(t)

∥∥ = 0 or
S(t) = S1(t). With the same approach, we obtain E(t) = E1(t), IA(t) = I1A(t), IS(t) = I1S , R(t) = R1(t),
and the uniqueness of the solutions of model is proved.

4. FUNDAMENTAL REPRODUCTIVE VALUE

To examine the system’s behavior, R0 is defined as the expected number of secondary cases that a single
infected individual can generate in a fully susceptible population during their infectious period. In short,
R0 is the reproductive number. This quantity serves as a threshold to determine whether the disease will
expand or reduce in the population. It can be analyzed with the next-generation matrix method [56]. In
current mathematical model, the infected community is represented by E, IA, and IS , on the other hand, the
non-infected counterparts are denoted by S and R. F and V matrices express the ratio of new infection and
the transition rate between stages, respectively.

F =


β1SIAe

−µτ + β2SISe
−µτ

0

0

 , V =


E(ρη + µ)

−ρηE + IA (r1 + µ)

− (1− ρ)ηE − IAr1(1− κ) + IS(r2 + µ)

 .
By next-generation matrix technique in system.
dx

dt
= f(x, y)− v(x, y),

both transmission matrices F and V at the DF equilibrium points are

F̄ =


0 β1

Λ
µ e

−µτ β2
Λ
µ e

−µτ

0 0 0

0 0 0

 , V̄ =


(ρη + µ) 0 0

−ρη (r1 + µ) 0

−η(1− ρ) −r1(1− κ) (r2 + µ)

 .
and the multiplication of F̄ and V̄ inverse is

F̄ V̄ −1 =
1

(ρη + µ)(r1 + µ)(r2 + µ)


A B β2

Λ
µ (ρη + µ)(r1 + µ)

0 0 0

0 0 0

 ,
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where

A = β1
Λ
µ e

−µτρη(r2 + µ) + β2
Λ
µ e

−µτ (r1ρη(1− κ) + η(1− ρ)(r1 + µ)),

B = β1
Λ
µ (ρη + µ)(r2 + µ) + β2

Λ
µ (r1(ρη + µ)(1− κ)).

Therefore, the basic reproductive quantity attains the maximum spectral radius at

R0 = F̄ V̄ −1 =
Λ

µ

[
β1e

−µτρη(r2 + µ) + β2e
−µτ (r1ρη(1− κ) + η(1− ρ)(r1 + µ))

(ρη + µ)(r1 + µ)(r2 + µ)

]
. (28)

It is important to highlight that the spectral radius F̄ V̄ −1 is assigned as the reproductive quantity and it is
denoted as R0 in our model.

4.1. Parametric Sensitivity Analysis
In epidemic models, sensitivity analysis examines the impact of parameters regarding the model’s dynamics

and results. By changing these values, one can observe how the model’s predictions change. This variation
identifies which variable has the greatest influence on the dynamics of the epidemic. An analysis of the
sensitivity of R0 is as follows.
Given the expression for R0

R0 =
Λ

µ

[
β1e

−µτρη(r2 + µ) + β2e
−µτ (r1ρη(1− κ) + η(1− ρ)(r1 + µ))

(ρη + µ)(r1 + µ)(r2 + µ)

]
.

The partial derivatives of R0 with respect to each parameter can be checked as follows

Sensitivity Analysis =
Parameter

R0
× ∂R0

∂Parameter
, (29)

Therefore,
∂R0

∂Λ > 0, ∂R0

∂µ < 0, ∂R0

∂β1
> 0, ∂R0

∂β2
> 0, ∂R0

∂τ < 0, ∂R0

∂ρ > 0, ∂R0

∂η > 0, ∂R0

∂r1
< 0,

∂R0

∂r2
< 0.

It can be deduced that some parameters exhibit positive sensitivity indices as represented in Figure 2, while
others have negative sensitivity indices. This indicates that certain parameters are directly proportional to R0,
while others opposite. From Equation (29) increasing parameters related to transmission rates, birth rates,
and decreasing parameters related to recovery, mortality, and transmission rates can have notable effects on
R0.

Figure 2: R0 value rises with an increase in vertical transmission Λ.
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Figure 3 investigates how changes in the transmission rates from asymptomatic β1 and symptomatic β2
individuals affect the reproductive number R0. Both parameters are critical in disease spread since they govern
how likely a susceptible individual is to become infected upon contact. The graph reveals that increasing either
β1 or β2 results in a monotonic increase in R0, indicating higher disease transmissibility. Notably, the surface
gradient is slightly steeper for β2, suggesting that transmission from symptomatic individuals has a slightly
stronger influence on R0. This insight is important for public health interventions, as targeting symptomatic
transmission (e.g., isolating symptomatic patients) could be more effective in reducing the spread.

Figure 3: Sensitivity of R0 to transmission rates β1 and β2.

Figure 4 illustrates how the fraction of infected individuals who remain asymptomatic ρ and the overall
rate of progression to infectiousness η influence R0. The parameter ρ modulates the division between
asymptomatic and symptomatic pathways, while η represents the infectivity potential of newly exposed
individuals. The surface shows a complex interaction R0 generally increases with η, but its response to
ρ depends on η’s value. For higher η, an increase in ρ (more asymptomatic cases) leads to a higher R0,
reflecting the hidden risk of undiagnosed and untreated asymptomatic individuals sustaining the epidemic.
This graph underscores the challenge of controlling Chlamydia, as a large proportion of infections may remain
silent but still contribute to transmission.

Figure 4: Sensitivity of R0 to asymptomatic fraction ρ and progression rate η.

Figure 5 explores the effect of the natural death rate µ and the latency period τ on the reproductive number.
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The latency τ appears in an exponential decay term, reducing the effective infectiousness with time by using
condom, regular screening, partner limitation, and maintaining a healthy vaginal microbiome. The graph
shows that R0 decreases with increasing τ , reflecting how delays in becoming infectious reduce overall
transmission potential. Conversely, the effect of µ is more nuanced: for small µ, R0 remains high, but as µ
increases, R0 declines significantly due to reduced population turnover and a diminished infectious period.
The surface sharply slopes downward for large τ and µ, emphasizing that both natural mortality and delayed
infectivity are key levers in reducing disease spread.

Figure 5: Effect of natural death rate µ and exponential time delay factor τ on R0.

These four graphs collectively provide a visual and analytical understanding of how R0 responds to changes
in different epidemiological parameters. They help to identify which parameters have the most strongly
influence on disease spread, guiding effective control and intervention strategies for Chlamydia.

5. STABILITY ANALYSIS

The stability at both locally and globally at the DF and EE points are examined in this section utilising
the Routh-Hurwitz criterion and Lyapunov function with specific properties.

Theorem 5.1. The system’s DF equilibrium point (ε0) is locally asymptotically stable when R0 < 1.

Proof: It can be confirmed by linearizing the system around ε0, resulting in the following Jacobian matrix

J =



−µ 0 −β1 Λ
µ e

−µτ −β2 Λ
µ e

−µτ α

0 −ρη − µ β1
Λ
µ e

−µτ β2
Λ
µ e

−µτ 0

0 −ρη −(r1 + µ) 0 0

0 η − ρη r1 − κr1 −r2 − µ 0

0 0 κr1 r2 −(µ+ α)


.

The corresponding eigenvalues are calculated by |J − λI| = 0

λ1 = −µ < 0, λ2 = −(µ+ α) and the roots of cubic equation.
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The remaining three eigenvalues can be calculated by Routh-Hurwitz criteria.

J =

∣∣∣∣∣∣
−ρη − µ β1

Λ
µ e

−µτ β2
Λ
µ e

−µτ

ρη −r1 − µ− 0
η − ρη r1 − κr1 −r2 − µ−

∣∣∣∣∣∣ = 0,

by using the following characteristic equation

P (λ) = λ3 −A1λ
2 +A2λ−A3 = 0.

Suppose that,

A1=Sum of diagonal, A2=Sum of Co-diagonal and A3=Determinant of J.

After finding the sum of diagonal, co-diagonal and determinant as mentioned above, we obtain

A1 = (ρη + µ) + (r1 + µ) + (r2 + µ).
A2 = (r1 + µ)(r2 + µ) + (ρη + µ)(r2 + µ) + (ρη + µ)(r1 + µ)− ρηβ1

Λ
µ e

−µτ

− β2
Λ
µ (1− ρ)ηe−µτ .

A3 = (ρη + µ)(r1 + µ)(r2 + µ)[1−R0].

Hence, A1 > 0 and if R0 < 1 then A3 > 0. Let

P = A1A2 −A3. (30)

Substituting A1, A2, and A3 obtained into P yield

P = [(ρη+µ)+(r1+µ)+(r2+µ)][(r1+µ)(r2+µ)+(ρη+µ)(r2+µ)+(ρη+µ)(r1+µ)−ρηβ1 Λ
µ e

−µτ −
β2

Λ
µ ηe

−µτ + β2
Λ
µρηe

−µτ ] − [(ρη + µ)(r1 + µ)(r2 + µ) − β1
Λ
µρηe

−µτ (r2 + µ) − β2
Λ
µρηe

−µτ (1 − κ)r1 −
β2

Λ
µ ηe

−µτ (1− ρ)(r1 + µ)].

Simplifying and splitting the expression of P into four compartments leads to

P = P (i) + P (ii) + P (iii) + P (iv),

where

P (i) =
(
(ρη+µ)(ρη+µ)(r1+µ)+(r1+µ)(ρη+µ)(r1+µ)− (ρη+µ)ρηβ1

Λ
µ e

−µτ − (ρη+µ)β2
Λ
µ e

−µτη
)
,

P (ii) =
(
(ρη+µ)(ρη+µ)(r1+µ)− (ρη+µ)β2

Λ
µ e

−µτη+(ρη+µ)β2
Λ
µ e

−µτρη+(r2+µ)+ (r2+µ)(ρη+

µ)(r2 + µ)− (r2 + µ)β2
Λ
µ e

−µτη + (r2 + µ)β2
Λ
µ e

−µτρη
)
,

P (iii) =
(
β2

Λ
µ e

−µτρη(1− k)r1
)
,

P (iv) =
(
(r1+µ)(ρη+µ)(r2+µ)+(r1+µ)(r1+µ)(r2+µ)+(r2+µ)(ρη+µ)(r1+µ)+(r2+µ)(r2+µ)(r1+µ)

)
.

Solving the first P(i), we obtain

(ρη + µ)(r1 + µ)[1−
β1

Λ
µ e

−µτρη

(r1 + µ)(ρη + µ)
](ρη + 2µ+ r1). (31)

Solving the second P(ii), we have

(ρη + µ)(r2 + µ)[1−
β2

Λ
µ e

−µτη(1− ρ)

(r2 + µ)(ρη + µ)
](ρη + 2µ+ r2). (32)

The third compartment P(iii) is already in reduced. Solving the fourth compartment P(iv), we have

(r1 + µ)(r2 + µ)[r1 + r2 + 2ρη + 4µ]. (33)
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Combining all results, the main solution for P is

A1A2 −A3 = (ρη + µ)(r1 + µ)

[
1−

β1
Λ
µ e

−µτρη

(ρη + µ)(r1 + µ)
(ρη + 2µ+ r1)

]

+ (ρη + µ)(r2 + µ)

[
1−

β2
Λ
µ e

−µτη(1− ρ)

(r2 + µ)(ρη + µ)

]
(ρη + 2µ+ r2)

+ β2
Λ

µ
e−µτρη(1− κ)r1 + (r1 + µ)(r2 + µ)[r1 + r2 + 2ρη + 4µ].

(34)

Notice that if

R0 < 1 then
β1

Λ
µ e−µτρη

(ρη+µ)(r1+µ) < 1 and
β2

Λ
µ e−µτη(1−ρ)

(r2+µ)(ρη+µ) < 1,

which implies that if R0 < 1 then A1A2 −A3 > 0.

Consequently, according to the Routh-Hurwitz criterion, if R0 < 1, then P (λ) = 0 has negative real roots, i.e.
the system of differential equations represents local asymptotic stability at E0 when R0 < 1.This completes
the proof. Hence proves that all eigenvalues are negative so, E0 proves the local asymptotic stability.

Theorem 5.2. If R0 > 1, the EE points (ε1) of the model’s solution are locally asymptotically stable.

Proof: Linearizing a system around ε1, the corresponding Jacobian matrix is as follows

J =



−β1I∗Ae−µτ − β1I
∗
Se

−µτ − µ 0 −β1S∗e−µτ −β2S∗e−µτ α

β1I
∗
Ae

−µτ + β2I
∗
Se

−µτ −(η + µ) β1S
∗e−µτ β2S

∗e−µτ 0

0 ρη −(r1 + µ) 0 0

0 η(1− ρ) (1− κ)r1 −(r2 + µ) 0

0 0 κr1 r2 −(µ+ α)


.

The matrix J is then converted into the following symbolic form

J =



b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55


,

upon which the characteristic equation of J(ε1) is given by,

λ5 +G1λ
4 +G2λ

3 +G3λ
2 +G4λ+G5 = 0. (35)

where

G1 = −b11 − b22 − b33 − b44 − b55,

G2 = b11b22+b11b33+b11b44+b11b55+b22b33+b22b44+b22b55+b33b44+b33b55+b44b55−b23b32−b24b42,
G3 = b11b23b32+b23b32b44+b23b32b55+b11b24b42+b24b33b42+b24b42b55−b11b22b33−b11b22b44−b11b22b55−
b11b33b44 − b11b33b55 − b11b44b55 − b22b33b44 − b22b33b55 − b22b44b55 − b33b44b55 − b13b21b32 − b14b21b42 −
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b23b32b43,

G4 = b11b22b33b44+b11b22b33b55+b11b22b44b55+b11b33b44b55+b22b33b44b55+b13b21b32b44+b13b21b32b55+
b11b23b32b43 + b14b21b33b42 + b14b21b42b55 + b23b32b43b55 − b11b23b32b44 − b11b23b32b55 − b23b32b44b55 −
b11b24b42b55 − b24b33b42b55 − b11b24b33b42 − b14b21b32b43 − b15b21b32b53 − b15b21b42b54,

G5 = b11b23b32b44b55+b11b23b33b42b55+b14b21b32b43b55+b15b21b32b44b53+b15b21b33b42b54−b11b22b33b44b55−
b13b21b32b44b55 − b15b21b32b43b54 − b11b23b32b43b55 − b14b21b33b42b55.

According to the Routh–Hurwitz criterion, all eigenvalues of the characteristic equation contain negative real
parts if and only if Gi > 0 (i = 1, 2, 3, 4, 5),

D1 > 0, D2 =

∣∣∣∣G1 G3

1 G2

∣∣∣∣ = G1G2 −G3 > 0,

D3 =

∣∣∣∣∣G1 G3 G5

1 G2 G4

0 G1 G3

∣∣∣∣∣ = G1G2G3 −G2
1G4 −G2

3 +G1G5 > 0,

D4 =

∣∣∣∣∣∣∣
G1 G3 G5 0
1 G2 G4 0
0 G1 G3 G5

0 1 G2 G4

∣∣∣∣∣∣∣ = D2(G3G4 −G2G5)− (G1G4 −G5)
2 > 0,

D5 =

∣∣∣∣∣∣∣∣∣
G1 G3 G5 0 0
1 G2 G4 0 0
0 G1 G3 G5 0
0 1 G2 G4 0
0 0 G1 G3 G5

∣∣∣∣∣∣∣∣∣ ,
D5 = G1G4G5(G2G3 −G1G4)−G1G

2
2G

2
5 +G1G4G

2
5 −G4G5(G

2
3 −G1G5) +G2G3G

2
5 −G2

5 > 0.

Hence, the system demonstrates local asymptotic stability when R0 > 1 and all above conditions are satisfied.
This concludes the proof.

Theorem 5.3. The Chlamydia-free points ε0 =
(

Λ
µ , 0, 0, 0

)
of the system is globally asymptotically stable

(GAS) when R0 < 1 and is unstable when R0 > 1.

Proof: Take into account a Volterra-type Lyapunov function U Ω → R
U = S − S0 lnS + E + IA + IS .

Taking the time derivative of U,

U̇ =
(
1− S0

S

)
Ṡ + Ė + ˙IA + İS ,

and substituting S,E, IA, IS into the derivative yield,

U̇ =
(
1− S0

S

)
[Λ− β1SIAe

−µτ − β2SISe
−µτ − µS + αR]

+ [β1SIAe
−µτ + β2SISe

−µτ − ρηE − µE] + [ρηE − (r1 + µ)IA]
+ [(1− ρ)ηE + (1− κ)r1IA − (r2 + µ)IS(t)] .

Rearranging the terms,

U̇ = Λ− µS + αR− S0

S Λ + S0

S β1SIAe
−µτ + S0

S β2SISe
−µτ + S0

S µS − S0

S αR− (ρη + µ+ η)E − (κr1 +
µ)IA − (r2 + µ)IS ,

letting Λ = µS0 and simplifying, we obtain,

U̇ = −µ
S (S − S0)2 + (Λµβ1Se

−µτ − (κr1 + µ))IA + (Λµβ2Se
−µτ − (r2 + µ))IS − (ρη + µ+ η)E − Λ

µSR.

Since,
Λ
µβ1Se

−µτ < (κr1 + µ),
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we have U̇ ≤ 0 for R0 < 1. Moreover, if R0 < 1, then U̇ = 0. That is equal to

S = S0, E = 0, IA = 0, IS = 0, R = 0, whereas U̇ = 0 ∀(S,E, IA, IS , R) ̸= (S0, 0, 0, 0, 0).

Theorem 5.4. For R0 > 1, the system is globally asymptotically stable at the indicated point ε1.

Proof: Consider a Volterra-type Lyapunov function V Ω → R.

The following Lyapunov function is proposed as a candidate to demonstrate the system’s global stability at
EE points ε1, defined by the relation

V = X1 [S − S∗ lnS] +X2 [E − E∗ lnE] +X3 [IA − IA
∗ ln IA] +X4 [IS − IS

∗ ln IS ],

where X1, X2, X3 and X4 are positive constants to be determined subsequently.

Then,

V̇ = X1

(
1− S∗

S

)
Ṡ +X2

(
1− E∗

E

)
Ė +X3

(
1− IA

∗

IA

)
˙IA +X4

(
1− IS

∗

IS

)
İS .

By inserting the time derivative of models equation. We have,

V̇ = X1

(
1− S∗

S

)
[Λ− β1SIAe

−µτ − β2SISe
−µτ − µS + αR] +

X2

(
1− E∗

E

)
[β1SIAe

−µτ + β2SIS(t)e
−µτ − ρηE − µE] +

X3

(
1− IA

∗

IA

)
[ρηE − (r1 + µ)IA] +

X4

(
1− IS

∗

IS

)
[(1− ρ)ηE + (1− κ)r1IA − (r2 + µ)IS ] .

After simplification,

V̇ = X1 (S − S∗)
[
Λ
S − β1IAe

−µτ − β2ISe
−µτ − µ+ αR

S

]
+

X2 (E − E∗)
[
β1SIAe−µτ

E + β2SIS(t)e−µτ

E − ρη − µ
]
+

X3 (IA − IA
∗)

[
ρηE
IA

− (r1 + µ)
]
+

X4 (IS − IS
∗)

[
(1−ρ)ηE

IS
+ (1−κ)r1IA

IS
− (r2 + µ)

]
.

Since,

ε1 = (S∗, E∗, IA
∗, I∗S),

from the system, we have
dS∗

dt = dE∗

dt = dIA
∗

dt = dIS
∗

dt = 0.

Let

µ = Λ
S∗

− β1I
∗
Ae

−µτ − β2I
∗
Se

−µτ + αR
S∗ ,

ρη + µ =
(β1S

∗I∗
Ae−µτ )+(β2S

∗I∗
Se−µτ )

E ,

r1 + µ = ρηE∗

I∗
A

,

r2 + µ =
(ηE∗−ρηE∗)+(r1I

∗
A−κr1I

∗
A)

I∗
S

,

we then have

V̇ = X1 (S − S∗)
[
Λ
S − β1IAe

−µτ − β2ISe
−µτ − ( Λ

S∗
− β1I

∗
Ae

−µτ − β2I
∗
Se

−µτ + αR
S ) + αR

S

]
+

X2 (E − E∗)
[
β1SIAe−µτ

E + β2SIS(t)e−µτ

E − (
β1S

∗I∗
Ae−µτ

E∗ +
β2S

∗I∗
S(t)e−µτ

E∗ )
]
+

X3 (IA − IA
∗)

[
ρηE
IA

− ρηE∗

I∗
A

]
+

X4 (IS − IS
∗)

[
(1−ρ)ηE

IS
+ (1−κ)r1IA

IS
− ( (1−ρ)ηE∗

I∗
S

+
(1−k)r1I

∗
A

I∗
S

)
]
.
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For

X1 = X2 = X3 = X4 = 1,

we have,

V̇ = −Λ (S−S∗)2

SS∗ ≤ 0.

Therefore, V is confirmed to be a Lyapunov function and ε1 is globally asymptotically stable.

6. NUMERICAL ANALYSIS

The dynamical behavior of the system is investigated using two finite difference schemes Euler’s integration
and the RK-4, along with the NSFD approach.

6.1. Forward Euler’s Finite Difference Method

Sn+1 = Sn + h(Λ− β1S
nInAe

−µτ − β2S
nInSe

−µτ − µSn + αRn), (36a)
En+1 = En + h(β1S

nInAe
−µτ + β2S

nInSe
−µτ − ρηEn − µEn), (36b)

In+1
A = InA + h(ρηEn − (r1 + µ)InA), (36c)
In+1
S = InS + h((1− ρ)ηEn + (1− κ)r1I

n
A − (r2 + µ)InS ), (36d)

Rn+1 = Rn + h(κr1I
n
A + r2I

n
S − µRn − αRn), (36e)

where h is any step size.

6.2. RK4 Method

Here by SEIAISR system to develop an explicit RK4 method

Sn+1 = Sn +
1

6
[K1 + 2K2 + 2K3 +K4] (37a)

En+1 = En +
1

6
[L1 + 2L2 + 2L3 + L4] (37b)

In+1
A = InA +

1

6
[M1 + 2M2 + 2M3 +M4] (37c)

In+1
S = InS +

1

6
[N1 + 2N2 + 2N3 +N4] (37d)

Rn+1 = Rn +
1

6
[O1 + 2O2 + 2O3 +O4] (37e)

h is step size and n = 0, 1, 2, 3, 4 . . . , where

K1 = h
[
Λ− β1S

nInAe
−µτ − β2S

nInSe
−µτ − µSn + αRn

]
,

L1 = h
[
β1S

nInAe
−µτ + β2S

nInSe
−µτ − ρηEn − µEn

]
,

M1 = h [ρηEn − (r1 + µ)InA] ,

N1 = h [(1− ρ)ηEn + (1− κ)r1I
n
A − (r2 + µ)InS ] ,

O1 = h [κr1I
n
A + r2I

n
S − µRn − αRn] .
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K2 = h

[
Λ− β1

(
Sn +

K1

2

)(
InA +

M1

2

)
e−µτ − β2

(
Sn +

K1

2

)(
InS +

N1

2

)
e−µτ − µ

(
Sn +

K1

2

)
+ α

(
Rn +

O1

2

)]
,

L2 = h

[
β1

(
Sn +

K1

2

)(
InA +

M1

2

)
e−µτ + β2

(
Sn +

K1

2

)(
InS +

N1

2

)
e−µτ − ρη

(
En +

L1

2

)
− µ

(
En +

L1

2

)]
,

M2 = h

[
ρη

(
En +

L1

2

)
− (r1 + µ)

(
InA +

M1

2

)]
,

N2 = h

[
(1− ρ)η

(
En +

L1

2

)
+ (1− κ)r1

(
InA +

M1

2

)
− (r2 + µ)

(
InS +

N1

2

)]
,

O2 = h

[
κr1

(
InA +

M1

2

)
+ r2

(
InS +

N1

2

)
− µ

(
Rn +

O1

2

)
− α

(
Rn +

O1

2

)]
.

K3 = h

[
Λ− β1

(
Sn +

K2

2

)(
InA +

M2

2

)
e−µτ − β2

(
Sn +

K2

2

)(
InS +

N2

2

)
e−µτ − µ

(
Sn +

K2

2

)
+ α

(
Rn +

O2

2

)]
,

L3 = h

[
β1

(
Sn +

K2

2

)(
InA +

M2

2

)
e−µτ + β2

(
Sn +

K2

2

)(
InS +

N2

2

)
e−µτ − ρη

(
En +

L2

2

)
− µ

(
En +

L2

2

)]
,

M3 = h

[
ρη

(
En +

L2

2

)
− (r1 + µ)

(
InA +

M2

2

)]
,

N3 = h

[
(1− ρ)η

(
En +

L2

2

)
+ (1− κ)r1

(
InA +

M2

2

)
− (r2 + µ)

(
InS +

N2

2

)]
,

O3 = h

[
κr1

(
InA +

M2

2

)
+ r2

(
InS +

N2

2

)
− µ

(
Rn +

O2

2

)
− α

(
Rn +

O2

2

)]
.

K4 = h
[
Λ− β1(S

n +K3)(I
n
A +M3)e

−µτ − β2(S
n +K3)(I

n
S +N3)e

−µτ − µ(Sn +K3) + α(Rn +O3)
]
,

L4 = h
[
β1(S

n +K3)(I
n
A +M3)e

−µτ + β2(S
n +K3)(I

n
S +N3)e

−µτ − ρη(En + L3)− µ(En + L3)
]
,

M4 = h [ρη(En + L3)− (r1 + µ)(InA +M3)] ,

N4 = h [(1− ρ)η(En + L3) + (1− κ)r1(I
n
A +M3)− (r2 + µ)(InS +N3)] ,

O4 = h [κr1(I
n
A +M3) + r2(I

n
S +N3)− µ(Rn +O3)− α(Rn +O3)] .

6.3. NSFD Method
Convergence results of NSFD are proved for our model in below explanation. Also in this section, we will

look about the stability of NSFD method at the DFE of SEIAISR model.

Sn+1 − Sn

h
= Λ− β1S

n+1InAe
−µτ − β2S

n+1InSe
−µτ − µSn+1 + αRn,

here, h is step size and n is number of iterations as n = 0, 1, 2, 3, 4.... , after simplification,

Sn+1 =
Sn + hΛ + hαRn

1 + hβ1InAe
−µτ + hβ2InSe

−µτ + hµ
, (38a)

En+1 =
En + hβ1S

nInAe
−µτ + hβ2S

nInSe
−µτ

1 + hρη + hµ
, (38b)

In+1
A =

InA + hρηEn

1 + h(r1 + µ)
, (38c)

In+1
S =

InS + h(1− ρ)ηEn + h(1− κ)r1I
n
A

1 + h(r2 + µ)
, (38d)

Rn+1 =
Rn + hκr1I

n
A + hr2I

n
S

1 + hµ+ hα
. (38e)
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6.4. Convergence Analysis of NSFD Method
In this segment, convergence analysis of the NSFD method will be carried out at the DF points ε0 =

(Λµ , 0, 0, 0, 0).

C = Sn+1 =
S + hΛ + hαR

1 + hβ1IAe−µτ + hβ2ISe−µτ + hµ
, D = En+1 =

E + hβ1SIAe
−µτ + hβ2SISe

−µτ

1 + hρη + hµ
,

F = In+1
A =

IA + hρηE

1 + h(r1 + µ)
, G = In+1

S =
IS + h(1− ρ)ηE + h(1− κ)r1IA

1 + h(r2 + µ)
,

H = Rn+1 =
R+ hκr1IA + hr2IS

1 + hµ+ hα
.

Differentiating C,D,F,G and H with respect to S,E,IA,IS and R, we obtain the Jacobian matrix of the equations,

J =


CS CE CIA CIS CR

DS DE DIA DIS DR

FS FE FIA FIS FR

GS GE GIA GIS GR

HS HE HIA HIS HR

 .
Substituting the values, the Jacobian matrix becomes

J =



1
1+hµ 0

−hβ1e
−µτ(Λ

µ+hΛ)
(1+hµ)2

−hβ2e
−µτ(Λ

µ+hΛ)
(1+hµ)2

hα
1+hµ

0 1
1+hρη+hµ

hβ1
Λ
µ e−µτ

1+hρη+hµ

hβ2
Λ
µ e−µτ

1+hρη+hµ 0

0 hρη
1+h(r1+µ)

1
1+h(r1+µ) 0 0

0 hη(1−ρ)
1+h(r2+µ)

hr1(1−κ)
1+h(r2+µ)

1
1+h(r2+µ) 0

0 0 hκr1
1+hµ+hα

hr2
1+hµ+hα

1
1+hµ+hα


det(J − λI) = 0∣∣∣∣∣∣∣∣∣

λ− F1 0 F2 F3 F4

0 λ− F5 F6 F7 0
0 F8 λ− F9 0 0
0 F10 F11 λ− F12 0
0 0 F13 F14 λ− F15

∣∣∣∣∣∣∣∣∣ = 0.

Expanding by C1 ,

(λ− F1)

∣∣∣∣∣∣∣
λ− F5 F6 F7 0
F8 λ− F9 0 0
F10 F11 λ− F12 0
0 F13 F14 λ− F15

∣∣∣∣∣∣∣ = 0.

Expanding by C4 ,

(λ− F1)(λ− F15)

∣∣∣∣∣ λ− F5 F6 F7

F8 λ− F9 0
F10 F11 λ− F12

∣∣∣∣∣ = 0.

Therefore, the eigenvalues λ1 = F1 and λ2 = F15. The other three eigenvalues will be obtained from∣∣∣∣∣ λ− F5 F6 F7

F8 λ− F9 0
F10 F11 λ− F12

∣∣∣∣∣ = 0.
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Schur-Cohn Stability Conditions Regarding the characteristic polynomial Q(λ)=λ3+A1λ
2+A2λ+A3 having

solutions λj : j=1,2,3 of equation Q(λ)=0 satisfy |ηj | < 1 if the following criteria met.
1. Q(1)=1 + A1 + A2 + A3 > 0,
2. (−1)3 Q(-1)=1 - A1 + A2 - A3 > 0,
3. 1 - (A3)

2 > |A2 −A1A3| .
Let, the characteristic polynomial of above Jacobian is which implies that

λ3−λ2(F12+F9+F5)+λ(F9F12+F5F12+F5F9−F10F7−F6F8)+(−F5F9F12+F7F8F11+F10F7F9+
F6F8F12) = 0

The above expression can be expressed in a more simplified form as

λ3 +A1λ
2 +A2λ+A3 = 0,

where
A1=-(F12+ F9+F5), A2=(F9F12+ F5F12+ F5F9-F10F7- F6F8) and
A3= (-F5F9F12+F7F8F11+F10F7F9+F6F8F12).

Clearly, the first and second eigenvalues are

λ1 = F1= 1
1+hµ< 1 and λ2 = F15= 1

(1+hµ+hα)< 1.

For other eigenvalues, we choose λ3+A1λ
2+A2λ+A3=0,

where,
A1=-(F12+ F9+F5), A2= (F9F12+ F5F12+ F5F9-F10F7- F6F8) and
A3= (-F5F9F12+F7F8F11+F10F7F9+F6F8F12)

After simplification, we have
• Q(1)=1 + A1 + A2 + A3,
• (−1)3 Q(-1)=(−1)3 Q(-1)=1 - A1 + A2 - A3,
• 1 - (A3)

2 > |A2 −A1A3|.
Hence, by calculation the above three conditions are satisfied. Thus, all the eigenvalues are inside the unit
circle by Schur-Cohn Stability Conditions and our developed NSFD scheme is local asymptotically stable,
confirmed by this theorem.

6.5. Consistency Analysis

The consistency of the numerical method is analyzed using Taylor series expansion. Initially, we select the
first equation from the numerical integration model and apply expansion of Taylor’s series to Sn+1

Sn+1 = Sn + h
dS

dt
+
h2

2!

d2S

dt2
+
h3

3!

d3S

dt3
+ ... (39)

In the subsequent expression

Sn+1(1 + hβ1I
n
Ae

−µτ + hβ2I
n
Se

−µτ + hµ) = Sn + hΛ + hαRn,(
Sn + h

dS

dt
+
h2

2!

d2S

dt2
+
h3

3!

d3S

dt3
+ · · ·

)
(1 + hβ1I

n
Ae

−µτ + hβ2I
n
Se

−µτ + hµ) = Sn + hΛ + hαRn,

Sn + hSnβ1I
n
Ae

−µτ + hSnβ2I
n
Se

−µτ + Snhµ+ h
dS

dt
+ h2

dS

dt
β1I

n
Ae

−µτ + h2
dS

dt
β2I

n
Se

−µτ + h2µ
dS

dt

+

(
h2

2!

d2S

dt2
+
h3

3!

d3S

dt3
+ · · ·

)
(1 + hβ1I

n
Ae

−µτ + hβ2I
n
Se

−µτ + hµ) = Sn + hΛ + hαRn,

h

(
Snβ1I

n
Ae

−µτ + Snβ2I
n
Se

−µτ + Snµ+
dS

dt
+ h

dS

dt
β1I

n
Ae

−µτ + h
dS

dt
β2I

n
Se

−µτ + hµ
dS

dt

)
+

(
h

2!

d2S

dt2
+
h2

3!

d3S

dt3
+ · · ·

)
(1 + hβ1I

n
Ae

−µτ + hβ2I
n
Se

−µτ + hµ) = h(Λ + αRn), (40)
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Simplifying the terms yield

Snβ1I
n
Ae

−µτ + Snβ2I
n
Se

−µτ + Snµ+
dS

dt
+ h

dS

dt
β1I

n
Ae

−µτ + h
dS

dt
β2I

n
Se

−µτ + hµ
dS

dt

+

(
h

2!

d2S

dt2
+
h2

3!

d3S

dt3
+ · · ·

)
(1 + hβ1I

n
Ae

−µτ + hβ2I
n
Se

−µτ + hµ) = Λ + αRn. (41)

By taking the limit as h→ 0, we obtain

Snβ1I
n
Ae

−µτ + Snβ2I
n
Se

−µτ + Snµ+
dS

dt
= Λ+ αRn,

=⇒ dS

dt
= Λ+ αRn − Snβ1I

n
Ae

−µτ − Snβ2I
n
Se

−µτ − Snµ. (42)

According to this result, the discretized equation we derived aligns with Equation (2a) of the system. Likewise,
we consider Equation (2b) and by the Taylor series expansion on En+1.

En+1 = En + h
dE

dt
+
h2

2!

d2E

dt2
+
h3

3!

d3E

dt3
+ ... (43)

Similarly, we have

En+1(1 + hρη + hµ) = En + hβ1S
nInAe

−µτ + hβ2S
nInSe

−µτ , (44)

Enhρη + Enhµ+ h
dE

dt
+ h2

dE

dt
ρη + h2

dE

dt
µ+

(
h

2!

d2E

dt2
+
h2

3!

d3E

dt3
+ · · ·

)
×(1 + hρη + hµ) = hβ1S

nInAe
−µτ + hβ2S

nInSe
−µτ .

(45)

By applying h→ 0, we obtain

dE

dt
= β1S

nInAe
−µτ + β2S

nInSe
−µτ − ρηEn − µEn. (46)

Applying Taylor’s series expansion of In+1
A from Equations (2c), (2d), and (2e) and simplifying, we obtain

Equations (47), (49), and (51), respectively. Applying h→ 0 on them respectively yield Equations (48), (50),
and (52).

r1I
n
A + µInA +

dIA
dt

+ h
dIA
dt

r1 + h
dIA
dt

µ+

(
h

2!

d2IA
dt2

+
h2

3!

d3IA
dt3

+ · · ·
)

×(1 + hr1 + hµ) = ρηEn.

(47)

dInA
dt

= ρηEn − r1I
n
A − µInA. (48)

InSr2 + µInS +
dIS
dt

+ h
dIS
dt

r2 + h
dIS
dt

µ+

(
h

2!

d2IS
dt2

+
h2

3!

d3IS
dt3

+ · · ·
)

×(1 + hr2 + hµ) = (1− ρ)ηEn + (1− κ)r1I
n
A.

(49)

dIS
dt

= (1− ρ)ηEn + (1− κ)r1I
n
A − r2I

n
S − µInS . (50)

Rnµ+Rnα+
dR

dt
+ h

dR

dt
µ+ h

dR

dt
α+

(
h

2!

d2R

dt2
+
h2

3!

d3R

dt3
+ · · ·

)
×(1 + hµ+ hα) = κr1I

n
A + r2I

n
S .

(51)

dR

dt
= κr1I

n
A + r2I

n
S − µRn − αRn. (52)

Hence, our numerical scheme is consistent with the system.
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6.6. Graphical Analysis
Graphical investigation is conducted for all results generated by the three methods.
Case 1(a):- Euler method divergence at DF and EE points

Firstly, the Forward Euler scheme was executed when the step size h = 1.18. The simulation of the DF
equilibrium revealed divergence, as shown in Figure 6. Then, for step size h = 1.18, the Euler method’s
simulation at the EE points was carried out and the results showed the same divergence in Figure 7. In
short, the Euler method fails to accurately capture the system’s dynamics and maintain numerical stability
and reliability in the solution.

Figure 6: Euler divergence with DF points at h=1.18.

Figure 7: Euler divergence with EE points at h=1.18.
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Case 1(b):- NSFD Method Convergence at DF and EE Points
Then, the positive preserving method NSFD method was applied for step size h = 1.18. The method simulation
at DF and EE points showed convergent results as shown in Figure 8 and 9. In short, the NSFD method can
accurately capture the system’s dynamics and to maintain numerical stability and reliability in the solution.

Figure 8: NSFD convergence with DF points at h=1.18.

Figure 9: NSFD convergence with EE points at h=1.18.
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Case 2(a):- Rk4 method divergence at DF and EE points
Secondly, the Runge–Kutta method was carried out for h = 0.75 for both DF and EE points. Both simulations
revealed solutions divergence, as displayed in Figure 10 and 11. Similar with the Euler method, RK4 also fails
to accurately capture the system’s dynamics and maintain numerical stability and reliability in the solution.

Figure 10: RK4 divergence with DF points at h=0.75.

Figure 11: RK4 divergence with EE points at h=0.75.
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Case 2(b):- NSFD method convergence at DF and EE points
Then, the proposed positive preserving method NSFD scheme was applied for the solution of this unique
model, where h = 0.75. Convergent solutions were obtained both at DF and EE points, as presented by
Figure 12 and 13.

Figure 12: NSFD convergence with DF points at h=0.75.

Figure 13: NSFD convergence with EE points at h=0.75.
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Case 3:- Effect of large step size on NSFD and time delay behavior
The findings of Case 1 and Case 2 indicate that the Euler and RK-4 schemes did not give accurate and
reliable results even at a minimal step size, that is, h = 0.75 and 1.18. However, the proposed NSFD method
generated a convergent solution even at significant step sizes as illustrated in Figure14.

Figure 14: At h=1.5 susceptible compartment by using NSFD method.

From the graphical analysis, it can be concluded that the proposed model can predict future outcomes at very
small and large points using NSFD method. Using the same method, increasing the delay rate will decrease
the R0, hence disease also decrease in susceptible population. This behavior can be observed in Figure 15
and 16.

Figure 15: value of R0 that decreases with rising delay ratio τ .

The Euler and RK4 methods produced divergent solutions at small step sizes due to the explicit nature of
these methods [57], [58], [59], [60], which can accumulate errors in stiff or nonlinear systems. In contrast,
the NSFD method is designed to preserve the qualitative properties of the system, such as positivity and
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Figure 16: behavior of Susceptible Population with different values of τ .

boundedness, leading to convergent solutions even with small step sizes. This makes NSFD more suitable
for handling complex epidemiological models, ensuring numerical stability.

7. CONCLUSION

In this study, a comprehensive mathematical model was developed by extension of simple model to better
understand the transmission dynamics of Chlamydia trachomatis, incorporating a biologically relevant time
delay to account for the latency period between exposure and infectiousness in susceptible individuals.
This exponential time delay reflects the incubation phase during which individuals are infected but not
yet infectious, an important epidemiological feature often overlooked in simpler compartmental models. The
model accurately captured the unique characteristics of Chlamydia progression by distinguishing between
asymptomatic and symptomatic infectious stages, which is critical since a large proportion of Chlamydia
infections remain asymptomatic and may go undetected while still contributing to disease transmission. This
distinction enhances the model’s realism and makes it highly applicable to real-world public health scenarios
where symptom-based surveillance is limited. The analytical investigation included the derivation of the
basic reproduction number, denoted by R0, which serves as a key threshold parameter indicating whether
the infection will die out or become endemic within the population. Through rigorous mathematical analysis,
both local and global stability conditions were established for the DF) and EE, offering insight into the long-
term behavior of the disease under various epidemiological and intervention-related parameters. The analysis
identified parameter regions where Chlamydia can be completely eradicated from the population, as well as
scenarios where it persists indefinitely, thus informing time delay control strategies. Moreover, existence and
uniqueness theorems were proved to ensure that the model is mathematically well-posed meaning it yields a
unique, biologically feasible solution that depends continuously on initial conditions. This provides a solid
theoretical foundation for both analytical and numerical explorations.

To numerically solve the system, the NSFD method was employed. This method was carefully constructed
to preserve essential qualitative features of the continuous model, including positivity of solutions (ensur-
ing population sizes remain non-negative), boundedness, and consistency with the underlying biological
assumptions. Compared to classical numerical schemes such as the explicit Euler method and the RK-4
method, the NSFD approach demonstrated superior performance, particularly in handling stiff dynamics and
maintaining stability at smaller time step sizes. This makes it especially suitable for simulating complex
epidemic models involving nonlinear interactions and time delays, reinforcing its value as a computational
tool in epidemiological modeling and policy planning. A key component of this study was the sensitivity
analysis of R0 with respect to critical parameters. It revealed that the transmission rates from asymptomatic
and symptomatic individuals (β1 and β2), the fraction of asymptomatic individuals ρ, the progression rate
to infectivity η, the natural death rate µ, and the time delay τ significantly influence the disease spread.



162 Zeb, S., Yatim, S.A.M., Kamran, A., Zulfiqar, S., Rafiq, M. and Noor, N.M.

These findings provide concrete insights for public health interventions like awareness campaigns, increased
condom usage, and routine screening can minimize the probability of transmission during both asymptomatic
and symptomatic phases. Since asymptomatic individuals significantly contribute to R0, enhancing screening
coverage, especially among high-risk groups, is essential for early detection and treatment. Interventions such
as early medical consultation and prophylactic treatments could extend the incubation period and slow down
the onset of infectivity. Though not a direct control strategy, understanding its influence helps to refine long-
term epidemiological projections, especially in demographically diverse regions. These findings demonstrate
that our model provides a more realistic representation of Chlamydia transmission and serves as a powerful
analytical tool for assessing intervention strategies. The model’s structure allows for flexible integration of
control measures like condom use, regular screening, partner limitation, and maintaining a healthy vaginal
microbiome, making it particularly valuable for scenario-based simulations and public health planning.
Therefore, this work contributes both theoretically and practically to the understanding and management
of Chlamydia all over the world. Overall, the model illustrates that a combination of early diagnosis, timely
treatment, public awareness, and targeted testing of asymptomatic individuals can greatly reduce the basic
reproduction number R0 and thus control the spread of Chlamydia. Future research directions include the
development of stochastic and fractional-order versions of the current model to incorporate uncertainty and
memory effects. Moreover, fuzzy logic approaches may enhance decision-making under vague parameter
estimates. These enhancements will further solidify the model’s applicability to complex real-world scenarios.
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