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Abstract

In this paper, we present a new mathematical model describing the dynamics of overweight and obesity
and their impact on diabetes and hypertension. In constructing the model, we consider negative and positive
interactions among individuals with normal weight, overweight, and obesity, as well as social factors influencing
overweight and hypertension diagnoses. As a novel contribution to transmission dynamics, we interpret the
basic reproduction number from two perspectives: negative and positive interactions. Focusing on parameters
linked to social factors and their health impact, we present theoretical results characterizing their influence on
the basic reproduction number and compute corresponding sensitivity indices. Additionally, we perform a global
sensitivity analysis of model parameters using first- and total-order Sobol’ indices with various methods and
sampling techniques, concluding that parameters associated with social factors are among the most influential.
We conduct computational simulations of the basic reproduction number and model’s compartments to examine
the influence of social-factor parameters on overweight and hypertension. Our findings indicate the need to
explore strategies to prevent the rise of overweight, obesity, and diabetes in the population. Social factors
associated with overweight and hypertension diagnosis have a substantial impact on the progression of these
dynamics. Recognizing this influence enables the identification of the most vulnerable groups and the design
of more precise and effective interventions.
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1. INTRODUCTION

The 2024 edition of the World Obesity Atlas, published by the World Obesity Federation (WOF), estimates
that 42% of the world’s adult population was overweight in 2020, approximately 1.39 billion individuals
overweight and 810 million obese [1]. Body weight status is determined using the body mass index (BMI),
defined as [2]:

BMI =
weight
height2

.

Individuals are classified as normal weight when BMI ∈ [18.5, 24.9], overweight when BMI ∈ [25, 29.9],
obese when BMI ∈ [30, 40], and severely obese when BMI > 40. Although BMI can be elevated in individuals
with high muscle mass, we assume such cases are excluded, as a preliminary analysis is performed before
BMI calculation [1].

Diabetes is a disease caused by insufficient insulin production or poor absorption of this hormone, which
regulates blood glucose and provides energy for the body. Several factors increase the risk of developing
type 2 diabetes, including age, family history, smoking, excessive alcohol consumption, ethnicity, and certain
medical conditions [3], [4]. For the purposes of this paper we will focus on type 2 diabetes. Approximately
90% of individuals with type 2 diabetes are overweight or obese, and obesity triples the risk of developing
diabetes compared to non-obese individuals [5], [6].
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Hypertension, or high blood pressure, is a chronic condition characterized by persistently elevated arterial
pressure [7]. It is closely linked to obesity, as both disorders can influence and exacerbate each other.
An increased body mass index (BMI) is directly associated with higher blood pressure levels, reflecting
a pathophysiological connection between excess adiposity and vascular dysfunction [8]. This condition is
highly prevalent among individuals with type 2 diabetes mellitus and constitutes a major risk factor for the
development of cardiovascular complications. Management in diabetic patients involves lifestyle and dietary
modifications, pharmacological therapy, and controlling additional cardiovascular risk factors to prevent
long-term morbidity and mortality [9]. Patients with type 2 diabetes are significantly more likely to have
hypertension, and at any age, their average blood pressure exceeds that of non-diabetics. Type 2 diabetes is
generally associated with central obesity, which further increases the likelihood of hypertension.

Different studies have been developed to address obesity and its effect on health and the population.
Bernard et al. [10] proposed a new mathematical model for obesity and explored the impact of the media on
the spreading of this phenomenon in a constant population. Moya et al. [11] presented a new mathematical
model for the study of overweight and obesity in a population and its impact on the growth in the number
of diabetics, considering the influence of human interactions and social factors, and demonstrated the need
for a control strategy to reduce obesity and, consequently, diabetes. Moya et al. [12] introduced a variant
of the model discussed in [11], incorporating the negative effect of human interactions and using Caputo’s
fractional derivatives as a modeling method, and demonstrated the need for effective control strategies to
reduce overweight and obesity. Moya et al. [13] formulated an optimal control problem, using controls
focused on the control of human interactions and social pressure, using the Caputo derivative model [12].
Keisuke et al. [14] suggested a model to describe the risk of obesity as a function of time and age, the hazard
of which is treated as dependent and independent of the prevalence of obesity, compared the effectiveness of
different types of interventions, including those targeting never obese individuals (primary prevention) and
obese and formerly obese individuals (secondary prevention) and showed that the optimal choice of obesity
interventions varies depending on the potential for transmission of obesity from one person to another. Salma
M and Reem T [15] proposed two mathematical models to study the impact of fast food on obesity, analyzing
separately the influence of peer pressure on fast food consumption and the role of exercise on weight gain.
The models demonstrated the dynamics of individuals moving from one weight class to another as a function
of their body mass index (BMI) and showed the importance of resisting peer pressure that drives individuals
to consume fast food, as well as maximizing the role that quitters can play in convincing obese individuals to
stop consuming fast food and also that physical activity plays an important role in weight reduction. Zina et
al. [16] presented a mathematical model describing obesity and its complications with the aim of reducing the
obese population and decreasing the prevalence of type 2 diabetes, cardiovascular disease and hypertension
and demonstrated that the prevalence of obesity and its complications can be controlled and minimized by
reducing the impact of social factors.

Our objective is to study the relationships among overweight, obesity, diabetes, and hypertension, and to
assess how obesity and overweight influence diabetes and hypertension in terms of reducing or increasing
the number of cases. To this end, we propose a new mathematical model that captures the dynamics of
these diseases, allowing us to understand their interactions and the impact of each on the others, while also
incorporating the influence of social factors. As an innovative aspect of this work, the basic reproduction
number of positive interactions among individuals is defined and analyzed.

The article is organized as follows: Section 2 is devoted to model construction. Section 3 demonstrates
the basic properties and defines the basic reproduction number for positive and negative interactions. Sec-
tion 4 includes numerical results: computational simulations, study of the basic reproduction numbers, and
presentation of global sensitivity analysis and compartment behavior. Section 5 presents the conclusions.

2. MODEL FORMULATION

A compartment represents a homogeneous subpopulation within the epidemiological system, where individ-
uals share the same health or disease state and exhibit similar dynamic properties. Each compartment groups
epidemiologically equivalent individuals, and transitions between compartments describe disease progression
or state changes within the population [17]. The model includes the following compartments: Nw, containing
normal weight individuals, Ow, overweight individuals, Ob, obese individuals, D, individuals with type 2
diabetes, H , individuals with hypertension, and C, individuals with concurrent diabetes and hypertension.
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For the H and D compartments, we did not stratify by body weight because these chronic diseases are
incurable but manageable. Hypertensive patients who fail to improve their lifestyle may die from blood
pressure-related causes, develop diabetes, or remain in the same compartment. Similarly, diabetics may die
from diabetes-related causes, develop hypertension, or remain in their compartment. The birth rate is Λ, and
µ is the natural death rate, which is the same in all compartments and represents any death not associated
with overweight, obesity, diabetes, or hypertension.

The transmission dynamics in this study focus on overweight and obesity, modeled as conditions spread
through lifestyle influence, where one individual’s behavior affects another’s. We define three transmission
rates based on the effect of negative or positive influence.

The negative effect transmission rate is

λN =

(
αN (Ow +Ob)

NT

)
, (1)

the positive effect on overweight is

λp1 =

(
αp1Nw

NT

)
, (2)

and the positive effect on the obese is

λp2 =

(
αp2Nw

NT

)
, (3)

where βN , αp1, and αp2 are the effective contact rates in the negative and positive impact contacts, respec-
tively, and NT is the total population.

Social factors that can contribute to overweight and obesity include access to food, social networks, and
stress. These factors can vary by neighborhood, zip code, and social class. A neighborhood’s food environment
is characterized by whether or not healthy foods are readily available and the types of food offered in schools
and daycares. Another key factor is social networks. Chronic stress can increase appetite and cortisol levels,
a hormone that regulates blood sugar; a restricted diet can also lead to weight gain, low mood, and body
dissatisfaction [18], [19]. Parameter ps1 incorporates social factors into the model and how they influence
whether a person of normal weight becomes overweight.

High blood pressure can be caused by various social factors, such as level of education, work environment,
and alcohol consumption [20]. Other social factors, such as stress, isolation, and socioeconomic status can
contribute to hypertension. These factors can affect the body’s stress response system, which can lead to
vascular damage and hypertension [21]. Then, parameter ps2 refers to the diagnosis of hypertension due to
the influence of social factors.

The progression from overweight to obese is defined by γ. The parameters α1 and β1 represent the rate of
developing diabetes due to causes other than overweight or obesity. The parameters α2 and β2 are the rates
of development of diabetes and hypertension in overweight individuals, respectively, and α3 and β3 are the
rates of diabetes and hypertension in obese individuals. We can assume that α1 < α2, α1 < α3 [22], [23],
[24], β1 < β2 and β1 < β3 [25], [26].

We assume that in the progression from obese to overweight, due to the difficulties of the process because
of the high body weight, it is necessary the interaction with other individuals generally of normal weight
that can be medical personnel, physical trainers, among others that guide the process of weight loss. We
define dO as death associated with obesity, dD as death associated with diabetes, dH as death associated
with hypertension, and dC as death associated with hypertension-diabetes. In defining these parameters we
must assume that in cases of obesity-associated death cannot be related to diabetes and/or hypertension,
analogously it is assumed for dD, dH , and dC . The parameters ηDH and ηHD are the rates of an individual
with diabetes developing hypertension and a hypertensive developing diabetes, respectively.

Table 1 presents the definition of the model parameters and Figure 1 shows the flow diagram of the model
dynamics. The following system of ordinary differential equations defines the dynamics of overweight and
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obesity behavior and its impact on diabetes and hypertension:

dNw

dt
=Λ+ λp1Ow −

(
µ+ λN + ps1 + ps2 + α1 + β1

)
Nw, (4)

dOw

dt
=
(
λN + ps1

)
Nw + λp2Ob −

(
µ+ λp1 + λN + γ + α2 + β2

)
Ow, (5)

dOb

dt
=(γ + λN )Ow −

(
µ+ λp2 + dO + α3 + β3

)
Ob, (6)

dD

dt
=α1Nw + α2Ow + α3Ob − (µ+ dD + ηDH)D, (7)

dH

dt
=(β1 + ps2)Nw + β2Ow + β3Ob − (µ+ dH + ηHD)H, (8)

dC

dt
=ηDHD + ηHDH − (µ+ dC)C, (9)

with initial conditions: Nw(0) = Nw0 > 0, Ow(0) = Ow0 > 0, Ob(0) = Ob0 > 0, D(0) = D0 >
0, H(0) = H0 > 0, C(0) = C0 > 0.

Table 1: Parameters description Values of the parameters of Model (4)-(9).

Parameter Description Value Reference
Λ Birth rate 667.685 [27], [28]
µ Natural death rate 1/70.5 [28]
dO Death rate associated with obesity 0.07 [11], [12], [13]
dD Death rate associated with diabetes 0.013 [11], [12], [13], [29]
dH Death rate associated with hypertension 0.012 [30]
dC Death rate associated with diabetes-hypertension 0.005 Assumed
αN Negative effective contact rates 2 [11], [12]
αp1 Positive effective contact rates associated with overweight 0.2 [12], [13]
αp2 Positive effective contact rates associated with obesity 0.1 Assumed
ps1 Rate of becoming overweight associated with social factors 0.25 [11]
ps2 Rate of hypertension associated with social factors 0.291 [31]
γ Rate of progression from overweight to obesity 0.002 [10], [11]
α1 Rate at which individuals develop diabetes independent of body weight 0.1 [11]
α2 Rate at which overweight individuals develop diabetes 0.35 [32], [11]
α3 Rate of developing diabetes in obesity cases 0.4 [32], [11]
β1 Rate at which individuals develop hypertension independent of body weight 0.05 Assumed
β2 Rate at which overweight individuals develop hypertension 0.35 Assumed
β3 Rate at which obese individuals develop hypertension 0.65 [33]
ηDH Rate at which diabetic individuals develop hypertension 0.5 [34]
ηHD Rate at which hypertensive individuals develop diabetes 0.223 [35]
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Figure 1: Flow chart of Model (4)-(9).
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3. MODEL ANALYSIS

3.1. Basic Properties
Model (4)-(9) represents the human population divided into compartments. By definition, all variables and

parameters are positive. Solutions of Model (4)-(9) remain non-negative for positive initial conditions at any
time t > 0 [36], [37].

A valid population model must satisfy logical requirements, such as positivity of solutions. Therefore, we
define a biologically feasible region as the domain where the model is meaningful. Next, we determine this
region for Model (4)-(9).

Lemma 3.1. The closed set Ω =

{
(Nw, Ow, Ob, D,H,C) ∈ R6

+ : NT (t) ≤
Λ

µ

}
is positively-invariant and

attracts all solutions of Model (4)-(9).

Proof: The derivative of NT (total population) is

dNT

dt
= Λ− µNT − dOOb − dDD − dHH − dCC. (10)

Since
dNT

dt
≤ Λ− µN , it follows that

dNT

dt
≤ 0, if NT (t) ≥

Λ

µ
. Hence, the standard comparison theorem

from [38] can be used to show that NT (t) ≤ NT (t0) exp{−µt}+ Λ

µ

(
1− exp{−µt}

)
.

In particular, if NT (t0) ≤
Λ

µ
, then NT (t) ≤

Λ

µ
for all t > 0.

Hence, the domain Ω is positively invariant.

Furthermore, if NT (t0) >
Λ

µ
, then either the solution enters the domain Ω in finite time or NT (t) approaches

Λ

µ
asymptotically as t → ∞ . Hence, the domain Ω attracts all solutions in R6

+.

3.2. Basic Reproduction Number
The basic reproduction number (ℜ0) represents the average number of secondary cases caused by an

infected individual during the infectious period. It is a key public health indicator for estimating the speed
of disease spread [39], [40]. If 0 < ℜ0 < 1, the infection will eventually disappear; if ℜ0 > 1 it can spread
within the population. A higher ℜ0 indicates greater difficulty in controlling the epidemic. Factors influencing
ℜ0 include the duration of infectivity, pathogen transmissibility, and contact rates between susceptible and
infected individuals.

Our model incorporates positive and negative interactions among normal weight, overweight, and obese
individuals. Accordingly, we compute the basic reproduction number for negative interactions, treating over-
weight and obesity as epidemic-like phenomena [28], [41], [42], and define reproduction numbers for positive
interactions, representing cases where normal weight individuals influence overweight or obese individuals
to adopt healthier lifestyles and reduce body weight.

Another important element is that in constructing the basic reproduction number, we have incorporated the
diabetes, hypertension, and hypertension and diabetes compartments, which are transitional but allow us to
study the impact of the parameters associated with these chronic diseases on the basic reproduction number.

Let’s define the basic reproduction number for negative interactions as ℜN
0 and for positive interactions as

ℜp1
0 and ℜp2

0 . Two fundamental questions appear: what is the objective of separating the interactions? How
are positive interactions treated in the construction of ℜN

0 and vice versa?
In the analysis of the basic reproduction numbers we consider the dynamics of the full model (4)-(9).

That is, for the dynamics ℜN
0 , the elements

αp1Nw

NT
and

αp2Nw

NT
are constants, in ℜp1

0 the elements
αNNw

NT

and
αp2Nw

NT
are constants and in ℜP2

0 the elements
αNNw

NT
and

αp1Nw

NT
are constant. This will help to

answer the question: which has a greater impact on transmission according to the basic reproduction number:
negative or positive, and among the positive ones, which one influences more: the interactions between a
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normal weight individual and an overweight individual or an obese individual. These results may contribute
to a better understanding of the dynamics, and to the construction of future control strategies.

The disease-free equilibrium point is when all variables in the model reach zero except for the one for those
of normal weight. In this case, we do not have the diseases of overweight and obesity and the consequences
of diabetes and hypertension. Therefore, the disease-free equilibrium point (ϵ0) is:

ϵ0 =

(
Λ

knw
, 0, 0, 0, 0, 0

)
, (11)

where knw = α1 + β1 + ps1 + ps2 + µ.
To find ℜ0’s we use the next-generation matrix, utilizing the methodology presented in [39], [40]. The

transmission matrix captures the rates of new infections generated between the different compartments,
while the transition matrix represents the rates of movement between compartments involved in the basic
reproduction number. The transmission and transition matrices for the study of negative interactions are:

FN =



αNΛ

NT knw

αNΛ

NT knw
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (12)

VN =


kNw − αp2Λ

NT knw
0 0 0

−γ kNb 0 0 0
−α2 −α3 kD 0 0
−β2 −β3 0 kH 0
0 0 −ηDH −ηHD kC

 , (13)

where kNw = µ + γ + α2 + β2 +
αp1Λ

NT knw
, kNb = µ + dO + α3 + β3 +

αp2Λ

NT knw
, kD = µ + dD + ηDH ,

kH = µ+ dH + ηHD and kC = µ+ dC .
Thus, the basic reproduction number is defined as the spectral radius (i.e., the absolute value of the largest

eigenvalue) of the matrix representing the negative of the product of the transmission matrix and the inverse
of the transition matrix, which in this case is:

ℜN
0 = ρ(FNV −1

N ) =
ΛαN (kNb + γ)

NT knwkNb kNw − αp2γΛ
, (14)

where ρ(FNV −1
N ) is the spectral radius of the matrix FNV −1

N .
The transmission and transition matrices for the basic reproduction number associated with positive inter-

actions between a normal weight individual and an overweight individual are:

Fp1 =



αp1Λ

NT knw
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (15)

Vp1 =


kp1w − αNΛ

NT knw
− αNΛ

NT knw
− αp2Λ

NT knw
0 0 0

−γ kNb 0 0 0
−α2 −α3 kD 0 0
−β2 −β3 0 kH 0
0 0 −ηDH −ηHD kC

 , (16)
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where kp1w = µ+ α2 + β2 + γ. Then, we have that:

ℜp1
0 = ρ(Fp1V

−1
p1 ) =

Λαp1k
N
b

Λ(αp2kNb + αN (kNb + γ))−NT knwkNb kp1w
, (17)

where ρ(Fp1V
−1
p1 ) is the spectral radius of the matrix Fp1V

−1
p1 .

For computing the basic reproduction number associated with the interactions between a normal weight
individual and an obese individual with positive effect, the transmission and transition matrices are:

Fp2 =



0
αp2Λ

NT knw
0 0 0

0 − αp2Λ

NT knw
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, (18)

Vp2 =


kNw − αNΛ

NT knw
− αNΛ

NT knw
0 0 0

−γ kp2b 0 0 0
−α2 −α3 kD 0 0
−β2 −β3 0 kH 0
0 0 −ηDH −ηHD kC

 , (19)

where kp2b = µ+ α3 + β3 + dO. Then, we have that:

ℜp2
0 = ρ(Fp2V

−1
p2 ) =

αp2Λ(αNΛ− (kNw − γ)NT knw)

NT knw(k
p2
b kNwNT knw − αNΛ(kp2b + γ))

, (20)

where ρ(Fp2V
−1
p2 ) is the spectral radius of the matrix Fp2V

−1
p2 .

We will present results that relate the local and global stability of the disease-free equilibrium point with
the basic reproduction number associated with interactions with negative effects, so, we will conduct the
study for the ℜN

0 . When the ℜN
0 is less than unity, these interactions are reduced, helping to reduce the

epidemic. But, in the case of positive interactions with the basic reproduction number, the objective is for
it to be greater than unity, and the greater the number, the greater the impact of these interactions, which
help reduce overweight and obesity in the population. The results and their demonstrations are constructed
without the presence of social factors and their impact on overweight and hypertension (ps1 = ps2 = 0) since
the next objective is to directly study their impact on basic reproduction numbers.

Theorem 3.2. The disease-free equilibrium point (ϵ0) of Model (4)-(9), is locally asymptotically stable (LAS)
if ℜN

0 < 1 and unstable if ℜN
0 > 1.

The threshold quantity ℜN
0 measures the average number of new diseases (overweight and obesity) gen-

erated by a single overweight or obese person in a completely normal weight population. Consequently, the
disease-free equilibrium point of Model (4)-(9) is locally asymptotically stable (LAS) whenever ℜN

0 < 1 and
unstable if ℜN

0 > 1. This means that overweight and obesity can be eliminated from the community (when
ℜN

0 < 1) if the population sizes of Model (4)-(9) are in the basin of attraction of the disease-free equilibrium
point ϵ0.

Now, we prove the global stability of the disease-free equilibrium point. Following [43], we can rewrite
Model (4)-(9) as

dS

dt
= f(Nw, I), (21)

dI

dt
= g(Nw, I), g(S, 0R4) = 0, (22)
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where Nw ∈ R+ is the normal weight compartment and I = (Ow, Ob, D,H,C) ∈ R5
+ have the overweight,

obese, diabetes, hypertension, diabetes-hypertension compartments. Moreover, throughout the paper, 0Rn

denotes the null vector in Rn.
The disease-free equilibrium point is now denoted by E0 = (N0

w, 0R5) where N0
w =

Λ

knw
.

The conditions (H1) and (H2) below must be satisfied to guarantee the global asymptotic stability of E0.

(H1) : For
dNw

dt
= f(Nw, 0R5), N0

w is globally asymptotically stable,

(H2) : g(Nw, I) = AIT − g∗(Nw, I), g∗(Nw, I) ≥ 0, for (Nw, I) ∈ Ω,

where A = DIg(N
0
w, 0R5), DIg(N

0
w, 0R5) is the Jacobian of g at (N0

w, 0R5), and is a M-matrix (the off-
diagonal elements of A are non-negative), IT is the transpose of vector I ∈ R5

+, and Ω is the biologically
feasible region.

The following theorem shows the global stability of the disease-free equilibrium point.

Theorem 3.3. The fixed point E0 is a globally asymptotically stable equilibrium (GAS) of Model (4)-(9)
provided that ℜN

0 < 1 and that the conditions (H1) and (H2) are satisfied.

Proof: Let
f(Nw, 0R5) = Λ− (µ+ α1 + β1 + ps1 + ps2)Nw. (23)

As f(Nw, 0R5) is linear, then N0
w is globally stable. Then, (H1) is satisfied. Let

A =


−kNw + αN αN + αp2 0 0 0

γ −kNb 0 0 0
α2 α3 −kD 0 0
β2 β3 0 −kH 0
0 0 ηDH ηHD −kC

 , (24)

I = (Ow, Ob, D,H,C), (25)

g∗(Nw, I) = AIT − g(Nw, I), (26)

g∗(Nw, I) =


g∗1(Nw, I)
g∗2(Nw, I)
g∗3(Nw, I)
g∗4(Nw, I)
g∗5(Nw, I)

 =


αN (Ow +Ob)

(
1− Nw

NT

)
+ αp2Ob

(
1− Nw

NT

)
0
0
0
0
0

 . (27)

Since
Nw

NT
≤ 1 then 1− Nw

NT
≥ 0. Thus g∗(Nw, I) ≥ 0 for all (Nw, I) ∈ Ω. Consequently, E0 is a globally

asymptotically stable point.
Analogous proofs can be found in the bibliographical references [12], [27], [44].

An important question is: how does the joint variation of the parameters ps1 and ps2 impact the basic
reproduction numbers? To answer this question we will use the limits and find the expressions that define
the different variations of ps1 and ps2. We have:

lim
(ps1,ps2)→(1,0)

ℜN
0 = lim

(ps1,ps2)→(0,1)
ℜN

0 =
αNΛ(kNb + γ)

(1 + α1 + β1 + µ)kNb kNwNT − αp2γΛ
, (28)

lim
(ps1,ps2)→(0,0)

ℜN
0 =

αp1Λ(k
p1
b + γ)

(α1 + β1 + µ)kNb kNwNT − αp2γΛ
, (29)

lim
(ps1,ps2)→(1,1)

ℜN
0 =

αNΛ(kNb + γ)

(2 + α1 + β1 + µ)kNb kNwNT − αp2γΛ
. (30)
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A new question arises: what conditions must these variations of ps1 and ps2 meet to have a positive impact
on the basic reproduction numbers? In the case of ℜN

0 , for the impact to be positive, given that it refers to
negative interactions, it must be less than unity, and in the case of ℜp1

0 and ℜp2
0 , it must be greater than unity,

since they are defined for positive interactions. The following results guarantee these conditions.

Lemma 3.4. The expressions (28)-(30) are less than one when:

Λ

NT
<

(1 + α1 + β1 + µ)kNb kNw
αN (kNb + γ)− αp2γ

, (31)

Λ

NT
<

(α1 + β1 + µ)kNb kNw
αN (kNb + γ)− αp2γ

, (32)

Λ

NT
<

(2 + α1 + β1 + µ)kNb kNw
αN (kNb + γ)− αp2γ

. (33)

The previous Lemma shows conditions for ℜN
0 < 1 when the social factors that lead to overweight (ps1)

and hypertension (ps2) tend to their lowest or highest values.

lim
(ps1,ps2)→(1,0)

ℜp1
0 = lim

(ps1,ps2)→(0,1)
ℜp1

0 =
αp1k

N
b Λ

Λ(αp2γ + αN (kNb + γ))− kbkwNT (1 + α1 + β1 + µ)
, (34)

lim
(ps1,ps2)→(0,0)

ℜp1
0 =

αp1k
N
b Λ

Λ(αp2γ + αN (kNb + γ))− kbkwNT (α1 + β1 + µ)
, (35)

lim
(ps1,ps2)→(1,1)

ℜp1
0 =

αp1k
N
b Λ

Λ(αp2γ + αN (kNb + γ))− kbkwNT (2 + α1 + β1 + µ)
. (36)

The following Lemma shows conditions for ℜp1
0 > 1, in the limits. These would imply positive interactions

between individuals with normal weight and overweight.

Lemma 3.5. The expressions (34)-(36) are greater than one when:

Λ

NT
>

−kNb kp1w (1 + α1 + β1 + µ)

αp1kNb − αp2γ − αN (kNb + γ)
, (37)

Λ

NT
>

−kNb kp1w (α1 + β1 + µ)

αp1kNb − αp2γ − αN (kNb + γ)
, (38)

Λ

NT
>

−kNb kp1w (2 + α1 + β1 + µ)

αp1kNb − αp2γ − αN (kNb + γ)
. (39)

The different joint behaviors of ps1 and ps2 in ℜp2
0 using the limit definition are:

lim
(ps1,ps2)→(1,0)

ℜp2
0 = lim

(ps1,ps2)→(0,1)
ℜp2

0 =

αp2Λ(αNΛ + (1 + α1 + β1 + µ))NT (γ − kNw )

NT (1 + α1 + β1 + µ)(kp2b kNwNT (1 + α1 + β1 + µ)− αN (kp2b + γ)Λ)
, (40)

lim
(ps1,ps2)→(0,0)

ℜp2
0 =

αp2Λ(αNΛ + (α1 + β1 + µ))NT (γ − kNw )

NT (1 + α1 + β1 + µ)(kp2b kNwNT (α1 + β1 + µ)− αN (kp2b + γ)Λ)
, (41)

lim
(ps1,ps2)→(1,1)

ℜp2
0 =

αp2Λ(αNΛ + (2 + α1 + β1 + µ))NT (γ − kNw )

NT (2 + α1 + β1 + µ)(kp2b kNwNT (1 + α1 + β1 + µ)− αN (kp2b + γ)Λ)
. (42)

As above, the following Lemma provides conditions for ℜp2
0 > 1, in the limits, implying positive interactions

between individuals with normal weight and obese.
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Lemma 3.6. The expressions (40)-(42) are less than one when:

Λ

NT
>

(1 + α1 + β1 + µ)(kp2b kNwNT (1 + α1 + β1 + µ)− αN (kp2b + γ)Λ)

αp2(αNΛ + (1 + α1 + β1 + µ))NT (γ − kNw )
, (43)

Λ

NT
>

(1 + α1 + β1 + µ)(kp2b kNwNT (1 + α1 + β1 + µ)− αN (kp2b + γ)Λ)

αp2(αNΛ + (1 + α1 + β1 + µ))NT (γ − kNw )
, (44)

Λ

NT
>

(1 + α1 + β1 + µ)(kp2b kNwNT (1 + α1 + β1 + µ)− αN (kp2b + γ)Λ)

αp2(αNΛ + (1 + α1 + β1 + µ))NT (γ − kNw )
. (45)

Lemmas 3.4-3.6 are obtained directly by comparing expressions (28)-(42) with respect to unity depending
on the basic reproduction number (ℜN

0 < 1, ℜp1
0 > 1 and ℜp2

0 > 1).

3.3. Sensitivity Indices Analysis
In this subsection, we present the study of the sensitivity indices with respect to the basic reproduction

number. This allows us to characterize the impact of the parameters of interest associated with social factors
and the rates of negative and positive effective contact on the basic reproduction number.

The sensitivity analysis of the basic reproduction number determines the relative importance of the param-
eters present in the basic reproduction number, such as the parameters of transmission, resistance, recovery,
among others. The sensitivity index can be defined using the partial derivatives, provided that the variable is
differentiable with respect to the parameter under study. Sensitivity analysis also helps to identify the vitality
of the parameter values in the predictions using the model [45], [46].

Definition 1. ([46]) The normalized forward sensitivity index of a variable v that depends differentiably on
a parameter p is defined as:

Υv
p :=

∂v

∂p
× p

v
. (46)

The sensitivity index of ℜ0 helps to determine the parameters that have an impact on it.
We can characterize the sensitivity index as follows:
• A positive value of the sensitivity index implies that an increase of the parameter value causes an

increase of the basic reproduction number.
• A negative value of the sensitivity index implies that an increase of the parameter value causes a

decrease of the basic reproduction number.
Furthermore, a highly sensitive parameter must be estimated carefully, since a small variation in it will cause
large quantitative changes [45].

For the parameters associated with the impact of social factors on overweight and hypertension, the
sensitivity indices with respect to the basic reproduction numbers are:

Υps1

ℜN
0
=− kNb kNwNT ps1

kNb kNwNT knw − αp2Λγ
, (47)

Υps2

ℜN
0
=− kNb kNwNT ps2

kNb kNwNT knw − αp2Λγ
, (48)

Υps1

ℜp1
0

=
kNb kNwNT ps1

Λ(αp2kNb + αN (kNb + γ))− kNb kNwNT knw
, (49)

Υps2

ℜp1
0

=
kNb kNwNT ps2

Λ(αp2kNb + αN (kNb + γ))− kNb kNwNT knw
, (50)

Υps1

ℜp2
0

=ps1

(
αNΛ

knw
(
(kNw − γ)NT knw − αNΛ

) − kNb kNwNT

kNb kNwNT knw − αN (kNb + γ)Λ

)
, (51)

Υps2

ℜp2
0

=ps2

(
αNΛ

knw
(
(kNw − γ)NT knw − αNΛ

) − kp2b kNwNT

kNb kNwNT knw − αN (kNb + γ)Λ

)
. (52)
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From Equations (47)–(52), we obtain the following results.

Lemma 3.7. Let Υps1

ℜN
0

and Υps2

ℜN
0

be the sensitivity indices associated with the impact of ps1 and ps2 on ℜN
0 ,

we have that:

• If
Λ

NT
>

kNb kNwNT knw
γαp2

, then Υps1

ℜN
0
> 0 and Υps2

ℜN
0
> 0. This implies that an decrease in ps1 and ps2

causes a decrease in ℜN
0 .

Proof: The numerator of (47) is negative by definition. For the denominator to be negative, the following
must be true:

kNb kNwNT knw − αp2γΛ < 0, (53)

⇒ Λ

NT
>

kNb kNw knw
αp2γ

. (54)

So if Inequality (54) holds, we have that (47) is positive.
The second part of the Lemma, which refers to ps2, is an analogous proof using (48), and the same

condition is reached.

Lemma 3.8. Let Υps1

ℜp1
0

and Υps2

ℜp1
0

be the sensitivity indices associated with the impact of ps1 and ps2 on

ℜp1
0 , we have that:

• If
Λ

NT
<

kNb kp1w NT knw
αp2kNb + αN (kNb + γ)

, then Υps1

ℜp1
0

< 0 and Υps2

ℜp1
0

< 0. This implies that an decrease in ps1

and ps2 causes a increase in ℜp1
0 .

Proof: By definition, the product kNb kNwNT ps1 is positive, so the sign of (49) will depend on the sign
of the denominator. For the expression to be negative, the following must be true:

Λ(αNkNb + αp2γ)− kNb kNwNT knw < 0, (55)

⇒ Λ

NT
<

kNb kNw knw
αNkNb + αp2γ

. (56)

Then, for (49) to be negative, Inequality (56) must be fulfilled. Similarly, we proceed using (50) and obtain
the same condition.

Lemma 3.9. Let Υps1

ℜp2
0

and Υps2

ℜp2
0

be the sensitivity indices associated with the impact of ps1 and ps2 on

ℜp2
0 , we have that:

• If
Λ

NT
<

kp2b kNw knw((k
p2
w − γ)NT knw − αNΛ)

αN (kp2w NT knw − αN (kNb + γ)Λ
, then Υps1

ℜp2
0

< 0 and Υps2

ℜp2
0

< 0. This implies that an

decrease in ps1 and ps2 causes a increase in ℜp2
0 .

Proof: For (51) to be negative it is necessary that:

ps1

(
αNΛ

knw
(
(kNw − γ)NT knw − αNΛ

) − kNb kNwNT

kNb kNwNT knw − αN (kNb + γ)Λ

)
< 0. (57)

By definition ps1 is positive, then the negativity of Υps1

ℜp2
0

is summarized as:(
αNΛ

knw
(
(kNw − γ)NT knw − αNΛ

) − kNb kNwNT

kNb kNwNT knw − αN (kNb + γ)Λ

)
< 0, (58)

⇒ αNΛ

knw
(
(kNw − γ)NT knw − αNΛ

) <
kNb kNwNT

kNb kNwNT knw − αN (kNb + γ)Λ
, (59)

⇒ Λ

NT
<

kNb kNw knw
(
(kNw − γ)NT knw − αNΛ

)
αN

(
kNb kNwNT knw − αN (kNb + γ)Λ

) . (60)
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The proof for Υps2

ℜp2
0

is analogous and the same condition is reached.

4. NUMERICAL RESULTS

This section presents computational simulations of Model (4)-(9) to analyze compartment behavior. Parame-
ter values are listed in Table 1 and the initial conditions are: Nw(0) = 874140, Ow(0) = 1200, Ob(0) = 1500,
D(0) = 10000, H(0) = 12000, and C(0) = 1500. The study period spans 10 years, with parameters expressed
in yearly units.

We first perform a global sensitivity analysis of all model parameters, followed by an assessment of the
impact of social-factor parameters (ps1 and ps2) on basic reproduction numbers and compartment dynamics.
All code was implemented in MATLAB R2024b, using the ode45 solver for the system of ordinary
differential equations (4)-(9).

4.1. Global Sensitivity Analysis
Global sensitivity analysis (GSA) evaluates how model outputs depend on input parameters [47]. Unlike

local methods, GSA explores screening and variance decomposition to overcome their limitations. We employ
Sobol’ indices for GSA, a widely used approach in biological and epidemiological modeling [48], [49]. Sobol’
indices quantify parameter influence at different orders: First-order indices measure the individual contribution
of each parameter to output variance, ignoring interactions. Total-order indices capture both individual effects
and all higher-order interactions involving the parameter. In this work, we study the first-order and total-order
indices of the model parameters.

To calculate the Sobol’ indices, we need the underlying variances and use a surrogate-model-based approach
based on Polynomial Chaos Expansion (PCE). The PCE of the computational model response is a sum of
orthogonal polynomials weighted by coefficients to be determined [50], [51]. Note that the quality of the PCE
is directly dependent on the number of terms in the expansion. The family of orthonormal polynomials to
be used is chosen according to the input distribution of the model, where the aim is to minimize the number
of terms needed in the expansion to build a good computational representation of the model [49], [52].

There are several methods for calculating the coefficients of the polynomial chaos expansion for a given
basis. Specifically, we will use the following methods:
Method I: Ordinary Least Squares (OLS). The main advantage of the least squares minimization method over
the projection method is that an arbitrary number of points can be used to calculate the coefficients, as long
as they are a representative sample of the random input vector. Theory, errors, methodology, and examples
for this method can be found in [49], [53]. Method II: Least Angle Regression (LARS). A complementary
strategy to favor high-dimensional sparsity is to directly modify the least-squares minimization problem. The
LARS algorithm used in this work, together with its theoretical formulation, code, and examples, can be found
in [54], [55]. In our method, we take into account a stopping criterion that prevents adding regressors after the
error estimate is above its minimum value for at least 10% of the maximum number of possible iterations.
For each method, we will experiment with different sampling techniques, comprising stochastic sampling
methods and deterministic low-discrepancy sequences; Monte Carlo (MC), Latin hypercube sampling (LHS),
Sobol’ sequence sampling (Sobol’), and Halton sequence sampling (Halton) [48], [56], [57], [58].

Building a good surrogate model requires a rigorous validation process for the obtained response. Using
a good error metric is essential to characterizing a good approximation. In this work, we use to estimate
the surrogate error estimation the Leave-One-Out (ϵLOO) cross-validation error [49]. We used the UQLab
library [59], [60], [61], as well as the code presented in [49]. We considered years as the time unit and the
maximum time period 10 years.

We use independent uniform random variables for each parameter as a probabilistic input model [13], [49],
with upper and lower bounds of ±1.5% dispersion around the mean, and consider the fixed nominal values
presented in Table 1. To build the PCE surrogate model, 2000 samples of experimental design were taken for
all the studied techniques with a maximum polynomial degree of 18 and the surrogate error estimation the
Leave-One-Out (ϵLOO) error in all cases was of the order 10−8 so the quality of the surrogate approximation
proved to be reasonable for the purpose of its use.

Figures 2-5 show first- and total-order Sobol’ indices computed using OLS and LARS across multiple
sampling techniques. Results were consistent across methods. The most influential parameters are αN , ps1
and ps2, with αN exhibiting the highest Sobol’ index. This indicates that the negative effective contact rate
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Figure 2: First order Sobol’ indices using OLS with different sampling methods for the parameters of Model (4)-(9).
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Figure 3: Total order Sobol’ indices using OLS with different sampling methods for the parameters of Model (4)-(9).

(αN ) exerts greater influence than positive contact rates (αp1 and αp2). Among social factors, (ps2), related to
hypertension, has a stronger impact than (ps1), weight gain, suggesting that social determinants more strongly
affect hypertension than overweight. These parameters have an index of order 10−1.

In the following order are the parameters β2, α2, αp1, γ, Λ and dH which have values in order 10−2. We
have that the parameter associated with developing hypertension due to being overweight (β2) exceeds in all
the techniques used and with an average of 0.0918 the parameter associated with developing diabetes due to
being overweight (α2) which had an average of 0.0875.

Following these, we have the parameters with values in the order 10−3 in the following order, β3, dO, dD
and αp2. We have that the death rate associated with obesity (dO) has a greater influence than the death rate
associated with diabetes (dD), but the one with the greatest influence is the one associated with hypertension
(dH ), which is important information for decision-making and control of these deaths. We also have that
the parameter associated with developing hypertension being overweight (β2) has a greater influence than
this same situation but being obese (β3), this can mean that in many cases being overweight is already a
triggering factor for developing hypertension without the need to become obese, which is an element to be
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Figure 4: First order Sobol’ indices using LARS with different sampling methods for the parameters of Model (4)-(9).
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Figure 5: Total order Sobol’ indices using LARS with different sampling methods for the parameters of Model (4)-(9).

taken into account for future proposals for controlling obesity and hypertension. An important factor is that
in the positive rates of effective contact, the positive relationship between an overweight and a normal weight
individual (αp1) has greater influence, compared to the positive relationship between a normal weight and
an obese individual (αp2). When we refer to a positive relationship, we are referring to the motivation to
improve one’s lifestyle and other elements causing that individual to lose body weight. But we also have that
since γ has a greater influence than αp2, the awareness of an obese individual with which they improve their
lifestyle and manage to lose weight and become overweight is more influential than the positive interactions
between obese and normal weight individuals.

The other parameters have Sobol’ indices in the order 10−n with n ≥ 3, so we assume that they do not
have a considerable influence on Model (4)-(9). The information provided in the global sensitivity study can
be used in parameter estimation, as can the medical/epidemiological information obtained from the order and
relationship of parameters.
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(c) Behavior of ℜp1
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0 and ℜp2
0 .
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4.2. Basic Reproduction Number Study
The sensitivity indices associated with ps1 and ps2 and with respect to the basic reproduction numbers

using expressions (47)-(52) are less than zero, Υps1

ℜN
0

= −0.2932, Υps2

ℜN
0

= −0.1398, Υps1

ℜp1
0

= −0.3672,
Υps2

ℜp1
0

= −0.1748, Υps1

ℜp2
0

= −0.2936 and Υps2

ℜp2
0

= −0.1040. This means that a decrease of ps1 and ps2 causes

an increase of ℜN
0 , ℜp1

0 and ℜp2
0 . These parameters define the impact of social factors on overweight and

hypertension. A decrease in their effect in the case of positive interactions has a positive impact because ℜp1
0

and ℜp2
0 increase, indicating that these interactions are having a significant effect. However, in the case of neg-

ative interactions, a decrease in these parameters causes ℜN
0 to increase, and therefore, the impact of negative

interactions increases. Interpreting an increase in ps1 and ps2 is epidemiologically inconsistent, as adverse
social determinants —including low education, socioeconomic inequality, and obesogenic environments—
consistently act as risk factors rather than protective factors. Therefore, assuming that these parameters could
increase contradicts well-established empirical evidence showing that poorer social conditions raise the risk
of obesity and hypertension [62], [63], [64].

When we vary ps1 and ps2 jointly, we observe that all the basic reproduction numbers are less than unity
so this variation does not negatively impact ℜN

0 but in the case of ℜp1
0 and ℜp2

0 it does, see Figures 6(a)-6(f).
In all cases the maximum value is reached when both parameters tend to zero, i.e. when the effect of social
factors disappears, which means these parameters have a positive effect on ℜp1

0 and ℜp2
0 .

When we studied the basic reproduction numbers defined for interactions with negative and positive effects,
we obtained information on the parameters associated with the effect of social factors on overweight and
hypertension, since the impact on the dynamics is not the same. In the case of the dynamics based on negative
interactions, the growth of these parameters independently or jointly maintained the ℜN

0 lower than unity, but
it is a contradictory effect because if ps2 increases, for example, hypertension cases also increase. Moreover,
in the dynamics of positive interactions based on the study of the sensitivity indices that were negative, a
decrease of these parameters, i.e. reducing the impact of social factors increased the ℜp1

0 and ℜp2
0 , which

is a necessary behavior to reduce overweight and obesity in the community. Analysis of both negative and
positive interactions highlights the roles of these parameters, as well as others, in shaping the dynamics of
the system.

4.3. Model Simulations
Now, we are going to study the impact of rates associated with social factors on overweight (a) and blood

pressure and its consequences on hypertension (b) in the compartments. The purpose is to simulate different
values of these parameters and obtain the behavior in the different compartments. For ps1, we will study
the values 0.05, 0.21, 0.5, 0.7, 0.9, and for ps2, 0.05, 0.1, 0.5, 0.7, 0.9. These values were chosen at random
to obtain information on the behavior of the compartments.

While studying the compartment of individuals with normal weight for different values of ps1 we have
different asymptotic behaviors, for ps1 values of 0.05, and 0.21, it first grows, with the growth being larger for
the smaller value, and then stabilizes and for values greater than 0.21 studied decreases and then stabilizes,
with this decrease being stronger for larger values of ps1, see Figure 7(a).

Since the asymptotic behavior varies for different values of ps1 we decided to increase the number of
values of the rate under study, see Figure 8. We can observe that for values of ps1 < 0.3, it first grows and
then stabilizes and that the smaller the value of ps1, the higher the growth and for values of ps1 ≥ 0.3 it
decreases and then stabilizes, with the decrease being greater for higher values of ps1. But at the end of
the study we obtain that for higher values of ps1 the number of individuals classified with normal weight
is lower. This information is relevant because if we reduce the rate of the effect of the social factors that
lead to overweight we manage to maintain a greater number of individuals with normal weight, which is the
desired effect.

In the case of the overweight compartment, we observe that for higher values of ps1, a larger number of
overweight individuals is reported at the end of the study period. Moreover, for all values considered, an
increase is observed at the beginning of the simulation, see Figure 7(b). This behavior is logical because the
higher ps1, the greater the number of individuals reaching overweight.

For the obese compartment at the beginning of the study for different values of ps1 we have a decrease that
is more evident for lower values of ps1, and then it grows and stabilizes being the highest reported values for
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(a) Behavior of the Normal Weight (Nw) compartment over
time for different values of ps1.
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(b) Behavior of the Overweight (Ow) compartment over time
for different values of ps1.
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(c) Behavior of the Obese (Ob) compartment over time for
different values of ps1.
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(d) Behavior of the Diabetes (D) compartment over time for
different values of ps1.
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(e) Behavior of the Hypertesion (H) compartment over time for
different values of ps1.
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(f) Behavior of the Diabetes-Hypertesion (C) compartment over
time for different values of ps1.

Figure 7: Numerical solution of the compartments of Model (4)-(9) for different values of ps1, for a period of 10 years
and with a scale of ×1000 individuals.
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Figure 8: Behavior of the Normal Weight (Nw) compartment for different values of ps1, in the interval [0.05, 0.9] with
the objective of observing the asymptotic behavior and delving into the results obtained in Figure 7(a).

higher values of ps1, see Figure 7(c). Despite ps1 not having direct influence on the obese compartment, the
results show that it has a significant impact on the behavior of the compartment. In the diabetes compartments
throughout the study and the different values of ps1, we have an increase, see Figure 7(d). This occurs despite
ps1 not having direct influence on the diabetes compartment.

In the hypertension and hypertension-diabetes compartments, the behavior for different values of ps1
maintains a similar asymptotic behavior, and the differences between the reported cases do not present
significant differences; see Figures 7(e) and 7(f). Therefore, the impact of the variation of the parameter ps1
on these behaviors has no significant effect.

We conclude from this study that the results provide relevant information that helps us understand how
social factors leading to obesity directly affect the model’s dynamics. A decrease in ps1 helps maintain and
increase the number of individuals with normal weight, reduces the number of overweight individuals, and,
despite not directly affecting the diabetic compartment, its growth contributes to the increase in diabetic
diagnoses.

In the study of the normal weight compartment for different values of ps2, we observe that for initially low
values of ps2, there is an increase that later stabilizes in the number of normal weight individuals, see Figure
9(a). Since this parameter directly impacts this compartment, we decided to simulate it for other values of
ps2, Figure 10. Thus, we identify that by reducing the value of ps2, that is, the rate of social factors that lead
to hypertension, we manage to maintain a greater number of normal weight individuals.

In the overweight and obesity compartments, we find that the higher the ps2, the more cases of overweight
and obesity are reported, and the asymptotic behavior is analogous to what occurs with ps1, see Figures 9(b)
and 9(c). However, ps1 has a greater impact since a greater number of overweight and obese individuals
are reported compared to the variation in ps2. In the case of diabetes, a similar long-term behavior is
observed with respect to the variation of ps1, see Figure 9(d). For the Hypertension and Hypertension-
Diabetes compartments, it is observed that the higher the value of ps2, the greater the number of individuals
in these compartments, see Figures 9(e) and 9(f).

Using computational simulations of Model (4)-(9) with the parameter values in Table 1 and the initial
conditions, we can conclude that the parameters ps1 and ps2 have a significant impact on the dynamics.
Therefore, if we reduce the impact of social factors, we can reduce the number of individuals who are
overweight and obese, as well as diabetic and hypertensive individuals. Interpreting the simulation results and
basic reproduction numbers contributes to understanding how social factors affect the dynamics of overweight
and obesity and can help develop control strategies.
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0 1 2 3 4 5 6 7 8 9 10

Time

0

10

20

30

40

50

60

O
b

e
s
e

 (
x
1

0
0
0

)

Obese Compartment

p
s2

=0.1

p
s2

=0.05

p
s2

=0.5

p
s2

=0.7

p
s2

=0.9

(c) Behavior of the Obese (Ob) compartment over time
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(d) Behavior of the Diabetes (D) compartment over time
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(e) Behavior of the Hypertesion (H) compartment over time
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Figure 9: Numerical solution of the compartments of Model (4)-(9) for different values of ps2, for a period of 10 years
and with a scale of ×1000 individuals.
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Figure 10: Behavior of the Normal Weight compartment (Nw) for different values of ps2 in the interval [0.05, 0.9] with
the objective of observing the asymptotic behavior and delving into the results obtained in Figure 9(a).

5. CONCLUSIONS

This paper introduced a novel mathematical model capturing the dynamics of overweight and obesity and
their impact on diabetes and hypertension. The model incorporated both negative and positive interactions
among normal weight, overweight, and obese individuals, as well as social factors influencing these condi-
tions. Using the next-generation matrix method, we computed the basic reproduction number for negative
interactions, representing the influence of overweight or obese individuals on normal weight individuals, and
defined reproduction numbers for positive interactions, reflecting lifestyle improvements driven by normal
weight individuals. We derived theoretical results characterizing the effect of social-factor parameters on
reproduction numbers and performed sensitivity analyses using literature-based data. Our findings underscore
the significant role of social determinants in shaping disease dynamics.

For the global sensitivity analysis, we used the Sobol’ indices and, to obtain them, the chaos expansion
polynomial. To obtain the polynomial coefficients, we employed two techniques: Ordinary Least-Squares
(OLS) and Least Angle Regression (LARS) with different sampling methods: Markov Chain, Halton, Latin
hypercube sampling, and Sobol’. We found that parameters associated with social factors and their influence
on obesity and hypertension have high Sobol’ indices and are among the most influential. This information
is important for understanding the dynamics and for future work to estimate parameters.

The study of basic reproduction numbers focused on parameters associated with social factors. The
sensitivity indices were negative, and we found that their increase causes a decrease in the basic reproduction
numbers. However, they were always less than one, which for the dynamics of negative interactions is a
positive effect, but not for positive dynamics. The joint variation of these parameters in the basic reproduction
numbers was always less than one, and the greatest value was reached when both were equal to zero.
Qualitatively, this is a positive effect for the dynamics of positive interactions and is significant because it
represents a reduction in the impact of social factors on overweight and hypertension. These parameters were
studied directly in the compartments, and among the results obtained, we found that lower values of the
parameters manage to maintain a greater number of individuals with normal weight, reduce overweight and
hypertensive problems, and that these parameters significantly affect the diabetic compartment despite not
being directly linked. All the information provided by the study verifies the importance of these parameters
in the dynamics and provides information for future control strategies to reduce overweight and obesity in
the population.

The proposed model and study can be expanded and adapted to different population contexts, offering a
significant contribution to public health and the strategic planning of health systems. By integrating social
factors, this approach enables a more realistic quantification of the social and economic environment’s
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influence on obesity, diabetes, and hypertension, contributing to a more comprehensive understanding of
these chronic diseases. The results derived from the model can serve as a valuable tool to support public
policy development, prioritize preventive interventions, and optimize the allocation of healthcare resources.

Furthermore, the proposed framework facilitates the design of control strategies aimed at preventing disease
progression and reducing associated complications, recognizing that these conditions can have irreversible
effects on individuals’ health and place a heavy burden on healthcare systems. In future research, we plan
to address the optimal control problem based on the proposed model, with the goal of identifying the most
effective strategies to reduce overweight and obesity and mitigate their impact on diabetes and hypertension.
In addition, multi–population studies are planned to analyze the behavior of these diseases according to
variables such as sex, age, presence of comorbidities, socioeconomic status, and other social determinants
of health, thereby strengthening the capacity of health systems to respond to these growing epidemiological
challenges.
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