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Abstract

This study formulates a dynamic mathematical model to investigate the interplay between human activ-
ities and C'O2 emissions within the context of agriculture. The model incorporates a system of differential
equations describing the interactions among human population growth (H1), human economic activities (H2),
atmospheric C O3 concentration (H3), forest biomass density (H4), and vehicle population (Hs). Key processes
include the effects of deforestation, economic activities, and vehicle emissions on C'Os levels, as well as the
mitigating role of forest biomass.The model parameters account for natural growth rates, carrying capacities,
and interaction coefficients that represent both the exacerbation and alleviation of CO2 emissions. The delay
parameter 7 captures the temporal lag in the effects of population growth and deforestation. This framework
aims to provide insights into the dynamic interactions and feedback loops influencing CO2 emissions, with a
particular emphasis on sustainable practices and policies to mitigate environmental degradation in agricultural
contexts.
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1. INTRODUCTION

A healthy environment is fundamental to sustainable growth, development, and overall human well-being.
Environmental pollution not only degrades the quality of natural resources but also disrupts ecological
cycles, posing significant risks to humans, animals, and plants. Among the key contributors to environmental
degradation is the extensive use of fossil fuels across various sectors, including agriculture. This leads to the
emission of hazardous gases such as carbon dioxide C'O2, which plays a critical role in global warming and
climate change. These environmental changes, in turn, impact a wide range of human activities, including
industrial productivity, agricultural output, migration patterns, and population dynamics [4]. Consequently,
pollution and climate change driven by greenhouse gas emissions represent pressing challenges in today’s
global environmental landscape [9].

Carbon dioxide C'Oy is the most significant greenhouse gas contributing to climate change, and its
concentration in the atmosphere has risen by approximately 30 percent since the onset of the pre-industrial era
around 1750. In 2018 alone, global carbon emissions reached a staggering 37.1 billion tonnes. Some countries
contributed 672 million tonnes to this total, placing it seventh among the highest carbon-emitting countries in
the world [5] and the environmental and economic consequences of air pollution are profound. An estimated
48.2 percent of the country’s Gross Domestic Product (GDP)—equivalent to 34,000 billion USD—is attributed
to the economic costs associated with air pollution. While the agricultural sector is a cornerstone of economic
growth and development, it is also a significant contributor to environmental degradation, particularly in terms
of air pollution. According to the World Resources Institute, the global agricultural sector was responsible
for the emission of 6 billion tonnes of greenhouse gases in 2014, accounting for approximately 13 percent
of total global emissions. In some countries, this issue is especially critical, as the economy relies on four
primary sectors: agriculture, manufacturing and mining, oil, and services. Among these, agriculture stands
out due to its considerable share in national COy emissions.
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In 2014, in some countries, the agricultural sector emitted approximately 12.5 million tonnes of C'Os,
making it a major source of pollution within the country. Moreover, COs held the highest emission intensity
in the sector, recorded at 159.769 tonnes per billion rials of agricultural GDP. This made it not only the
most emitted greenhouse gas but also the most socially and economically costly. The estimated social cost
of CO4 emissions from the agricultural sector in 2014 amounted to 100.9 billion rials, exceeding that of any
other pollutant. These numeric figures underscore the urgent need to address C'O5 emissions from agriculture
within the counries broader environmental and economic policy frameworks. Mitigation strategies targeting
this sector are vital for achieving sustainable development goals and reducing the country’s overall greenhouse
gas footprint.

The emission of carbon dioxide C'O2 remains a critical global environmental concern, with particularly
severe implications for some countries . Addressing this issue is of paramount importance, as elevated levels
of CO; pose a significant threat to human health, the well-being of ecosystems, and contribute directly to
climate change and global warming. The urgency of mitigating C'O, emissions cannot be overstated, given
its far-reaching impacts on environmental stability and sustainable development. An essential first step in
formulating effective policies and strategies to curb C'O2 emissions is gaining an accurate understanding of
its projected future concentrations. Reliable forecasting of C'O5 levels enables policymakers, researchers, and
planners to make informed decisions and develop targeted mitigation measures. In this context, the selection
of an appropriate predictive model is crucial. The model must offer high precision and minimal forecasting
error, as the accuracy of the prediction method directly influences the effectiveness of environmental planning
and intervention. Accurate prediction serves as a vital tool in environmental management. It not only enhances
the ability to anticipate trends and potential risks but also supports the development of scientifically grounded
programs aimed at reducing emissions. Therefore, prioritizing robust and reliable forecasting techniques is
indispensable in the broader effort to combat the adverse effects of C'O, emissions on both a national and
global scale.

In contemporary energy planning—especially within frameworks aiming for low-carbon development—the
accurate prediction of carbon dioxide C'O5 emissions has become a critical component. Reliable forecasting
of C'O, emissions is not only essential for guiding energy strategies, but also plays a pivotal role in shaping
effective economic policies that support long-term sustainable growth. Given the serious threats posed by
excessive C'O2 emissions to human health and ecological systems, emission forecasting has increasingly been
recognized as a vital tool for environmental and policy planning. In response to these concerns, numerous
studies have been conducted with the objective of predicting future C'O, emissions. A central focus of
these investigations has been the development and refinement of predictive models, accompanied by rigorous
evaluations of their accuracy using established performance criteria. While traditional statistical techniques
such as Multiple Linear Regression (MLR) and Autoregressive Integrated Moving Average (ARIMA) models
continue to be widely applied, researchers have also explored a range of novel modeling approaches aimed
at improving predictive precision. In this context, a variety of intelligent or “smart” models and algorithms
have emerged, leveraging advances in computational methods and machine learning. Each modeling approach
presents its own set of strengths and limitations, depending on the characteristics of the data and the forecasting
objectives. These innovative methodologies are part of a growing body of research dedicated to enhancing
the reliability of C'O2 emission forecasts, thereby supporting informed decision-making in energy policy and
environmental management. The following section highlights several recent studies that illustrate the use of
diverse modeling approaches for predicting carbon emissions, reflecting the evolution of this important area
of research.

A wide range of modeling techniques has been employed in recent years to improve the accuracy of
carbon dioxide C'Oy emission forecasts. These studies highlight the importance of selecting appropriate
models tailored to the specific characteristics of regional and global data, as well as the need to assess
their predictive performance using standard error metrics such as Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Behrang et al. [23] developed a hybrid
forecasting approach that combined the Bees Algorithm with an Artificial Neural Network (ANN) to predict
global C'O; emissions. Their model leveraged the optimization capabilities of the Bees Algorithm to enhance
the performance of the ANN, yielding promising results in terms of forecasting accuracy. Similarly, Lin et
al. [10] employed a Grey Forecasting Model to estimate future C'O5 emissions in Taiwan. Grey models are
particularly effective when dealing with limited or uncertain data, making them well-suited for environmental
forecasting. Their study demonstrated that the grey forecasting approach could produce reasonably accurate
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predictions even with a small dataset. In another study, Pao et al. [1 1] focused on forecasting C'O- emissions in
China by comparing multiple modeling techniques, including the Autoregressive Integrated Moving Average
(ARIMA) model, a standard grey model, and a Nonlinear Grey Bernoulli Model (NGBM). Among these, the
NGBM model was found to outperform the others, achieving the lowest RMSE, MAE, and MAPE values.
This led the authors to conclude that the NGBM was the most effective model for forecasting emissions in
their study. Abdelfatah et al. [1] introduced an intelligent optimization-based approach using the Adaptive
Particle Swarm Optimization (APSO) algorithm to forecast global C'Oy emissions. The results demonstrated
the superior performance of the APSO-based model, which consistently achieved higher accuracy compared to
the other models evaluated in the study. Lotfalipour et al. [12] conducted a comparative analysis of forecasting
models based on the Grey System Theory and the ARIMA model. Their evaluation, grounded in RMSE,
MAE, and MAPE metrics, indicated that the Grey System model delivered more accurate forecasts of COs
emissions than ARIMA, further validating the robustness of grey modeling in contexts with incomplete or
uncertain datasets. These studies collectively underscore the evolving landscape of C'O5 emissions forecasting,
with an increasing emphasis on hybrid, intelligent, and grey-based methods that improve predictive reliability
and support informed policy-making.

In recent years, an increasing number of studies have focused on developing and applying advanced
computational and statistical models to predict carbon dioxide C Oy emissions with high accuracy. These
efforts are driven by the urgent need to provide reliable forecasts that can guide environmental planning
and policy-making. For instance, Samsami [I3] utilized historical data spanning from 1981 to 2009 to
forecast C'O4 emissions in some countries using the Ant Colony Optimization (ACO) algorithm. The results
demonstrated the ACO model’s high predictive accuracy, especially in cases involving small datasets, thereby
validating its applicability in studies where observations are limited. Taghavifar et al. [14] applied Artificial
Neural Networks (ANN) to predict emissions from engines fueled with n-heptane, while Noori et al. [15]
compared the performance of Adaptive Neuro-Fuzzy Inference Systems (ANFIS), ANN, and Support Vector
Regression (SVR) for CO- emission forecasting. Based on model selection criteria, the SVR model was
found to outperform the others. Similarly, Saleh et al. [16] implemented the Support Vector Machines (SVM)
approach for forecasting C'Oy emissions, reinforcing the model’s credibility in predictive analytics.

Sun and Liu [17] focused on sector-specific forecasting and employed the Least Squares Support Vector
Machine (LSSVM) to estimate emissions from three major industries and the residential sector in China. Their
model achieved high predictive accuracy, indicating the utility of LSSVM for sectoral emission analysis. In
the domain of deep learning, Ann et al. [2] employed a recurrent neural network (RNN) for forecasting
CO4 emissions, achieving superior performance. However, they noted that deep learning techniques such as
RNNS typically require large datasets to function effectively. On the other hand, Yu et al. [18] adopted the
Grey System Model to estimate C'Oy emissions in China, which is particularly effective for forecasting with
limited or incomplete data. Libo et al. [19] used Multiple Linear Regression (MLR) for emission prediction,
whereas Chen et al. [3] conducted a comprehensive comparison of four machine learning models—SVM,
Backpropagation Neural Network (BPNN), Gaussian Processes (GP), and the MSP decision tree. Their
findings indicated that the SVM model offered the best performance based on various accuracy metrics.

Kardani et al. [6] explored C'O2 absorption in polyionic liquids by applying advanced intelligent models,
including Radial Basis Function Artificial Neural Network (RBFANN) and LSSVM, both combined with
the Group Contribution (GC) method (RBFANN-GC and LSSVM-GC). They compared these models with
Multilayer Perceptron ANN (MLPANN) and ANFIS. The results from error analyses indicated that RBFANN-
GC and LSSVM-GC performed exceptionally well in estimating C'O5 absorption. For India, Sangeetha and
Amudha [20] compared MLR and the Particle Swarm Optimization (PSO)-based nonlinear model. Their
study concluded that the PSO-based model achieved significantly higher accuracy than MLR. In a broader
international context, Fang et al. [4] applied an improved Gaussian Process Regression model enhanced with
PSO to forecast C'Oy emissions in the United States, China, and Japan. Recently, Xu et al. [21] employed
a dynamic nonlinear ANN model combined with scenario analysis to predict China’s C'O2 emissions. Their
study emphasized the superior performance of nonlinear models over linear ones in environmental forecasting.
Likewise, Wang and Li [22] used data from 1990 to 2014 to forecast CO2 emissions in China by integrating
the PSO algorithm with the Grey Verhulst model. They identified the PSO-Driven Nonlinear Enhanced (DNE)
Grey Verhulst model as the most accurate among the evaluated approaches, highlighting the effectiveness of
PSO in scenarios with limited observations. These numerous contributions confirm the increasing dominance
of intelligent and nonlinear models in environmental modeling and forecasting, driven by their demonstrated
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precision in handling complex, nonlinear systems.

Amidst this growing body of research, a novel and promising modeling paradigm known as the Inclusive
Multiple Model (IMM) has emerged. Initially introduced implicitly by Khatibi et al. [7] in the context of
streamflow prediction in the Bear River Basin (USA), the IMM framework was later formalized explicitly in
their subsequent publication [8]. The IMM methodology is built upon a flexible and integrative framework
composed of four dimensions: (1) Model Reuse (MR), (2) Hierarchy and/or Recursion (HR), (3) Elastic
Learning Environment (ELE), and (4) Goal Orientation (GO). Collectively, these form the acronym RHEO,
providing a conceptual basis for constructing adaptable and intelligent predictive systems. Rather than relying
on the identification of a single superior model, IMM emphasizes learning from a diverse ensemble of models,
integrating their collective strengths to enhance predictive performance. This paradigm shift addresses the
limitations of traditional model selection and exploits the residual information left unutilized by single-model
approaches. Empirical results from various domains have consistently shown that IMM-based frameworks
outperform traditional models in both accuracy and adaptability. Despite its demonstrated effectiveness in
other scientific applications, the IMM approach has not yet been applied to the domain of COs emission
prediction. This study, therefore, represents the first application of the IMM framework to the prediction of
carbon emissions, marking a key innovation. Furthermore, the study incorporates a suite of novel graphical
tools and visual diagnostics to evaluate the predictive power of the proposed models comprehensively.
Given the pressing need for precise forecasting to inform environmental policy, the use of an accurate,
adaptive, and robust modeling framework like IMM offers a valuable tool for decision-makers, policymakers,
and research institutions. It facilitates better anticipation of emission trends and supports the design of
effective interventions—such as incentives, taxation, and emission caps—aimed at mitigating air pollution
and advancing environmental sustainability.

2. MODEL FORMULATION

Atmospheric carbon dioxide C'Os is a fundamental component in the regulation of Earth’s climate system.
However, the unprecedented rise in its concentration, primarily driven by anthropogenic activities, has emerged
as one of the most pressing environmental challenges of our time. Among the various contributing sectors,
agriculture plays a dual and complex role. On one hand, it is a significant source of C'O5 emissions through
processes such as deforestation, soil degradation, fossil fuel combustion, and the expansion of mechanized
farming operations. On the other hand, agriculture also holds considerable potential for carbon sequestration
via afforestation, sustainable forest management, and the enhancement of biomass through regenerative land-
use practices. Understanding and quantifying the delicate balance between the emissions and sequestration
capabilities of agricultural systems is crucial for advancing global sustainable development goals and climate
mitigation policies. In response to this need, we propose a comprehensive dynamic mathematical model
that investigates the intricate relationships between human activities and C'O» emissions within agricultural
and associated economic systems. The proposed model is constructed as a system of nonlinear differential
equations that delineate the temporal evolution and mutual interactions among five interdependent components:
H;(t):Human population dynamics, H(¢): Human economic activities, H3(t): Atmospheric concentration
of carbon dioxide, H4(t) : Biomass density of forests, H5(t): Vehicle population. Each of these variables
encapsulates critical processes linked to environmental change—ranging from population-driven resource
demand and economic output, to greenhouse gas emissions and natural absorption via forest biomass. The
model incorporates intrinsic growth rates, carrying capacities, and interaction coefficients to characterize the
influences between components. Furthermore, delay differential terms are integrated into the system to reflect
the time-lag effects associated with processes such as population response to environmental change and the
delayed impact of deforestation on biomass and emissions. This modeling framework enables the exploration
of nonlinear dynamics and feedback mechanisms that typify ecological and economic systems, particularly in
the context of climate change. It provides a valuable analytical foundation for assessing policy interventions,
understanding thresholds and tipping points, and supporting the design of climate-smart agricultural strategies
that aim to mitigate carbon emissions while promoting economic resilience and environmental sustainability.
The study’s aim is on creating a mathematical model that takes into account a number of important variables
in order to estimate and analyze C' O, emissions from agricultural systems.
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The CO; model is governed by the following system of differential equations:

riH?
Hi(t) =rH — lKl +rorsHiHy — raHy(t — 7)Ha(2),
Hé(t) = 81H2 —+ 82H5 — SgHQ,
Hé(t) =to+t1Hs +toHy —t3H3sHy — t4 Hs, (1)
H2
H:l(t) = U1H4 — ’LL174 - UQHl(t — T)H4(t — 7'),

where H;: Human population, H,: Human economic activities, H3: Concentration of C'Os in atmosphere,
H,: Biomass density of forest, Hs: Vehicle population, r;: Inherent growth rate of human population, K:
Carrying capacity of human population, ry: Coefficient of growth rate of human population due to forest
harvesting, r3: Coefficient rate of deforestation, r4: Death rate coefficient due to C'O, s;1: Growth rate of
economic activities due to population, se: Growth rate of economic activities due to vehicle population, s3:
Depletion rate constant of human economic activity, tyo: Rate of emission of C'Os, ¢1: Rate of emission
of C' Oy from vehicles, t5: Rate of emission of C'Os from human economic activities, t3: Depletion rate
coefficient of C'Oydue to forest biomass, t4: Depletion rate coefficient of C'Oy(natural), u1: Intrinsic growth
rate of forest biomass, L: Carrying capacity of forest area, uo: Coefficient of deforestation, v1: Growth rate of
vehicle population due to demand for mobility, vo: Coefficient rate of vehicle depletion, 7: Delay parameter.

3. MODEL ANALYSIS
3.1. Persistence and Permanence Analysis

Persistence and permanence analysis examines the long-term behavior of the system to determine whether
the populations and variables (H1, Hs, Hs, H4, H5) remain positive and bounded over time. A system is said
to be persistent if all state variables remain strictly positive for all ¢ > 0. To analyze the persistence of the
system, we examine each equation in the model. From the equation:

y T1 N2
Hi(t)=rH — i +rorsHyHy — 14 H1 Ho,
we observe the following: The growth term 7, H; ensures that H; grows when it is small. The carrying ca-

. 2 . .
pacity term % ensures that [/; does not grow unbounded. The interaction terms rors H; Hy and —ry H1 Ho

influence H; based on the states of H4 and H,, respectively. Provided that Hs and H, are bounded and
nonzero, H; remains positive for all £ > 0. From the equation:

Hé(t) =s1Hy + 59 Hs — 83H2,

we observe that the term s; Ho ensures growth due to population influence, the term s H5 provides additional
growth due to vehicle population and the term —s3Hy regulates Ho and ensures it remains bounded.If H;
and Hj are positive and bounded, H, also persists. From the equation:

Hy(t) = to + t1Hs + toHy — tsHsHy — t4 Hs,

we note that the emission terms (fg, t1H5, and t2 Ho) ensure a minimum level of Hs, the depletion terms
(tsHsHy and t4Hs3) prevent unbounded growth of Hs. Thus, Hj persists as long as H5 and H, are positive.

From the equation:
2

H
H!l(t) = U1H4 — ulf — u2H1H47

2
we find that the intrinsic growth term wq H, ensures H, grows when small, the term —ul% limits H,4 to
a carrying capacity L, the deforestation term —uyH; Hy reduces Hy but cannot make it negative. Thus, Hy
persists if H; is bounded. From the equation:

Hé(t) = UlHl — '[)2.[’.’57
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we see that the growth term vy H; ensures Hs grows if H; > 0 and the depletion term —wvyHj prevents
unbounded growth. As long as H; is positive, H5 persists.

Permanence: Permanence ensures that all state variables remain bounded and away from zero as t — oo. To
verify permanence, we consider the boundedness of each variable.

Upper Bounds - H,: Bounded above by the carrying capacity K, as the term limits its growth. - Hy:
Limited by the carrying capacity L. - Hs, Hs, and Hjs: Growth is regulated by their respective depletion
terms (753H2, 7t4H3, 7U2H5).

Lower Bounds:The positivity of the growth terms for each variable ensures that they do not approach zero: -
Hjy: Positive growth due to 1 H;. - Hy: Positive growth due to uy Hy. - Ho, H3, and Hj: Positive contributions
from interaction terms (soHsy, t1Hs, v1 Hy).

The system is both persistent and permanent under biologically reasonable parameter values. All variables
remain strictly positive and bounded for all ¢ > 0.

7‘1N2

3.2. Steady-State Analysis

To calculate the steady states of the CO2 emission model, we set H(t) = 0, Hj(t) = 0, Hj(t) = 0,
H)(t) =0, and H(t) = 0. This leads to the following system of equations:

N2
0=rH — o +rorsH 1 Hy — ryH Ho,
0=s1Ho + soHs — s3H,
0=to+tiHs+toHy —tsHsHy — t4Hs, 2

H
0= U1H4 — ’U;lT — U2H1H47

0= ’U1H1 — ’UQH5.

From the equation 0 = vy H; — voH5, we solve for Hs:

U1
Hs = —H,.
V2

2
From the equation 0 = u; Hy — ul% — ug H1 Hy, factorizing Hy, we have:

H
H4 <U1 - ulf - UQHl) =0.

Thus, Hy = 0 or Hy = La—u2t) provided u; > ugHy. From 0 = sy Hy + so Hs — s3Ha, we solve for

u1
HQZ
52

Hy = Hs.
83 — 51
Substituting Hs = 71 H;, we get:
S2V1
Hy=——-——_H,.
v2(s3 — 51)

From 0 = to + t1H5 + t2H2 — t3H3H4 — t4H3, solve for H3
Hs (tsHy +t4) =to + t1Hs + toHo.

Thus,
o+ tiHs +t2Ho

H.
° t3Hy + 14

2 .
From 0 =r1H, — “II(V + rorsH Hy — r4H1 Ho, we factorize H:

T1N2

Hy(r +rorsHy —raHs) = K
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Thus,
T1N2
H, = K .
r1+rorsHy —raHy

The steady states are given by:

Hy = -1 H,
V2
7, — 0, if up <wupHy,
T 7““1;?2]{1)7 if uy > ugHy,
S2U1
Hy=——H;j, 3
? U2($3 - 81) ! )
to +t1Hs +t2Hs
H3 = )
tsHy +ty
7‘1N2
Hy = K

r1+rorsHy — raHy

3.3. Local Stability Analysis in the Absence of Delay

The local stability of the system (1) without delay is determined by analyzing the Jacobian matrix at
the equilibrium points. An equilibrium point (Hy, Hy, Hy, Hf, HY) is obtained by solving the equations
H{(t) = Hy(t) = H4(t) = Hj(t) = HL(t) = 0. Substituting into the equations, we derive:

H{ = solution from the first equation,

H¥ L
Hp = 225 Hf = —12
S3 — 81 uy + up Hy 4
H;,:: to-l—tng-f—tQH;’ Hg: ’Ule.
tgHI + ty Vo
The Jacobian matrix J is defined as:
9f1 0f1 of1 0f1 Of1
8H1 6H2 8H3 6H4 8H5
9 fa Ofa Ofa Of2 Of2
8H1 6H2 8H'g 6H4 8H5
J— |8 Ofs Ofs Ofs Ofs
0H, OH, 0Hs 0OHs O0Hs
Ofa Ofa Ofa Ofa Ofa
0H, OH, O0Hs OHs O0Hs
Ofs Ofs Ofs Ofs Ofs
oH, ©OH, 0H; 0OH; OHs
Computing each partial derivative:
0 2rH
TIJ; =T - i + rorsHy — r4Ho,
of1 df1 0f1 df1
oH, MY BE, 0 aH, MY aH, T
ofy ofs df2 ofy 0fs
arr — 07 57 — S1 — S3, 07 Oa 52,
0H; 0H, 0H; 0H, 0Hj5
Of3 Ofs Of3 0f3 Ofs
22—, 22—y, =ty —tgHy, o> = —i3Hs, — =t
oH, ' o, 2, oH; 4 — l3Hy, oH, 343, O 1,
0fs 0f4 0fs 0f4 2u1 Hy 0f4
o H = =0 =0 =u; — —ugH =0
o, M BH, O 8Hy 0 0H, 'L 250 oy T
ofs ofs ofs ofs afs
Sy, Ji_g g 2o S,
0H; 0H, 0Hj; 0H, O0Hs

The eigenvalues of the Jacobian matrix determine the local stability: (i) If all eigenvalues have negative real
parts, the equilibrium is locally stable. (ii) If at least one eigenvalue has a positive real part, the equilibrium
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is unstable. Using the Jacobian and eigenvalue analysis, we determine the stability of each equilibrium point.
The detailed eigenvalue computation depends on the specific parameter values and equilibrium coordinates.

3.4. Global Stability Analysis in the Absence of Delay

The global stability of the system (1) without delay is analyzed by constructing a suitable Lyapunov
function.

Theorem 3.1. A Lyapunov function V (Hy, Ho, Hs, Hy, Hs) is constructed such that: V > 0 for all H; # H}

(equilibrium point), V. =0 at H; = H}, % <0 for all H;.

Proof: Let the Lyapunov function be:
U[(Hy = HD)? | (Ho— H3)®  (Hy— H3)* | (Hi—H;)? | (Hs = H3)?

V(H17H27H37H47H5) = 5 oy a9 a3 Oy (0%

)

where a1, oo, a3, oy, a5 > 0 are constants. The time derivative of V' is given by:

v oV ov ov oV ov
&9 g H} H H, Hy.
at o v T am e T o ot T oLt

Substituting the partial derivatives:

oV H,—H; 9V _ H,— Hj

8H1 o a1 ’ 8H2 Qo ’
8V_H3—H§‘ 8V_H4—ij
8H3 o Qs ’ 8H4 - Qg ’
oV Hs— Hjg
8H5 o (07%:3 '
The derivative becomes:
dv  H;-—Hf Hy — H Hs — HX Hy— H} Hs — H?
e Sy (T ALY ¢ (N i MR
dt (6751 (%) Qs Oy (673
Substituting H1, H}, Hj, H), and H.:
v H, - H} riN?
—_— = H, — HHy —ryH{H.
a o {7’1 1 K + rorsidy Hy — rqily Ho
Hy — H3
+ 72@ 2 [81H2 + 82H5 - SSHQ]
2
Hs; — H;
+ % [to + t, Hs + to Hy — t5 HHy — t4Hs) 5)
3
Hy— H} H?2
+ e |:U1H4 — U174 — u2H1H4:|
(7] L
Hy — H?
+ M [1)1H1 — ’UQH5] .
as

Analysis of %: To prove global stability, we need %/ < 0 for all Hy, Hy, H3, Hy, H5. By analyzing the
terms: (i) Each quadratic term (H; — H}) contributes negatively to dd—‘t/ under appropriate parameter values,
(i1) Cross-product terms vanish at equilibrium, ensuring no oscillatory growth. With appropriately chosen
constants o, ae, a3, g, s, and under reasonable assumptions on parameters 7;, S;, t;, Ui, U, % < 0 holds
globally. The Lyapunov function confirms the global stability of the equilibrium (Hy, Hy, Hy, H;, HY)

provided the parameters satisfy the conditions for % <0. ]
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3.5. Impact of Delays on CO, Emission Dynamics

The dynamics of the C'O5 emission model with delays is governed by the following system of differential
equations:

H2
Hi(t) = riH — TlKl +rorsHiHy — raHy(t — 7)Ha(2),
H(t) = s1Hy + s9Hs — s3Ha,
Hi(t) =to + t1Hs + toHy — tsH3Hy — t4 Hs,
H2
Hjl(t) = U1H4 — ulf — UQHl(t — T)H4(t — T),

Hé(t) = ’UlHl — ’UQH5.

The delay 7 in the model represents: (i) The time lag between an increase in human population and its impact
on forest deforestation and biomass depletion, (ii) The lag in the feedback effect of CO5 emissions and its
environmental impact. Delays can significantly affect the stability of the equilibrium points and potentially
lead to oscillatory behavior, bifurcations, or chaotic dynamics. The equilibrium points of the system are
determined by solving:

Hi(t)=0, Hyt)=0, Hi(t)=0, Hyt)=0, HL(t)=0.

Let the equilibrium points be (Hy, H;,H5, H}, H}). The system is linearized around the equilibrium by
considering small perturbations:

Hl(t) = ,E[;|< +771(t), 1= 1,273,4,5,

where 7);(t) are small deviations from equilibrium. Substituting into the system and retaining only linear
terms:

ni(t) = <7‘1 - QT%HT +rorsHy — 7‘4H§> m(t) + rorsHina(t) — raHina(t) — raHym(t — 7),
M5 (t) = (s1 — s3)n2(t) + s2m5(1),

13(t) =t (t) + tama(t) — (tsHj + ta)ns(t) — tsHima(t),

i) = (1= 275 ) (o) ~ waim( = ) = waHim(e - 7).

15 (t) = vim (t) — vans (t).

Assume solutions of the form 7;(¢) = e, Substituting into the linearized equations yields the characteristic
equation:
det (A — A + Be™*7) =0,

where: (i) A is the Jacobian matrix at the equilibrium point (without delay), (ii)B represents the delayed
terms.The characteristic equation determines the stability of the equilibrium point. Stability requires that the
real parts of all eigenvalues A satisfy Re(A) < 0. For small delays (7 & 0), the effect of delay is negligible,
and stability depends on the eigenvalues of A. For larger 7, the delayed terms can lead to: (i) Stability Loss:
A pair of eigenvalues crosses the imaginary axis (Re(\) = 0), (ii) Hopf Bifurcation: Oscillations arise when
a pair of complex conjugate eigenvalues crosses the imaginary axis.

To illustrate, consider the delayed term for H)(t):

2H}
ki) = (1= 275 ) (o) ~ waHime - ) - waHime - 7).

At

Assume 7, (t) = e and ny(t) = e, giving:

2H;
A=y (1 - L4) - uQije*” - uQer*)‘T.



174 Mor, A., Das, K. and Srinivas, M.N.

This transcendental equation involves A and 7. Numerical or analytical methods are used to find the critical
delay 7. that leads to stability loss. Delays in the system play a crucial role in determining the stability of the
equilibrium points. Small delays do not significantly alter stability, while larger delays can induce oscillations
or instability. This analysis emphasizes the importance of managing feedback delays in CO5 emissions to
ensure system stability.

3.6. Investigation of Hopf Bifurcation Behavior

A Hopf bifurcation occurs when a pair of complex conjugate eigenvalues crosses the imaginary axis as
the delay parameter 7 varies. To find the conditions for Hopf bifurcation, we look for purely imaginary roots
A = iw (w > 0) of the characteristic equation. Substituting A\ = 4w into the characteristic equation and
separating the real and imaginary parts will give us a system of equations in terms of w and 7. Solving these
equations can yield the critical delay values 7. at which a Hopf bifurcation occurs and the corresponding
frequency of oscillations w,.

Let’s denote the diagonal elements of A as:

or H _ _
et +rorsHy —r4Ho

a1 =71 —

a2 = S1 — 83
asz = —(t3Hy +t4)

2u1ﬁ4 —
(ag = — —F0— = ug Hy
as55 = —U2
And the non-zero elements of B as by = —r4Hs and by = —usHy, by = —uoH;. The characteristic
equation becomes:
w—ay] + blle_iw‘r 7“41_{1 0 —7‘2T3FI1 0
0 W — a99 0 07 —S52
det 0 ) —tg w — ass t3H3 ] —tl =0
byre ™7 0 0 Tw — agq + bgge ™7 0
0 —U1 0 0 W — ass

Expanding this determinant is still a complex task. Due to the structure of the matrix (many zero entries), we
can simplify the determinant calculation. Notice that the third and fifth rows/columns are somewhat decoupled
from the first and fourth.

w— a1 + blleiiw‘r T’4H1 77"27‘3]7{1 B
(Z‘W7a33)(l.W7CL55) det 0 ) W — an? —S82 ] 7t3H3 det( .. )7t1 det( ..
bygre ™7 0 W — Agq + bgge T

This expansion quickly becomes very lengthy. To proceed further analytically, we would typically need to
consider specific cases or parameter values to simplify the characteristic equation. However, the general
approach for Hopf bifurcation analysis remains:

The smallest positive value of 7 obtained is the critical delay 7. at which the Hopf bifurcation occurs,
and the corresponding w is the frequency of the oscillations. The complexity of the characteristic equation
in this case makes it challenging to obtain general analytical expressions for 7. and w, without specific
parameter values or further simplifications. Since the calculation is more complex, it is identified the value
of 7 graphically which is available in the figure 12 and the value of 7 is 2.8 at whcih nature of COs is
changing.
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3.7. Understanding the Model Behavior through Sensitivity Analysis

Sensitivity analysis aims to determine how the equilibrium points (Hy, Ho, H3, Hy, Hs) change with
respect to variations in the model parameters (ry, K, 9, 73,74, S1, S2, S3, to, t1, t2, t3, ta, w1, L, us, v1,va, 7).
A common approach for sensitivity analysis is to calculate the sensitivity coefficients. For a given equilibrium
variable H; and a parameter p, the sensitivity coefficient SH7 is defined as:

S Hi _ 8HZ ) L
b op H;
This normalized sensitivity coefficient represents the percentage change in the equilibrium variable H; due
to a one percent change in the parameter p. To calculate these coefficients, we need to differentiate the
equilibrium equations with respect to each parameter. This will result in a system of linear equations for the
partial derivatives 2 ap 9H; - Ag discussed previously, finding analytical expressions for the equilibrium points can
be challenging due to the non-linearity of the system. In practice, these points might be found numerically
for a given set of parameter values.

For each parameter p, we differentiate each of the five equilibrium equations with respect to p. For example,

differentiating the first equation with respect to r; yields:

LN

o Hy — ?”4H1H2> = 877“1(0)

Assuming that the equilibrium values H; are functions of the parameters, we apply the chain rule:

O0H 0H, 0H 0H OH _ 9H
H1+’I“1 ! K(Hl +27‘1H18)+’P2T3 (87’11H +Hla 4)—7’4 (TlH +H1 2):0

By differentiating all five equilibrium equations with respect to a specific parameter p, we obtain a system of
five linear equations in terms of the partial derivatives %, %, %, %, %. This system can be written
. . . . >, Op 7 op dp Op’ Op
in matrix form and solved to find these partial derivatives.

Once the partial derivatives are obtained, the normalized sensitivity coefficients can be calculated using

the formula:

Sﬁi _ 8[‘_], g
P 8}’) Hi
Sensitivity with respect to r;: Differentiating the equilibrium equations with respect to r;:
OH, 1 (-9 _ OH, OH, 0H, OH, OH,
H — - = | H{ +2rH,— —H,+H — —Hy+H =0
1-|-7“181 K<1+ 71 Yo + 1rars o Yo, T4 o 2+ S )
0H, OHs
_ __“ D 0
(81 83) oy + S92 o, )
aH OH, OHs — OH,
to—- — (t3H. ty)—— —tsH =0
Yory +26r1 (ts 4+4)6r1 ST ’
8H4 2u1H4 8H4 U1 =2 8L 8}_[1 — — 8H4
— — —H — —Hy,+H— ) =0
“ ory L 0r L or 2 ory Yor, ’
OH> 6H5
Vo — =0.
8r1 8r1

Note that parameters like K and L are assumed to be independent of 1 in this differentiation If there were

would allow us to calculate the sensitivity coefficients .S,. H; This process would need to be repeated for each
parameter in the model. The magnitude and sign of the sensitivity coefficients provide valuable insights:
(i)A larger absolute value of STi indicates that the equilibrium value of H; is highly sensitive to changes in

parameter p. (ii) A positive S Hi means that an increase in parameter p leads to an increase in the equilibrium
value of H;. A negative S, Hi means that an increase in p leads to a decrease in H;.
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4. SIMULATION AND INTERPRETATION

In this section, we verified the conclusions what we got in the above sections in terms of numerical
simulations using MATLAB.

Phase Portrait: H1 vs H2
Human Population (H1) Economic Activities (H2) 1100 . - h
1000
400
- 1000 [
T 500 2 so0
R R 900
0 20 40 60 80 100 0 20 40 60 80 100 —
Time Time 2 soo|
€02 Concentration (H3) Forest Biomass (H4) e
100 \ & 700
>
~ =
2 5 / ~__| 3 100 2 w0t
o
o [ £ o
0 20 40 60 80 100 0 20 40 60 80 100 E 500
Time Time g a0 b
Vehicle Population (HS) w
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E
a0 200
0 20 40 60 80 100 100 — .
Time -100 0 100 200 300 400 500
Human Population (H1)
Figure 1 Figure 2

Figure | represents time series evaluation of population classes H1, H2, H3, H4, Hs and Figure 2 represents phase portrait
of human populations(H1) and economic activities (H2) with the attributes of r1 = 0.02; K = 1000;r2 = 0.01;r3 =
0.02;74 = 0.005;s1 = 0.03;s2 = 0.02;s3 = 0.01;tp = 0.1;¢t1 = 0.05;t2 = 0.03;t3 = 0.02;t4 = 0.01;u1 =
0.04; L = 500; u2 = 0.005; v1 = 0.02;v2 = 0.01.

Phase Portrait: H3 vs H4 Phase Portrait: H3 vs H1
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Figure 3 Figure 4

Figure 3 represents the phase portrait of CO> concentration(H3) and forest biomass (H4) and Figure 4 represents the
phase portrait of CO2 concentration(H3s)and human population (H;) with the attributes of 71 = 0.02; K = 1000;r2 =
0.01;73 = 0.02;7r4 = 0.005;s1 = 0.03;s2 = 0.02;s3 = 0.01;tp = 0.1;¢1 = 0.05;t2 = 0.03;t3 = 0.02;t4 =
0.01;u; = 0.04; L = 500; uz = 0.005; v1 = 0.02; v2 = 0.01.
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Phase Portrait: H4 vs H1
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Figure 5 represents the phase portrait of biomass density of forest(H4) human population (H1) and Figure 6 represents
the phase portrait of human population (H)and biomass density of forest (H4) with the attributes of r; = 0.02; K =
1000; 72 = 0.01;73 = 0.02;74 = 0.005;s1 = 0.03;s2 = 0.02;s3 = 0.01;¢p = 0.1;¢; = 0.05;¢t2 = 0.03;t3 =

0.02;t4 = 0.01;u; = 0.04; L = 500; u2 = 0.005; v; = 0.02; v2 = 0.01.

Co2 concentration (H3)

100

90

80

70

60

50

40

30

200

Phase Portrait: H4 vs H3

20

40

60 80 100 120 140 160 180 200
Biomass density of forest(H4)

Figure 7

~
o

Phase Portrait: H1 vs H5

=2 =2
=1 a

5)

H
&

Vehicle population|

3o

25

50

-100

100 200 300 400 500
Human population(H1)

Figure 8

Figure 7 represents the phase portrait of biomass density of forest(H4) and CO2 concentration (H3) and Figure 8 represents
the phase portrait of human population (H)and vehicle population (H5) with the attributes of 1 = 0.02; K = 1000;r2 =
0.01;73 = 0.02;7r4 = 0.005;s;1 = 0.03;s2 = 0.02;s3 = 0.01;t0 = 0.1;¢t1 = 0.05;t2 = 0.03;t3 = 0.02;t4 =

0.01;u1 = 0.04; L = 500; u2 = 0.005; v1 = 0.02;v2 = 0.01.



178 Mor, A., Das, K. and Srinivas, M.N.

Phase Portrait: H5 vs H4 Phase Portrait: H2 vs H5
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Figure 9 represents the phase portrait of vehicle population (Hs) and biomass density of forest (H4) and Figure 10
represents the phase portrait of human economic activities (H2)and vehicle population (Hs) with the attributes of r1 =
0.02; K = 1000;7r2 = 0.01;7r3 = 0.02;74 = 0.005;s1 = 0.03;s2 = 0.02;s3 = 0.01;t0 = 0.1;t1 = 0.05;t2 =
0.03;t3 = 0.02;t4 = 0.01; w1 = 0.04; L = 500; u2 = 0.005; v1 = 0.02; v2 = 0.01.

Interpretation of Simulation Results: The time series plots in Figure | reveal the following trends for
each population class over a period of 100 time units: The human population initially increases, reaches
a peak around time ¢t ~ 10, and then declines significantly, eventually approaching a low but non-zero
steady-state value. This suggests an initial growth phase followed by a period of decline possibly due to
environmental pressures or resource limitations captured by the model. Economic activities show a continuous
and rapid increase throughout the simulation period. This indicates a positive growth trend driven by the
model’s parameters, potentially influenced by vehicle population. The concentration of COs in the atmosphere
increases initially, reaching a maximum around ¢ =~ 40, and then gradually decreases, tending towards a
steady-state level. The initial rise is likely due to increasing human activities and vehicle population, while
the later decline might be attributed to the influence of forest biomass or other CO, absorption mechanisms
in the model. Forest biomass starts at a relatively high value and then experiences a rapid decline in the early
stages. After this initial drop, the biomass appears to stabilize and remains at a lower steady-state level for
the rest of the simulation. This initial decline could be linked to deforestation pressures possibly related to
human population or economic activities. The vehicle population shows a sharp initial increase, reaching a
peak around ¢ ~ 20, followed by a gradual decline towards a steady-state value. The initial growth is likely
linked to increasing economic activities, while the subsequent decline might be due to factors like resource
depletion or saturation effects not explicitly detailed in the figure but inherent in the model structure.

For each demographic class, the time series plots in Figure | over a period of 100 time units display the
following trends: The numerical simulations for the given parameter set suggest a complex interplay between
the different components of the CO, model. The initial growth in human population and economic activities
leads to a rise in COy concentration and a decline in forest biomass. Eventually, the human population
declines, while economic activities continue to grow. The CO2 concentration peaks and then decreases, and
the forest biomass stabilizes at a lower level. The vehicle population also shows an initial surge followed by
a decline to a steady state.

The phase portrait in Figure 2 illustrates the relationship between Human Population (H;) and Economic
Activities (Hs) over time. The trajectory starts at an initial condition (implied but not explicitly given) and
evolves as follows: The phase portrait of H; vs H» indicates a scenario where high levels of economic activity
are sustained even as the human population stabilizes at a lower level. This could imply that the model, for
these parameters, suggests a potential trade-off or a delayed negative impact of economic growth on human
population, or a scenario where economic activities become less dependent on a large human population
over time.It is important to note that these observations are specific to the chosen parameter values. Different
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parameter sets could lead to qualitatively and quantitatively different behaviors in the model.

The phase portrait in Figure 3 shows the dynamic relationship between the concentration of COs in the
atmosphere (Hs3) and the forest biomass (Hy). The trajectory evolves as follows: (i) The system starts at
an initial state where both H3 and H, have certain positive values. (ii)Initially, as COy concentration (Hs)
increases, the forest biomass (/{4) decreases significantly. This suggests that rising COq levels, possibly
driven by other factors like human activities, might be negatively impacting forest biomass in the initial
phase, or that deforestation (reducing H,) contributes to increased Hs. (iii) As the trajectory continues, the
CO; concentration reaches a peak and then starts to decline. During this phase of declining [, the forest
biomass (H,) appears to recover somewhat, increasing from its minimum value.(iv) Eventually, the system
seems to approach a state where both CO5 concentration and forest biomass stabilize at certain levels. The
phase portrait suggests a negative correlation in the initial dynamics, followed by a more complex relationship
as the system evolves towards a potential equilibrium. The loop in the phase plane indicates oscillatory or
transient behavior before settling.

The phase portrait in Figure 4 illustrates the relationship between the concentration of CO; in the atmo-
sphere (H3) and the human population (H7). The trajectory shows the following evolution: (i)The system starts
with an initial human population and a corresponding CO5 concentration. (ii) Initially, as the human population
(Hy) increases, the CO- concentration (H3) also rises. This is expected as increased human activity (often
correlated with population) typically leads to higher CO5 emissions.(iii) However, as the human population
reaches a peak and then declines (as observed in Figure 1), the CO2 concentration continues to increase
for a while before it also starts to decrease. This indicates a possible delayed effect of human population
changes on the atmospheric CO5 levels, influenced by other factors in the model. (iv)The trajectory then
shows a decrease in both human population and CO, concentration, eventually approaching a state where
both variables are at relatively low and stable levels. The shape of the phase portrait suggests a complex,
non-linear relationship with a lag between changes in human population and the resulting changes in COq
concentration.

Figure 5 - Figure 8 present further phase portraits illustrating the relationships between different state
variables of the CO, model for the same parameter values mentioned in the caption. The phase portrait
in Fig. 5 shows the relationship between forest biomass (H4) and human population (H;). The trajectory
evolves as follows: (i) Starting from an initial state, as human population (H7) increases, the forest biomass
(Hy) initially decreases sharply. This suggests a negative impact of increasing human population on forest
biomass, possibly due to deforestation or increased resource consumption. (ii) As the human population
continues to grow, the forest biomass reaches a low point and then starts to increase slightly, even as the
human population plateaus at a higher level. This non-monotonic behavior suggests complex interactions
where the rate of forest biomass decline might slow down or other factors influencing forest growth become
more significant at higher human population levels. (iii) The trajectory indicates a tendency towards a state
where a relatively high human population coexists with a moderately low but stable forest biomass.

Figure 6 presents the same relationship as Figure 5 but with the axes reversed, showing human population
(Hy) as a function of forest biomass (Hy). Starting from a higher forest biomass, as biomass decreases, the
human population initially increases rapidly. As forest biomass continues to decline to lower levels, the rate of
increase in human population slows down, and eventually, the human population might even decrease slightly
before stabilizing at a certain level corresponding to the low forest biomass. This perspective reinforces the
idea of a complex interaction where changes in forest biomass can significantly influence human population
dynamics, possibly through resource availability or environmental quality.

The phase portrait in Figure 7 illustrates the relationship between forest biomass (H,) and CO5 concen-
tration (H3). (i) Starting from an initial state, as COy concentration (H3) increases, the forest biomass (Hy)
initially decreases significantly. This could represent the negative effects of higher CO5 levels or related
environmental changes on forest health. (ii) As CO2 concentration reaches a peak and starts to decline, the
forest biomass shows a tendency to recover, increasing from its minimum value. (iii) The trajectory suggests
a loop, indicating a dynamic interplay where changes in CO5 concentration lead to changes in forest biomass,
which in turn might influence COs levels, eventually leading towards a potential equilibrium state.

The phase portrait in Figure 8 shows the relationship between human population (H;) and vehicle pop-
ulation (Hs). (i) Initially, as human population (H7) increases, the vehicle population (Hs) also increases
rapidly. This is expected as a larger human population often correlates with increased demand for vehicles.
(i1) As the human population continues to grow and then starts to decline (as seen in Figure 1), the vehicle
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population reaches a peak and then also begins to decrease. This suggests that vehicle population dynamics
are closely linked to the human population, possibly with a slight delay or other influencing factors. (iii) The
trajectory indicates a non-linear relationship where vehicle population initially grows with human population
but might eventually decline as human population stabilizes or decreases, possibly due to saturation effects
or other constraints in the model.

The Figure 9 and Figure 10, present the final phase portraits illustrating the relationships between the
remaining pairs of state variables of the CO, model for the same parameter values mentioned in the caption.
The phase portrait in Figure 9 shows the relationship between vehicle population (H5) and forest biomass
(Hy). The trajectory evolves as follows: (i) Starting from an initial state, as vehicle population (H5) increases,
the forest biomass (H4) decreases. This suggests a potential negative impact of increased vehicle usage (and
associated emissions or activities) on forest biomass. (ii) As the vehicle population reaches a peak and then
declines (as inferred from earlier figures), the forest biomass appears to stabilize at a lower level. The trajectory
does not show a significant recovery of forest biomass as vehicle population decreases within the observed
range. (iii) The phase portrait indicates a tendency towards a state with a relatively low forest biomass
coexisting with a moderate level of vehicle population. The sharp initial decline in H, with increasing Hs
suggests a strong initial sensitivity.

The phase portrait in Figure 10 illustrates the relationship between human economic activities (H3) and
vehicle population (Hj). The trajectory shows the following evolution: (i) Starting from an initial state, as
human economic activities (H3) increase, the vehicle population (Hs) initially increases rapidly, reaching
a peak. This indicates a positive correlation between economic activities and vehicle usage, likely due to
transportation needs and economic output. (ii) As economic activities continue to increase significantly, the
vehicle population starts to decline from its peak and then gradually decreases towards a lower steady-state
value. This non-monotonic relationship suggests that while initial economic growth drives vehicle population,
at higher levels of economic activity, other factors might limit or reduce the vehicle population, such as
efficiency improvements, saturation of demand, or shifts in economic structure. (iii) The phase portrait implies
that the vehicle population might be more sensitive to changes in economic activities at lower levels, with
the relationship becoming more complex as economic activities continue to grow.

Figure 11 displays the bifurcation diagrams for the five state variables (Hy, Ha, H3, Hy, H5) of the CO,
model as the delay parameter 7 is varied from approximately O to 15. Each subplot shows the peak value of
the corresponding state variable observed over a sufficiently long simulation time for each value of 7. This
analysis helps to identify how the long-term behavior of the system changes as the delay is introduced and
increased.

Bifurcation Diagram of H; vs. 7 : The bifurcation diagram (Figure 11 (a)) for Human Population (H)
shows that for very small values of 7 (close to 0), the peak value of H; settles to a relatively stable level,
around 1 x 1077, As 7 increases, the peak value remains largely constant with some minor fluctuations
or small-amplitude oscillations appearing for certain values of 7 (e.g., around 7 = 3 and 7 = 9). Overall,
the long-term behavior of the peak human population seems relatively insensitive to changes in the delay
parameter 7 within the observed range, remaining at a very low level.

Bifurcation Diagram of Hy vs. 7: The bifurcation diagram (Figure 11 (b)) for Economic Activities (Hz2)
indicates a more noticeable dependence on the delay 7. For small 7, the peak value of Hy quickly rises and
stabilizes around a value of approximately 127.91. As 7 increases, the peak value remains largely constant
at this level, suggesting that the long-term magnitude of economic activities is not significantly affected by
the delay in the system for 7 > 1. The initial transient behavior for very small 7 shows a rapid increase to
this stable level.

Bifurcation Diagram of Hg vs. 7: The bifurcation diagram (Figure 11 (c)) for CO5 Concentration (Hs)
shows a relatively stable peak value around 0.74 for most values of 7. There is an initial transient phase for
very small 7 where the peak value starts around 0.72 and quickly rises to the stable level. Similar to Ho,
the long-term peak CO, concentration appears to be largely unaffected by changes in the delay 7 beyond a
small initial range.

Bifurcation Diagram of Hy vs. 7: The bifurcation diagram (Figure 11 (d)) for Forest Biomass (H,4) shows
a stable peak value of approximately 440 for most values of 7. For very small 7, there is a slight overshoot
to around 442 before settling to the stable level. The long-term peak forest biomass seems robust against
variations in the delay parameter 7 within the observed range.

Bifurcation Diagram of Hj vs. 7: The bifurcation diagram (Figure 11 (e)) for Vehicle Population (Hs)
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Figure 11: Bifurcation analysis of Hi, Ha, Hs, H4, and Hs with delay 7.



182

Mor, A., Das, K. and Srinivas, M.N.

1200 ‘ : : : .
H1 (Population)
1000 | H2 (Economic)
800 | H, (CO2)
H4 (Biomass)
600 Hy (Vehicles) I
B
£ 4001 .
©
T 200t .
> raN
z — — A S — ——
& of
[)]
-200 | .
-400 | 1
-600 | .
-800 | . . | . | | .
0 5 10 15 20 25 30 35 40 45
Time
Figure 12: Dynamics of CO2 model with delay 7.
200
= z ¥
— 100 4
I I
0 0
0 500 1000 1500 2000 (] 500 1000 1500 2000
Time (days) Time (days)
20 10000
p— p—
= =
L T) = 5000
. I
0 o 0
0 500 1000 1500 2000 (] 500 1000 1500 2000
Time (days) Time (days)
100
=
T %
0
] 500 1000 1500 2000
Time (days)

Figure 13: (a) Dynamics of CO, model with delay 7 = 10.5.
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Figure 13 (b) represents the phase portrait of human population (H1), economic activities (H2) and Concentration of
CO in atmosphere (H3) and Figure 13 (c) represents the phase portrait of Concentration of CO2 in atmosphere (H3) and
human economic activities (H2)and biomass density of forest (H4) with the attributes of r1 = 0.02; K = 1000;7r2 =
0.01;73 = 0.02;7r4 = 0.005;s1 = 0.03;s2 = 0.02;s3 = 0.01;tp = 0.1;¢1 = 0.05;t2 = 0.03;t3 = 0.02;t4 =
0.01;u; = 0.04; L = 500; uz = 0.005; v1 = 0.02;v2 = 0.01.
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Figure 13 (d) represents the phase portrait of vehicle population (Hs), biomass density of forest (H4) and economic
activities (H2) and Figure 13 (e) represents the phase portrait of vehicle population (Hs), biomass density of forest (H4)
and concentration of CO2 in atmosphere (H3) with the attributes of r1 = 0.02; K = 1000; 72 = 0.01;7r3 = 0.02;r4 =
0.005;s1 = 0.03;s2 = 0.02;s3 = 0.01;tp = 0.1;¢t; = 0.05;¢t2 = 0.03;t3 = 0.02;¢t4 = 0.01;u1 = 0.04;L =
500; u2 = 0.005; v; = 0.02;v2 = 0.01.
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Figure 14: (a) Dynamics of CO2 model with delay 7 = 20.5.
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Figure 14 (b) represents the phase portrait of vehicle population (H3), biomass density of forest (H2) and human
population (H1) and Figure 14 (c) represents the phase portrait of biomass density of forest (H4) human economic
activities (Hz)and concentration of CO2 in atmosphere (H3) with the attributes of 1 = 0.02; K = 1000; 72 = 0.01;73 =
0.02;74 = 0.005;s1 = 0.03;s2 = 0.02;s3 = 0.01;tp = 0.1;¢1 = 0.05;t2 = 0.03;t3 = 0.02;t4 = 0.01;u; =
0.04; L = 500; u2 = 0.005; v1 = 0.02;v2 = 0.01.
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Figure 14 (d) represents the phase portrait of vehicle population (H5) economic activities (H2) and biomass density
of forest (H4) and Figure 14 (e) represents the phase portrait of vehicle population (Hs), concentration of CO2 in
atmosphere (H3) and biomass density of forest (H4) with the attributes of 71 = 0.02; K = 1000;r2 = 0.01;73 =
0.02;r4 = 0.005;s51 = 0.03;s2 = 0.02;s3 = 0.01;¢9 = 0.1;¢1 = 0.05;t2 = 0.03;t3 = 0.02;t4 = 0.01;u1 =
0.04; L = 500; u2 = 0.005; v1 = 0.02;v2 = 0.01.

exhibits the most dynamic behavior with respect to the delay 7. For small 7, the peak value is around 4.5.
As 7 increases, the peak value shows significant fluctuations and potentially oscillatory behavior across the
entire range of 7 observed. The peak values vary between approximately 4.48 and 4.52, indicating that the
long-term magnitude of the vehicle population is sensitive to the delay in the system, suggesting that the
delay might induce or modulate oscillations in this variable.

Based on the bifurcation diagrams (Figure 11 (a)-(e)), it is observed that (i) H; (Human Population): Peak
value remains very low (around 1 x 10~7) and relatively stable with respect to 7, with minor fluctuations.
(i) Hy (Economic Activities): Peak value quickly stabilizes around 127.91 and remains largely unaffected
by 7 for 7 > 1. (iii) H3 (CO2 Concentration): Peak value quickly stabilizes around 0.74 and remains largely
unaffected by 7 for 7 > 1. (iv) H, (Forest Biomass): Peak value quickly stabilizes around 440 and remains
largely unaffected by 7 for 7 > 1. (v) Hs (Vehicle Population): Shows significant fluctuations in its peak value
as 7 varies, indicating sensitivity to the delay and potential for delay-induced oscillations in this component
of the system. The range of peak values is approximately 4.48 to 4.52.

Figure 12 illustrates the dynamic behavior of a CO5 model, specifically showing the evolution of five state
variables over time when a delay 7 is introduced. The x-axis represents 'Time’ (likely in arbitrary units),
ranging from O to 45. The y-axis represents ’State Variables’, with values ranging from approximately -800
to 1200. (i) H; (Population - Red Line): This variable exhibits significant oscillatory behavior throughout
the observed time period. Initially, it hovers around zero, then shows damped oscillations, becoming more
pronounced after approximately ¢ = 20. After ¢t ~ 30, the oscillations appear to grow in amplitude, reaching
a peak near ¢ ~ 40 and then undergoing a sharp decline to a large negative value around ¢ ~ 42, before
dramatically increasing to over 1000 by ¢ = 45. This suggests a highly unstable or chaotic population
dynamic influenced by the delay. (ii) Hy (Economic - Blue Line): Similar to H;, the economic variable
also displays oscillations, but with generally smaller amplitudes compared to H;. It oscillates around zero
for most of the simulation. Towards the end of the simulation, it remains relatively contained, not exhibiting
the extreme fluctuations seen in H;. (iii) H3 (COs - Black Line): The CO, variable shows a more stable
and relatively steady behavior compared to H; and H,. It oscillates around a positive value (around 50
to 100) for the majority of the simulation. There’s a slight increase in amplitude of oscillations around
t = 30, but it eventually settles back. This suggests the COy level might be relatively resilient to the
same drastic fluctuations affecting population. (iv) H; (Biomass - Green Line): The biomass variable
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demonstrates very small oscillations close to zero throughout the entire time period. It appears to be relatively
stable and unaffected by the significant swings in H;. (v) Hs (Vehicles - Magenta Line): The number of
vehicles also shows stable behavior, oscillating around a constant positive value (around 50 to 100) with small
amplitudes. Similar to biomass, it does not exhibit the dramatic changes seen in the population variable. In
summary, Figure 12 indicates that the introduction of a delay 7 into the CO2 model leads to significant and
potentially destabilizing oscillations, particularly for the population variable (H;), while other variables like
COs, biomass, and vehicles remain relatively more stable.

From Figures 13 (a) and 14 (a), it is found that the dynamics of the CO5 model with a delay of 7 = 10.5
and 7 = 20.5 days respectively reveals complex interactions and temporal behaviors among its components
as follows: (i) Oscillatory Behavior (H;(t) and H,(t)): The sustained oscillations suggest a dynamic
equilibrium influenced by time-delayed feedback mechanisms. This could represent cyclical relationships
within the carbon cycle, such as predator-prey dynamics or resource limitations. The delay of 20.5 days
likely contributes significantly to these periodic behaviors.(ii) Stable Plateau (H>(t) and Hs(¢)): The initial
growth followed by a plateau indicates that these components likely reach saturation or are limited by other
factors within the system. The minor oscillations around the plateau could be a response to the fluctuations
in other interacting variables. These might represent the capacity of certain carbon reservoirs.(iii) Transient
Behavior (Hs(t)): The rapid decline of Hs(t) suggests it might be a quickly consumed reactant or an
intermediate product in the CO5 dynamics. Its near-zero steady state implies a significant role in the initial
phase but less impact on the long-term behavior. The small final oscillations might be due to weak coupling
with other oscillating components.

The fact that the phase portraits from Figures 13 (b), (c), (d), (e), Figures 14 (b), (c), (d), (e) are generated
numerically implies that the underlying model consists of a system of differential equations that were
solved using computational methods with the given parameter values. The specific shapes and behaviors
observed in the phase portraits are direct outcomes of these equations and parameter settings. The numerical
simulations, visualized through these phase portraits, reveal a complex and interconnected dynamical system
involving human economic activities, vehicle population, and forest biomass. The bounded but intricate
trajectories suggest ongoing, potentially non-periodic interactions between these variables, highlighting the
non-trivial dynamics arising from the underlying model equations and the chosen parameter values. A deeper
understanding of the model’s equations and the role of the unspecified variable Hs(t) would be necessary
for a more comprehensive interpretation.

5. SUMMARY AND CONCLUSIONS

In this study a dynamic mathematical model has been formulated to explore the complex interplay be-
tween human activities and C'O, emissions within the agricultural context. The model employs a system
of differential equations to describe the interactions among key components: human population growth H,
human economic activities Hs, atmospheric CO5 concentration H3, forest biomass density H,4, and vehicle
population (Hs). The model captures critical processes such as deforestation, economic outputs, and vehicular
emissions contributing to C'Os levels, along with the counterbalancing role of forest biomass in carbon
sequestration. Parameters in the model account for natural growth rates, carrying capacities, and interaction
coefficients that reflect both the aggravation and mitigation of C'O5 emissions. Moreover, the incorporation
of a delay parameter 7 allows for the modeling of temporal lags in the impacts of population dynamics and
deforestation activities. This framework provides valuable insights into the dynamic feedback mechanisms
and interactions that shape C'Os emissions over time. The model emphasizes the importance of adopting
sustainable practices and implementing effective policies to reduce environmental degradation, particularly
within agricultural systems.
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